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CISC-102 
Winter 2019 

Week 7 

Congruence Relations 

Let a and b be integers. We say that a is congruent to b 
modulo m written as: 

a ≣ b (mod m)  

and defined as follows: 

a ≣ b (mod m) if and only if  m | (a-b).  

Consider two integers a and b whose difference is a 
multiple of m. 

1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23

Observe that a and b have the same remainder when divided by m.  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Suppose m | (a-b) therefore a-b = pm for some integer p.  

And:  

( 1 ) a = b + pm 

We can also express b as an integer (call it q) multiple of 
m plus a remainder: 

( 2 ) b =  qm + r 

Putting (1) and (2) together we get  

a = b + pm = qm + r + pm = m(p+q) + r 

So we conclude that if m | (a-b) then a and b have the 
same remainder when divided by m.  

Now suppose a and b are integers that have the same 
remainder when divided by m.  

We have: 

 a = xm + r and b = ym + r,  
 
where x and y are integers and r is the common 
remainder.  

Therefore  a - b = m(x-y), so m | (a-b).  
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Congruences we use everyday: 

 1:00 PM = 13:00 o’clock, that is, 1 ≣ 13 (mod 12)  

The numbers 24 and 42 are even, that is 24 ≣ 42 (mod 2) 

Notes on a piano keyboard. (mod 12) 

The name of the month 14 months ago is the same as the 
name of the month 2 months ago. (mod 12) 

The name of the day 10 days ago is the same as the name 
of the day 3 days ago. (mod 7) 
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Congruence modulo m is an equivalence relation. 
Observe that we can partition the integers by their 
congruences.  

Examples: 

Congruence (mod 2) partitions integers into those that are 
even and odd. 

Congruence (mod 3) partitions integers into three classes 
those that are divisible by 3 (remainder 0) and those with 
remainder 1, and remainder 2 when divided by 3. 

In general we say that congruence modulo m partitions 
the integers into m classes called residue classes modulo 
m. Furthermore, each of these residue classes can be 
denoted by an integer x within the class using the notation 
[x]m. Using set notation we can express this as follows: 

[x]m = {a ∈ ℤ : a ≣ x mod m} 

And each of the residue classes can be denoted by its 
smallest member as follows: 

[0]m, [1]m, [2]m, …, [m-1]m  
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Recall an equivalence relation is reflexive, symmetric, 
and transitive. 

We can verify that congruence is an equivalence relation.  

Reflexive   a ≣ a (mod m) for all integers a,  
   because m | (a-a) .  

Symmetric  if a ≣ b (mod m) then b ≣ a (mod m),   
   because if m | (a-b) then m | -1(a-b)   
   or m | (b-a).  

Transitive  if a ≣ b (mod m) and b ≣ c (mod m)  
   then a ≣ c (mod m).  
   because if m | (a-b) and m | (b-c)  
   then m | ((a-b) + (b-c) ) or m  | (a - c) 
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Arithmetic with congruences 

Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 

Then  

a + c ≣ (b + d) (mod m), 

a - c ≣ (b - d) (mod m), and 

ac ≣ (bd) (mod m). 

Examples 

5 ≣ 2 (mod 3) and 10 ≣ 1 (mod 3) 

5 + 10 ≣ (2 + 1) (mod 3), that is,  15  ≣ 3 (mod 3)  

5 - 10 ≣ (2 - 1) (mod 3), that is, -5  ≣ 1 (mod 3)  

(Note: By the Division Algorithm Theorem we have -5 = (-2)(3) + 1 )  

(5)(10) ≣ (2)(1) (mod 3), that is, 50 ≣ 2 (mod 3)  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Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  a + c ≣ (b + d) (mod m). 

Proof: (We need to show that a + c ≣ (b + d) (mod m).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | ((a - b) + (c - d))  

which can be written as  
m | ((a + c ) - (b + d)).  

So we can conclude that a + c ≣ (b + d) (mod m). ◻ 
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Suppose we have a ≣ b (mod m) and c ≣ d (mod m). 
Then  ac ≣ (bd) (mod m).  ◻ 

Proof: (We need to show that m | (ac - bd).) 

If a ≣ b (mod m) then m | (a-b). 
And  if c ≣ d (mod m) we have m | (c-d).  

This in turn implies that  
m | (a - b)c  (because m | (a - b)p for all integers p) 

and that  
m | (c - d)b (because m | (a - b)p for all integers p).  

Therefore we have  
m | ((a - b)c + (c - d)b) 

Which can be written as:  
m | (ac - bd) 

So we can conclude that ac ≣ (bd) (mod m). ◻  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Techniques of Counting (Chapter 5 of SN) 

We have already seen and solved several counting 
problems.  
For example: 

• How many subsets are there of a set with n elements? 
• How many two element subsets are there of a set with n 
elements.  

Counting problems are useful to determine resources used 
by an algorithm (e.g. time and space). 
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Product Rule Principle 
Let A × B denote the cross product of sets A and B. 
Then |A × B| = |A| × |B|  1

For example suppose you have to pick a main course 
from: Fish, Beef, Chicken, Vegan. We can write this as the 
set M (Main), as follows 

M  = {F,B,C,V} 
 
Furthermore there is also choice of  a desert from: Apple 
pie, Lemon meringue pie, Ice cream. This can be 
represented as the set D. 

 D = {A,L,I} 

When we select a meal we select a main course AND a 
desert. 
We use the product rule to determine the total number of 
possible meals, that is:  

|{F,B,C,V}| × |{A,L,I}| = (4)(3) = 12. 

 Recall: vertical bars represent cardinality, or the number of elements in the set.1
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The product rule principle can be stated formally as: 

Suppose there is an event E that occurs in m ways and an 
event F that occurs in n ways, and these two events are 
independent of each other. Then the combination the 
events E AND F can occur in m × n ways. 
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Product Rule Principle 
The rule generalizes to any number of independent sets 
(events). For example with 3 sets: 
Let A × B × C denote the cross product of sets A, B, & C. 

Then |A × B × C | = |A| × |B| ×|C| . 

For k sets we have: 

!  |A1 ⇥A2 ⇥ . . .⇥Ak| = |A1| · |A2| · . . . · |Ak|
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For example, DNA is represented using the 4 symbols:  

A C G T. 

The number of different strings of length 7 using these 
symbols is: 

 4 × 4 × 4 × 4 × 4 × 4 × 4 = 47. 

The number of strings of length k using these 4 symbols 
is: 

4k 
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Sum Rule Principle 

Suppose we have the same mains and deserts as before, 
and we can also choose a soup or a salad. 

Where the soups are: 

  S = {Ministrone, Lobster Bisque, Tomato} 

And the salads are  

  T = { Garden, Caesar }  

In how many ways can we choose a soup OR a salad? 

We have | S | = 3 and | T | = 2 for a total of 3 + 2 = 5 
choices.  

Note that these sets have an empty intersection. For non-
empty intersections we would need to use the principle of 
inclusion and exclusion.  
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The sum rule can be stated formally as: 

Suppose some event E can occur m ways, and a second 
event F can occur in n ways, and the two events do not 
occur at once, then E OR F can occur in m + n ways.  

And sometime we combine the two principles. As in 
counting the number of meals we can make when 
choosing  

3 Soups OR 2 Salads 

AND  

4 Mains 

AND 

3 Deserts  

is: (3 + 2) (4) ( 3) = 60 different meals.  
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The Pigeon Hole Principle 

If there are n+1 pigeons, that all must sleep in a pigeon 
hole, and n pigeon holes, then there is at least one pigeon 
hole where (at least) 2 pigeons sleep. 
This should be obvious! Mathematicians give it a name 
because it is a useful counting tool. 
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Do two people exist who live in the G.T.A. and have 
exactly the same number of strands of hair on their heads? 

The answer is YES! And we can prove it using the pigeon 
hole principle.  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The population of the G.T.A is more than 6 million. 
Science tells us that nobody has more that 500,000 strands 
of hair on their heads.  

To solve the problem using the pigeon hole principle we 
imagine 500,000 pigeon holes labelled from 1, ..., 
500,000 and then imagine each resident of the G.T.A. 
entering the pigeon hole labelled with the number of 
strands of hair on their head. Since 6 million is greater 
than 500,001 we deduce that there will be at least one 
pigeon hole where two or more people have entered. 
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 The generalized pigeonhole principle 
Let k be a positive integer.  
If there are kn+1 pigeons, that all must sleep in a pigeon 
hole, and n pigeon holes, then there is at least one pigeon 
hole where (at least) k+1 pigeons sleep. 

Observe that 6,000,000 = 12 * 500,00, so we can 
conclude that there exists at least 12 + 1 = 13 people that 
live in the G.T.A. with the same number of strands of hair 
on their heads.  

�19



Week 7 page !  of !20 33

Can we find 2 pairs of people living in the G.T.A. that 
have exactly the same number of strands of hair on their 
heads? 

The pigeon hole principle is useless for solving this 
problem and we leave this as an unsolved mystery. 
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Let’s look at two more applications of the pigeon hole 
principle.  

Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the sum of two of the 
integers is guaranteed to be even. 

If a number x is odd then x = 2p + 1 for some integer p. 
And similarly an odd number y yields,  y = 2q + 1 for 
some integer q. Thus x + y = 2(p+q + 1) and is divisible 
by two. Similarly one can show that the sum of 2 even 
numbers is even. 

This leads to the observation that as long as we have two 
odd or two even integers we get an even sum, so we 
partition S into even and odd numbers. By the pigeon hole 
principle 3 numbers from S will always contain a pair that 
sums to an even number. 

Pigeon holes are: {1,3,5,7,9} and {2,4,6,8}  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Find the minimum number n of integers to be selected 
from S = {1, 2, …, 9} so that the absolute difference 
between two of the integers is exactly 5. 

We partition S into pairs that yield a difference of 5.  

Pigeon holes are: {1,6},{2,7},{3,8},{4,9},{5} 

So we need to pick 6 numbers to guarantee that difference 
of two is 5. 
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Playing cards.  

Some of the following examples make use of the standard 
52 deck of playing cards as shown below. 

There are 4 suits (clubs, spades, hearts, diamonds) each 
consisting of 13 values (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
Jack, Queen, King) for a total of 52 cards.  
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Permutations 

A common paradigm for counting is to imagine selecting 
labeled balls from a bag, so that no two balls are alike.  

A permutation of objects is represented by a record of the 
order in which balls are pulled out of the bag.  

Example: How many ways are there to select 5 different 
coloured balls from a bag? 

5 × 4 × 3 × 2 × 1 = 5! 

We can relate this to the product rule by thinking of the 
full bag as the set B5, the bag with 4 balls as the set B4, 
the bag with 3 balls B3, the bag with 2 balls B2, and with 1 
ball B1. Thus pulling balls from a bag can be viewed as a 
combination of the events (sets of outcomes) B1, B2, B3, 
B4, B5. And the number of ways the combination of these 
events can occur as: 

|B1| × |B2| × |B3| × |B4| × |B5| = 5 × 4 × 3 × 2 × 1 = 5! 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Example: How many different ways are there to shuffle a 
deck of cards? 

We can number the cards in a deck from 1 to 52 where 1 
is the card on top and 52 is the card on the bottom. So 
shuffling a deck of cards is equivalent to assigning a 
unique number from 1 ... 52 to each of the cards. 

Observe that there is a bijection between the number of 
ways to draw balls from a bag, and the number of ways to 
select positions in a shuffled deck of cards. There are 52 
positions to select as represented by the the following 
expression.  

52 × 51 × 50 ... × 1 = 52! 

 A permutation of the elements of a set is in essence 
assigning an ordering to a set.  
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Permutation rule 
There are n! ways to permute n elements.  

Example 
Larry has 6 distinguishable pairs of socks. Each day 
Monday to Saturday he wears a different pair of socks. On 
Sunday he washes the socks (and goes sock-less). In how 
many different ways can Larry wear a week’s worth of 
socks?  
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Permutation of a Subset  

Suppose we want to count the number of ways of 
selecting 2 coloured balls from a total of 5 coloured balls. 

5 × 4 = 5!/3! 

Suppose we want to count the number of ways to make an  
ordered selection of just 5 of the 52 cards.  

52 × 51 × 50 × 49 × 48 = 52!/47!  

different ways.  

NOTATION:  

P(n,k) = n!/(n-k)!  

represents the number of permutations of k elements 
chosen from a collection of n elements.  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Using our Poker hand analogy, a 5 card poker hand drawn 
from a 52 card deck one at a time, where order is taken 
into account has: 

52 × 51 × 50 × 49 × 48 = 52!/(52-5)! = 52!/47! 

different ways of occurring.  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Permutations with Repetition 

How many different ways can we order the letters: 
BABY? 

You may be temped to say 4! = 24 different ways, (that is 
select 4 balls labelled B A B Y from a bag) but upon 
inspection we see that there are only 12 distinguishable 
ways to order the letters.  

The list of all 24 permutations that you see come in pairs.  

BABY  BABY 
BAYB  BAYB 
BBAY  BBAY 
BBYA  BBYA  

BYAB  BYAB 
BYBA  BYBA 
ABYB  ABYB 
ABBY  ABBY  

AYBB  AYBB 
YBBA  YBBA 
YBAB  YBAB 
YABB   YABB 

I used colour to distinguish between the two B’s in 
BABY. However, in reality the two B’s are not 
distinguishable, and the list really should look like: 

BABY  BABY 
BAYB  BAYB 
BBAY  BBAY 
BBYA  BBYA  

 BYAB  BYAB 
BYBA  BYBA 
ABYB  ABYB 
ABBY  ABBY  

AYBB  AYBB 
YBBA  YBBA 
YBAB  YBAB 
YABB   YABB 

The correct way to count this is 4!/2! because two of the 
letters in B A B Y are identical. 
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How many ways are there to order the letters  CCCB? 

BCCC 
CBCC 

CCBC  
CCCB  

There are  4!/3! = 4 ways 

How many ways are there to order the letters BBCC? 

BBCC 
BCBC 
BCCB 

CBBC 
CBCB 
CCBB 

There are 4!/2!2! = 6 ways  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Example: How many ways are there to pick ten coloured 
balls from a bag where each colour appears twice, so that 
two balls of the same colour are indistinguishable? 

 

The counting formula is: The number of permutations of n  
objects consisting of n1, n2, n3, ..., nr that are alike is: 

 

10!
2!2!2!2!2! =

10!
(2!)5

n!
n1!n2!...nr!
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Combinations 

Suppose on the other hand that we want to count the 
number of different 5 card poker hands. We are interested 
in the number of ways of selecting 5 from 52 without 
regard to the way that they are ordered. We can solve this 
counting problem by answering the following questions. 

(1) How many ways are there to shuffle a 5 card deck?  

Answer: 5! 

(2) How many ways are there to make an ordered 
selection of 5 of the 52 cards?  

Answer: 52!/47! 

(3) How do we put these two answers together to count 
the number of ways to make an un-ordered selection of 5 
of the 52 cards? 

Answer: We divide the answer to (2) by the answer to (1), 
yielding: 52!/(47!5!).  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Combinations 

We can use the balls in a bag analogy to count 
combinations. In this case we count the number of 
different ways to select distinct balls without ordering. 
The counting technique is a 2 step process. 

1. Count the number of ways to select k balls from a bag 
of n balls with ordering. 

2.  Divide by the number of ways to order the k selected 
balls.  

The outcome of this process yields the formula: 

 

We have seen this expression before and the 

accompanying shorthand, that is: 

 

NOTATION: C(n,k)  = P(n,k)/k! =  

n!
(n�k)!k!

n!

(n� k)!k!
=

✓
n

k

◆

�n
k

�

�33


