CISC-102 Winter 2019 Quiz 3 Solutions April 1 March 28, 2019

- 1. (2) How many ways are there to select a 5 card poker hand such that there are two pairs and a 5th card. That is, there are two cards of the same value, another two of the same value different from the first, and a fifth card with value different from the two pairs. Recall a deck of cards has 13 different values, where each value comes in 4 different suits.
 - (a) $\binom{13}{2}\binom{12}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
 - (b) $\binom{13}{1}\binom{12}{1}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
 - (c) $\binom{13}{2}\binom{4}{2}^2\binom{11}{1}\binom{4}{1}$
 - (d) none of the above
- 2. (2) Which of the following terms belongs to the expansion of $(x + y)^7$?
 - (a) $\binom{7}{1}x^7$
 - (b) $\binom{7}{2}x^3y^4$
 - (c) $\binom{7}{6}x^6y^2$
 - (d) <u>None of the above</u>

3. (2) Consider the sum:

$$S_n = \sum_{i=0}^n \binom{n}{i} 2^{n-i} (2)^i.$$

Which of one of the following is true?

- (a) $S_n = 5^n$
- (b) $S_n = 0$
- (c) $S_n = 6^n$
- (d) None of the above.
- 4. (2) Consider a bag containing 10 balls numbered from 1 to 10. In how many ways can 5 balls be selected, without ordering, and without replacement, so that all 5 numbers are even or all 5 are odd?
 - (a) $\binom{10}{5} + \binom{10}{5}$
 - (b) $\binom{5}{5}\binom{5}{5}$
 - (c) $\frac{\binom{5}{5} + \binom{5}{5}}{\frac{5}{5}}$
 - (d) none of the above
- 5. (2) Which one of the following equations is true for all natural numbers k.
 - (a) $\binom{k+1}{k} = \binom{k+2}{k+1}$
 - (b) $\underline{\binom{k+1}{0} = \binom{k+2}{0}}$
 - (c) $\overline{\binom{k+1}{2} = \binom{k+1}{k}}$
 - (d) none of the above
- 6. (2) Which of the following is true?
 - (a) $\binom{n}{k} \ge n^k$
 - (b) $\binom{n}{k} \le n^k$
 - (c) $\binom{n}{k} \leq \frac{n^k}{k^k}$
 - (d) none of the above

- 7. (2) The Fibonacci function is defined recursively as F(1) = 1, F(2) = 1, and F(n) = F(n-1) + F(n-2) for all natural numbers $n \ge 3$. Which of the following is false?
 - (a) F(5) = 5
 - (b) F(6) = F(5) + F(4)
 - (c) F(7) = F(5) + 2F(4) + F(3)
 - (d) none of the above
- 8. (2) Which of the following expressions is false?
 - (a) $p \to q \equiv q \to p$
 - (b) $\neg (p \lor q) \equiv \neg p \land \neg q$
 - (c) $p \to q \equiv \neg q \to \neg p$
 - (d) none of the above
- 9. (2) Which of the following expressions is always true?
 - (a) $\underline{\neg p \lor p}$
 - (b) $\neg p \land p$
 - (c) $\neg p \land \neg p$
 - (d) none of the above

10. (4) Consider the equation

$$x_1 + x_2 + x_3 + x_4 = 11$$

A natural number solution to this equation assigns natural numbers (integers $x, x \ge 1$) to the variables x_1, x_2, x_3, x_4 so that the sum is 11. For example one possible solution is $x_1 = 2, x_2 = 6, x_3 = 1, x_4 = 2$. How many distinct natural number solutions are there to this equation?

Solution First preassign 1 to each variable, x_1, x_2, x_3, x_4 . The number of nonnegative integer solutions of $x_1 + x_2 + x_3 + x_4 = (11 - 4)$ is equivalent to the number of binary strings of length 11 - 4 + 3 = 10 using 3 1's and 7 0's, which is:

$$\frac{10!}{7!3!} = \binom{10}{7} = \binom{10}{3}$$

11. (4) Complete the truth table below, adding columns as needed, for the proposition:

$$\neg (p \land \neg q).$$

р	q	-7 8	PATO	$ \neg(P_{\Lambda}\neg g)$
Т	Т	F	F	Т
Т	F	Т	T	F
F	Т	F	F	T
F	F	, T	F	au

12. Consider the logical argument:

$$p, p \to q \vdash q.$$

- (a) (2) Rewrite the logical argument as a logical expression. Solution $p \land (p \to q) \to q$.
- (b) (4) Complete the truth table below, adding columns as needed to determine whether the argument above is valid or not. After you have completed the table explain your conclusion in a sentence or two.

р	q	P-78	P ((p-> g)	PN (P-78) ~> 8	
Т	Т	T			
Т	F	F	F	ī	
F	Т	т	F	T	
F	F	$\frac{1}{1}$	F	Т	

The derived logical expression is a tautology, thus we can conclude that the given argument is valid.

13. (6) The Fibonacci function is defined recursively as F(1) = 1, F(2) = 1, and F(n) = F(n-1) + F(n-2) for all $n \ge 3$. Prove using mathematical induction that the sum of the first *n* Fibonacci numbers is equal to F(n+2) - 1, that is:

$$\sum_{i=1}^{n} F(i) = F(n+2) - 1$$

is true for all natural numbers n.

Base: F(1) = F(3)-1 = F(2) = 1.

Induction Hypothesis: Assume that:

$$\sum_{i=1}^{k} F(i) = F(k+2) - 1$$

is true for a natural number $k \ge 1$.

Induction Step:

$$\sum_{i=1}^{k+1} F(i) = \sum_{i=1}^{k} F(i) + F(k+1) = F(k+2) - 1 + F(k+1) = F(k+3) - 1$$