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CISC-102

Binomial Theorem:

n __ n n_ 0 n n—1 n n—2 2 n 0n
(:c+y)—(0>9:y+(1>x y—|—<2>x Y-+ +(n)xy

_ kz:% (Z) 2Ry

For all natural numbers #.

Proof: In the expansion of the product:

x+y) x+y) - xty),

there (Z) ways to choose an n-tuple with n-k x’s and (k

Y’s). o
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A special case of the binomial theorem should look

familiar.
n n n n
1n10 1n—11 171—212 . 10177,
(o) () (et

-3 (1

This is just the sum the sizes of
all subsets of a set of size n.

(1+1)"
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Using counting to prove theorems.

Counting arguments can be useful tool for proving
theorems. In each case there 1s also an algebraic way of
proving the result. However, there is an inherent beauty in
the elegant simplicity of some of these counting
arguments so it’s well worth looking at some examples.
These proofs lack the formality of algebraic proofs. The
lack of formality may make these arguments harder to
grasp for some, and easier to understand for others.

The proofs we see will be to prove the validity of
equations. We will count the left and right hand side of
each equation and show that they count the same thing,.
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Binomial Coefficients

We prove 1dentities involving binomial coefficients using
counting arguments.

Theorem:

Proof: On the left we have the quantity (Z) which
represents the number of ways to select a £ element subset
from an n element set, S. Using the analogy of selecting
balls from a bag, we see that we also implicitly select the
complementary subset that stays in the bag, and the
number of ways to do this 1s as given on the right hand

n
side of the equation is (" 5) . O
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Theorem A:
n+1 n n
= +
() =0+ (2)

n+1
Proof: On the left the quantity ( ‘ > represents the

number of ways to select a k element subset from an n+1
element set. To see what the right hand side counts we
suppose that there is a “favourite” or “distinguished”
element of the set, call it x.

The number of ways to select a k element subset from
n+1 distinct objects that 1s guaranteed to include x 1s to
pull x out and then choose the remaining k-7 elements in

n
< >ways. On the other hand the number of ways to

select a k element subset from n+/ distinct objects that is
guaranteed to exclude x is to pull x out and then choose all

n
k elements in < k) ways.

Therefore the left and right hand side both count the same
thing thus justifying the equation. [
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And here’s an alternate algebraic proof.

() () - ()

Proof:

(kﬁl) i (Z) == k+77i!)!(k —1n <n_7;!>!<k>!
nlk+nl(n—k + 1)

(n+1—k)k!
nl(k+n—k+1)
(n+1—k)k!
nl(n+1)
(n+1—k)k!
(n+1)!
(n+1—k)k!

1)
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Theorem:
()= () ()= () -

Proof: On the left the sum counts all the subsets of a set
of size n. We already know that the number of subsets of a

set of size n, 1s 2.

Therefore the left and right hand side both count the same
thing thus justifying the equation. OJ
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Pascal’s Triangle

An easy way to calculate a table of binomial coefficients
was recognized centuries ago by mathematicians in India,
China, Iran and Europe.

In the west the technique is named after the French
mathematician Blaise Pascal (1623-1662). In the example
below each row represents the binomial coefficients as
used in the binomial theorem.



page 9 of 29

To obtain the entries by hand in a simple way we can use
the 1dentity:

(i) = G2 + (")

NG
NGBRGD
NGNS
OO 06
GG R IO IO
R G R R
DO OO 0 0 e
1
1 1
1 2 1
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Consider the sum of elements in a row of Pascal’s
triangle. If we label the top row 0, then 1t appears that row
1 sums to the value 2i. Can you explain why this 1s the
case?

NG
NGBRG
NEBRGNC
RO N
NG ORI
B G G R R
DO OO O 0 e
1
1 1
1 2 1

10
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Now let’s compute the sum of squares of the entries of
each row in Pascal’s triangle.

12=1

12+ 12=2
12+22+12=6
12+32+324+12=20
12+424+62+42+12=70

These sums all appear in the middle row of Pascal’s
triangle.

Which leads us to conjecture that:

(1) - (%)

11
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Before proving the theorem there are two preliminary
lemmas.

Lemma 1:

(M) = ()

For all non-negative integers n,k, n > k.

Proof: Since we already showed that () = ( " ) this

should be obvious. O

12
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()= (7

1

Lemma 2:
For all non-negative integers m,n,k such that n >m > k.

Proof: We use a counting argument. The right hand side
can be viewed as the number of subsets of size £ chosen
from the union of two disjoint sets, S of size m, and T of
size n. On the left we sum the choices where all & are
from S, then £~/ from S and 1 from 7 and so on up to all £
chosen from set 7. O

For example: Suppose

S'={a,b} with |S|=m =2, and
T'={c,d,e} with|T|=rn=3 and

k= 2. So the sum on the right would be:

(L2 )O-00 000

13
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Theorem:

i (n>2 B <2n)
Z ) \n
12=0
for all natural numbers n > 1.

Proof: Using lemma 1 we can write (7)2 =(")(," )

7 n—1

Now we observe that the sum 1s just a special case of
lemma 2, where m = n, and k£ = n, as follows:

() ()= (10)

(2

14
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Fibonacci Numbers
( See Chapter 4 of Discrete Mathematics: Elementary and
Beyond)

Leonardo Fibonacci (c. 1170 — ¢. 1250) was 1n Italian
mathematician.

The Fibonacci numbers are defined by a recursively
defined sequence that occurs frequently in nature.
Mathematical historians agree that this sequence was
known in India well before Fibonacci.

The Fibonacci sequence is characterized by the following
recursive function

F(1)=1,F2)=1
F(n) = F(n-1) + F(n-2) for n > 3.

(Note: an equivalent definition starting at F(0) is
FO)=0F() =1
Fm) =Fm-1) + F(n-2) forn=>2.)

The first few values of the Fibonacci sequence are
1,1,2,3,5,8, 13,21, ...

15
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Consider the following counting problem.

A staircase has n steps. You walk up the stairs either one
step or two steps at a time. How many ways are there to
reach the the nth step?

Lets examine small values of n.

1 step 1 way.

2 steps 2 ways.

3steps(1 +1+1,1+2,2+1)3 ways
4 steps ?

16
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For 4 steps there are 5 ways.
(1+1+1+1,1+1+2,1+2+1,2+1+1,2+2)

Suppose J(n) 1s a function that gives the answer to this
counting problem.

Observe that to count the number of ways of getting to
step n we can focus on the last climbing step. It could
either be a 1 step ( count the number of ways to get to step

n-1) or a 2 step (count the number of ways to get to step
n-2)

So we have the following recursive function
J(1)=1

J2)=2

J(n) =J(n-1) + J(n-2) for n > 3.

The first few numbers 1n this sequence is:

1,2,3,5,8, 13,21, ...

And it’s easy to see that J(n) = F(n+1) forn> 1.

17
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Consider the following two counting problems:
We have n dollars to spend. Every day we either spend 1

dollar for a pop or 2 dollars for a bag of chips. In how
many ways can we spend our money?

How many subsets are there of the set {1, 2, 3,..., n} that
contain no two consecutive numbers?

18
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. _-_1.---1_;;;:::-.1_;;;:::--.__
2 - 1 I S
3 - 1 3 3 1-
5 - 1 4 6 4 1
g - 1 5 10 10 5 ]:
13— 1 6 15~ 20 15 6 1
21— 1 7 21 3535 21 7 1
34— 1 8 2856 70 56 28 8 1
= "0 36 84 126126 84 36 9 1

89551 10 45 120 210 252 210 120 45 10 1

Fibonacci numbers can be obtained by adding up entries

in Pascal’s triangle.

|25+
Z —k—1
=2, (n k )

k=0

n—1 n—1

rounded down.

Where { J denotes

19
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At this point you may be wondering what is the value of
F(n).

Here 1s the expression, but it’s not pretty.

1 [/1+v35\ [1-4/5
2

F(n) =—— >

NG

Consider the equation

x2—x—-1=0

v

20
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1+4/5 | -

5
~ 1.618 and y = ~ —0.618.

Letgp =

So F(n) = A :

V5
Also observe that:
2 _ 2 _
p-"—@p—1=0andy“—yw—-1=0

And also that:

" — " — "2 =0, forn>2,
and

w" — -y 2 =0, forn>2.

21
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a b

a

a+b

The Golden Ratio

Given lengths a and b we say that they are in the golden
ratio if:

a+b_a

Pk

22
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We could prove that:

F(n)=% <1+2\/§>n_<1_2\/g>n

By using mathematical induction. We will do something

that requires less algebra.
Upper bound.
F(n) < 2" for all natural numbers 7.

Base: F(1)=1<2% F(2)=1<2!.
Induction Hypothesis: F(j) < 2~ ! forj, I <j<k.
Induction Step:
F(k+1) =F(k) + F(k-1)
< k=1 4 ok=2
<2k O

23
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Lower bound.

n—2
3
F(n) > <5> , for all natural numbers ».

3\ 3"
Base: F(1)=1> <5> JF2)=1> <5> :
2

3\’
Induction Hypothesis: F(j) > <5> forj, 1 <j<k.

Induction Step:
F(k+1) =F(k) + F(k-1)

0

N | W
N——
T
(V)

33 +2 (39 5
 9k=2 T 9k-3 XE

G 9

y ~ 3 k—3>< 3 2
2%-3 T4\ 2 2

3 k—1
(3) -

24
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There are many interesting properties of the Fibonacci

numbers. As a first example consider summing them.

We get

1=1

1+1=2
1+1+2=4
1+1+2+3=7

1+1+2+3+5=12
l1+1+2+3+5+8=20
l+1+2+3+5+8+13=33

Can you see a pattern?

25
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3,5,8,13,21,34vs.2,4,7,12, 20, 33

Observe that F(1) + F(2) = F(4) -1,

and F(1) + F(2) + F(3) =F(5) -1,

and F(1) + F(2) + F(3) + F(4) = F(6) -1,

and F(1) + F(2) + F(3) + F(4) + F(5) =F(7) -1,

and F(1) + F(2) + F(3) + F(4) + F(5) + F(6) = F(8) -1, and
F(1)+ F(2)+ FQ3)+F@4) + F(5) + F(6) + F(7) = F(9) -1.

Therefore we guess that:

n
Z F@(i) = F(n+ 2) — 1, for natural numbers n > 2.
i=1

And we can prove this by induction.

Base: F(1) + F(2) = F(4) -kl

Induction Hypothesis: Z Fi)=Fk+2)—1
i=1

26
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Induction Step:
k+1 k

Z F() = Z FG)+ F(k+ 1)
=1 =1

— F(k+2)—1+Fk+1)
= F(k+3)—1 O

27
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Consider the sum of the first n even Fibonacci numbers.
For reference the first few values of the Fibonacci
sequence are 1,1,2,3,5,8, 13, 21, 34, 55, 89, ...

Working out the first few terms we get

F2)=1

F(2) + F(4) = 4

F(2) + F(4) + F(6) = 12

F(2) + F(4) + F(6) + F(8) = 33

It appears that the sum of the first n even Fibonacci
numbers is equal to the n+1stodd Fibonacci number minus
1, as shown below.

F2)=1=F@3) -1

F(2)+ F(4)=4=F(5) -1

F(2)+ F4)+ F(6) =12 =F(7) -1

F(2) + F(4) + F(6) + F(8) =33 =F(9) - 1

We can verify this guess using mathematical induction.

28
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Z FQ2i) = F2n + 1) — 1, for all natural numbers 7.
i=1

Proof:
Base: F(2)=1=FQ3)- 1.
k

Induction Hypothesis: Z FRi)=FQRk+1)—-1.
i=1

Induction Step:
k+1 k

Z F(2i) = Z FQi) + FQk +2)

=1 =1
—FQk+1)—1+ FQ2k +2)
=FQ2k+3)—1 O
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