1. (2) Let $S = \{a, b, c, d, e, f, g\}$. Which one of the following is not a partition of S:

(a)
$$P1 = [\{a,c,e\},\{f,b\},\{d,g\}]$$

(b) $P2 = [\{a,b,e,g\},\{c\},\{d,f\}]$
(c) $P3 = [\{a,e,g\},\{c,d\},\{b,e,f\}]$
(d) $P4 = [\{a,b,c,d,e,f,g\}]$
Each State Stat

- 2. (2) Let A and B be sets such that $A = \{1, 2, 3, 5, 9\}$ and $B = \{2, 4, 6, 8\}$. Which one of the following statements is true?
 - (a) $A \subseteq B$ (b) $A \cap B = 2$ (c) $A = B^c$ (d) $|B| \le |A|$
- 3. (2) If set $A = \{a, b, c\}$, then what is |P(A)|, the cardinality of the powerset of A, or in plain English the number of subsets which can be formed from A?

(a)
$$8 = 2^{3}$$

(b) 3

- (c) 9
- (d) not enough information
- 4. (2)Consider the function $f : \mathbb{Z} \to \mathbb{Z}$ such that f(x) = 6. Which one of the following statements is true?
 - (a) f is a one-to-one function.
 - (b) f is an onto function.
 - (c) f is neither one-to-one or onto.
 - (d) f is a bijection, that is f is both one-to-one and onto.
- 5. (2) Consider the recursive function defined as F(n) = F(n-1) + 7. What is the value of F(4)?

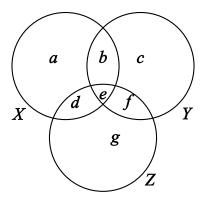
No base

- (a) 28
- (b) 29
- (c) F(3) + 7
- (d) not enough information

- 6. Determine which of the following is true or false.
 - (a) $(1) \{3\} \subseteq \{1,3,5\}$ T (b) $(1) \{3\} \subset \{1,3,5\}$ T (c) $(1) \{a,b\} \cup \{b,c\} = \{a,b,c\}$ T (d) $(1) \{a,b\} \cap \{b,c\} = \{a,b,c\}$ F (e) $(1) \emptyset \in \{x,y,z\}$ F (f) $(1) \emptyset \subseteq \{x,y,z\}$ T (g) (1) if $A = A \cup B$ then $A \subseteq B$ F (h) (1) if $A = A \cap B$ then $A \subseteq B$ T
- 7. Recall that the *relative complement* of a set B with respect to set A is denoted by $A \setminus B$ and the *symmetric difference* of sets A and B is denoted by $A \oplus B$ are define as:

 $A \setminus B = \{x : x \in A, x \notin B\}, A \oplus B = (A \cup B) \setminus (A \cap B).$

Letting $\mathbb{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 5\}, \text{ and } C = \{3, 4\}.$


(a) (3) What is $A \setminus B$?

 $A \setminus B = \underbrace{\xi} 4 \underbrace{\xi}$

(b) (3) What is $A \oplus B$?

$$A \oplus B = \underbrace{\overline{2}} 4, 5 \underbrace{\overline{5}}$$

(c) (3) What is $(B \setminus C) \oplus A$?

- 8. Consider sets X, YZ such that |X| = |Y| = |Z| = 15, $|X \cap Y| = |X \cap Z| = |Y \cap Z| = 6$ and $|X \cup Y \cup Z| = 28$.
 - (a) (4) What is the value of $|X \cap Y \cap Z|$? By the Principle of Inclusion & Exclusion: $28 = 3(15) - 3(6) + |X \cap Y \cap Z|$ so $|X \cap Y \cap Z| = 1$
 - (b) (4) Now write the appropriate value for each of the regions of the Venn diagram drawn above.
 - a 4 b 5 c 4 f 5 g 4

9. Consider the proposition P(n)

$$2^0 + 2^1 + \dots + 2^{n-2} + 2^{n-1} = 2^n - 1.$$

Answer the following questions to prove that P(n) is true for all $n \in \mathbb{N}$.

- (a) (2) What is the base case?
- Base: n=1 2°=2'-1=1

(b) (1) What is the induction hypothesis?

$$Ind Hyp; 2^{\circ}+2^{\prime}+\cdots 2^{\kappa}=2^{\kappa}-1$$

(c) (3) What is the induction step?

$$\frac{1 \text{ nd Step:}}{2^{\circ} + 2^{1} + \dots + 2^{k-1} + 2^{k} = 2^{k} + 2^{k} - 1 \pmod{4yp}}$$

$$= 2^{k+1} - 1$$
Eq.

- 10. Consider a recursive function defined as: T(1) = 0 T(n) = T(n-1) + (n-1) for $n \in \mathbb{N}, n \ge 2$.
 - (a) (3) What are the values for T(2), T(3), and T(4)?

$$T(2) = 0 + 1 = 1, T(3) = 1 + 2 = 3$$

 $T(4) = 3 + 3 = 6$

(b) (6) Let P(n) be the proposition $T(n) = \frac{n(n-1)}{2}$. Use mathematical induction to prove that P(n) is true for all $n \in \mathbb{N}$.

Base:
$$T(i) = \frac{I(0)}{2} = 0$$

 $IndiHyp: T(K) = \frac{K(k-1)}{2}$ for $k \in \mathbb{N}$
 $2 \quad k \ge 1$

$$\frac{\ln d \cdot Step;}{T(k+1)} = T(k) + k$$

$$= \frac{K(k-1)}{2} + K (\ln d \cdot H_{1}p)$$

$$= \frac{k^2 - K + 2k}{2}$$

$$= \frac{k^2 + k}{2} = \frac{(k+1)(k)}{2}$$