CISC-102 WINTER 2019

HOMEWORK 5 SOLUTIONS

- (1) Consider the following relations on the set $A = \{1, 2, 3\}$:
 - $R = \{(1,1), (1,2), (1,3), (3,3)\},\$
 - $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\},\$
 - $T = \{(1,1), (1,2), (2,2), (2,3)\},\$
 - $\bullet \ A \times A.$

For each of these relations determine whether it is symmetric, antisymmetric, reflexive, or transitive.

S and A \times A are symmetric.

R and T are antisymmetric.

S and A \times A are reflexive.

R, S and A \times A are transitive.

- (2) Explain why each of the following binary relations on the set $S = \{1, 2, 3\}$ is or is not an equivalence relation on S.
 - (a) $R_1 = \{(1,1), (1,2), (3,2), (3,3), (2,3), (2,1)\}$
 - (b) $R_2 = \{(1,1), (2,2), (3,3), (2,1), (1,2), (3,2), (2,3), (3,1), (1,3)\}$
 - (c) $R_3 = \{(1,1), (2,2), (3,3), (3,1), (1,3)\}$

 R_1 , is neither reflexive nor transitive so it's not an equivalence relation. R_1 is symmetric.

 R_2 is reflexive, symmetric, and transitive so it is an equivalence relation.

 R_3 is reflexive, symmetric and transitive, so it is an equivalence relation.

(3) Let R be a relation on the set of Natural numbers such that $(a, b) \in \mathbb{R}$ if $a \ge b$. Show that the relation R on N is a partial order.

R is reflexive because for all $a \in (N)$ $a \ge a$. R is antisymmetric because for all $a, b \in \mathbb{N}, a \ne b$ we have either $a \ge b$ or $b \ge a$ but not both. R is transitive because for all $a, b, c \in \mathbb{N}$, if $a \ge b$ and $b \ge c$, we have $a \ge c$.

HOMEWORK 5 SOLUTIONS

- (4) Which of the following relations on the set $S = \{1, 2, 3, 4, 5, 6\}$ is a function?
 - $\mathbf{R} = \{(1,1), (2,2), (3,2), (4,2), (5,3), (6,3)\}$
 - S = {(1,1), (2,2), (3,2), (4,2), (5,3), (6,3), (1,4) }
 - T = {(1,1), (2,2), (3,3), (4,4) }
 - $\bullet \ S \times S$

R is a function, because every element in the domain, S, has a distinct image. S is not a function, because 1 has two different images, due to the pairs (1,1), and (1,4).

T is not a function because the elements of S 5 and 6 do not have images.

 $S \times S$ is not a function because every element of S has multiple images.

 $\mathbf{2}$