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Counting Poker Hands. 

Notation: 

A card from a standard 52 card deck will be denoted using 
an ordered pair as follows:  

(v,s) where v is an element of the set of 13 values: 

{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, Q}. 

 and s is an element of the set of 4 suits: 

{♧,♢,♡,♤}. 

For this discussion a poker hand is a 5 card subset of the 
52 card deck.  
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There are 2,598,960 different 5 card subsets from a 52 
card deck.  

How is this value obtained? 
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The most valuable poker hand is a royal flush,  that is a 5 
card subset that consists of the values 10,J,Q,K,A all in 
the same suit.  

For example: 

{(10,♧), (J,♧), (Q,♧), (K, ♧), (A,♧)} 

is one example of a royal flush. 

How many royal flushes are there?  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There are exactly 4 different royal flushes. The “odds” of 
obtaining a royal flush is expressed as a ratio of all non 
royal flush 5 card poker hands versus royal flushes.  

This ratio is: 

(2,598,960-4):4  

And simplifies to 649,739 : 1. 
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The next highest hand is a straight flush. That is a hand of 
5 consecutive values (where A = 1 or A =14 as 
appropriate) all of the same suit. Normally the designation 
straight flush excludes the royal flushes.  

There are a total of  

straight flushes.  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A four of a kind consists of 4 cards of the same value plus 
one additional card.  

Let’s look at two equivalent ways of counting the number 
of 4 of kind hands.  

1. Count the number of ways to select the value of the 
four of a kind (13) and then the number of ways to 
choose the 5th card (48), and multiply. 

2. Count the number of ways to select the value of the 
four of a kind (13) and then number of ways to select 
the suit of the value of the 5th card (12) and the 
number of ways to select the suit of the 5th card (4), 
and multiply.  
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The odds of getting a four of a kind is 4,164 : 1 

To see why we compute the product:  

13(48)  = 624   

So there are 2,598,960 - 624 = 2,598,336 ways to get a 
“non four of a kind” vs. 624 ways to get a 4 of a kind, 
giving:  

2,598,336:624 odds  

which simplifies to: 

4,164 : 1  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A full house consists of 3 cards of the same value plus 2 
cards of  the same value? 

For example:  {7♧, 7♢, 7♤, 3♡, 3♤} is a full house. 
There are: 

ways to get a full house.  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A poker hand is called 3 of a kind, when 3 cards have the 
same value, and the other two can be any two of the 
remaining values.  

For example: {7♧, 7♢, 7♤, 2♡, 3♤} makes 3 of a 
kind. 

How many different 3 of a kind hands are there? 
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A poker hand is called two pair if it consists of two 
distinct pairs of the same value and a 5th card with value 
different from the first two. 

An incorrect way to count this is: 

There are  

ways to get the first pair and  

ways to get the second pair and  

to get the 5th card.  
Putting this together we get  

 Can you detect the error?  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1st pair is {2♢,2♧}, 2nd pair is {3♡,3♢} and the 5th 
card is {J♧}. 

Observe that this is the same hand as: 

1st pair is {3♡,3♢}, 2nd pair is {2♢,2♧}and the 5th 
card is {J♧}.  

So we count each hand twice the correct expression is: 
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A poker hand is called a straight if it consists of 5 values 

in a row. For the purposes of  this question we will 

exclude hands that are straight flushes.   

We already know that the number of straight flushes 

(including royal flushes) is  

This assumes that all cards are of the same suit. In a 

straight the suit of each of the 5 cards is open to selection. 
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So the number of straights (including straight flushes) is:  

The final step to get the correct count is to subtract the 

straight flushes. 
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A hand with no straight or flush or 4,3, or 2 of a kind is 
called a no-pair. How do we count the number of 5 card 
no-pair hands.  

A counting idea we can exploit is: 

•  Count the number of ways to get 5 different cards that 
are not a straight. 

•  Count the different suits for these 5 cards that do not 
make a flush.  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So the number of  5 card no-pair hands is: 

The probability of getting a no-pair when randomly 
selecting 5 cards is:  

And this works out to be:  

(1277)(1020)/2,598,960  = 1,302,540/2,598,960 1

or about  0.5. 
Expressing the odds of obtaining a no pair we get  
1,296,420: 1,302,540 or 0.995:1, or almost 1:1.  

You can find counting formulas for a variety of  5 card 
poker hands on this Wikipedia page:  
https://en.wikipedia.org/wiki/Poker_probability  

 I used Octave, an open source version of Matlab, to compute this value. 1
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Counting paradigms 

Many of our counting problems have to do with selection. 
For example counting genetic sequences, that is, the 
number of strings of length n using the letters A C G T. 
One can think of this as drawing balls labelled A C G T 
from a bag, recording the order of the ball and replacing 
the ball back into the bag for subsequent selections.  

This selection process can be described as  

 selection with ordering and replacement. 

The number of ways of selecting k times from a bag of n 
distinct balls with ordering and replacement is: 
    !  
As second example consider the number of ways to select 
5 cards from a deck of 52 cards with ordering.  

This section process can be described as  

 selection with ordering and without replacement 

The number of  ways of selecting k times from a bag of n 
distinct balls with ordering and without replacement is:

�
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The third example to consider is the number of ways to 
elect 5 cards from a deck of 52 cards without ordering. 

This selection process can be described as   

selection without ordering and without replacement 

The number of ways of selecting k times from a bag of n 
distinct balls without ordering and without replacement is: 

   !  

Continuing this process there is one more case to 
consider, that is,  

selection without ordering and with replacement 

The next problem is an example where we use this 
selection process. 

n!
k!(n − k)!

= (n
k)
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You get to pick a box of 10 timbits® and choose as many 
as you like from the choice of  

Chocolate, Sugar, Plain, Glazed 

The way to model this is to consider a bag with balls 
labelled C,S,P,G and we count the number of ways to 
select 10 without ordering and with replacement. 

Suppose the 10 choices in order are  

C,S,S,S,P,P,P,G,G,G  

There are 10!/( 3!)3 ways to order these. 

On the other hand suppose the choices in order are: 

C,C,C,C,C,C,C,C,C,C 

There are 10!/10! = 1 way to order this choice.  

It appears that are existing methods do not solve this 
counting problem very easily.  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Consider the following seemingly unrelated problem, that 
of counting the number of binary strings of length 13, 
consisting of 10 0’s and 3 1’s.  

For example: 0100010001000  

We can count the total number of this type of string as  

13!/(3!10!) 

Now consider a bijection from binary strings to donut 
selections. 

I claim that there is a bijective mapping from the string  

0100010001000  ↔ C,S,S,S,P,P,P,G,G,G 

The mapping works as follows: 

The 10 0’s represent timbits®, the 1’s act as dividers 
partitioning the zeros into 4 groups.  

What does this 0000000000111 binary string represent? 
Counting  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Suppose that we have n identical objects and 3 cans of 
paint one red, one blue, and one green. We can assume 
that there is enough paint in each can to colour all of the 
objects.  

How many different ways are there to colour the objects 
so that each object gets only one colour? 

This counting problem uses the paradigm of selecting 
balls from a bag without regard to ordering and replacing 
each ball back into the bag after it has been selected, that 
is,   

 selection without ordering and with replacement 

We can model this as counting binary strings using n 0’s 
and 2 1’s. There are: 

(n+2)! / (2! n!) ways to do this. (There are n+2 symbols 
where 2 repeat (the 1’s) and n repeat (the 0’s). 
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Note that (n+2)! / (2! n!) can also be written as the 
binomial coefficient 

We can think of this as a string of length n+2 of all 0’s, 
and we select two (different) 0’s  to convert into 1’s. 
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Suppose that we insist that each colour is used at least 
once. How many ways are there to colour n identical 
objects with 3 colours so that each colour is used at least 
once.  

We can think of this as pre-assigning one of the objects to 
each colour. So now we count the number of binary 
strings of length n - 3 + 2 = n-1 consisting of n-3 0’s, and 
2 1’s.  
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The Binomial Theorem 

When we expand the expression: 
 (x + y)3  

we get: 
(x+y)(x+y)(x+y) = x3 + 3x2y + 3xy2 + y3 

this can also be written as follows: 

 

We can reason that when we expand (x + y)3, there is one 
way to choose a triple that is exclusively x’s (with 0 y’s), 
3 ways to choose a triple that has 2 x’s (and 1 y) , and 3 
ways to choose a triple that has 1 x (and 2 y’s). Finally 
there is 1 way to choose a triple with no x (and 3 y’s).  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Binomial Theorem: 

 
For all natural numbers n. 

Proof: In the expansion of the product: 

(x + y) (x + y) ... (x+y), 

there  ways to choose an n-tuple with n-k x’s and (k 
y’s).  ⧠  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A special case of the binomial theorem should look 
familiar. 

This is just the sum the sizes of  
all subsets of  a set of size n. 
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Using counting to prove theorems. 

Counting arguments can be useful tool for proving 
theorems. In each case there is also an algebraic way of 
proving the result. However, there is an inherent beauty in 
the elegant simplicity of some of these counting 
arguments so it’s well worth looking at some examples. 
These proofs lack the formality of algebraic proofs. The 
lack of formality may make these arguments harder to 
grasp for some, and easier to understand for others.  

The proofs we see will be to prove the validity of 
equations. We will count the left and right hand side of 
each equation and show that they count the same thing. 
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Binomial Coefficients 

We prove identities involving binomial coefficients using 
counting arguments. 

Theorem: 

 

Proof: On the left we have the quantity !  which 
represents the number of ways to select a k element subset 
from an n element set, S. Using the analogy of selecting 
balls from a bag, we see that we also implicitly select the 
complementary subset that stays in the bag, and the 
number of ways to do this is as given on the right hand 
side of the equation is  !  .    ⧠ 
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Theorem A: 

!  

Proof: On the left the quantity !  represents the 

number of ways to select a k element subset from an n+1 
element set. To see what the right hand side counts we 
suppose that there is a “favourite” or “distinguished” 
element of the set, call it x.  
The number of ways to  select a k element subset from 
n+1 distinct objects that is guaranteed to include x is to 
pull x out and then choose the remaining k-1 elements in 

! ways. On the other hand the number of ways to  

select a k element subset from n+1 distinct objects that is 
guaranteed to exclude x is to pull x out and then choose all 

k elements in ways.   

Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠  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And here’s an alternate algebraic proof.  
 

Proof: 
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Theorem:  

Proof: On the left the sum counts all the subsets of a set 

of size n. We already know that the number of subsets of a  

set of size n, is 2n.   
Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠
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