Introduction

« Skip Lists can be used to implement the Dictionary ADT

* We will see that Skip Lists provide an efficient, practical
solution to efficient insert, delete, and search dictionary

operations. Furthermore Skip Lists are not very hard to

implement.

Skip Lists

« Alternative implementation of ordered dictionaries
* Inspired by binary search
« Improvement over lookup tables:

Skip List
lookup: Oflog n)
mnsert: O(log n)
remove: Oflog n)

e

AVEraEe Casc

Array(sorted) Array(unsorted)

O(log n) O(n)

O(n) O(1)

O(n) O(n)
Wnrst EE:S;-

« The Skip List structure uses randomization to obtain good
average case performance.

Skip Lists

Idea is to achieve binary search performance with
linked lists.

We can use several linked lists where the distance
between consecutive elements (from the original list)
double (approximately) as the height of the list
INcreases.

Skip Lists

Considerations for convenience of exposition.
We can double link the lists in the horizontal and
vertical directions.

Sentinels are used at the beginning and end of the
list.

Skip Lists

* Maintaining this type of structure through inserts and
deletes would be difficult.

* The key i1dea behind Skip Lists 1s to approximate this
type of behaviour, in a probabilistic sense.

fiitin’

Determinism vs Non-determinism

*A program P is deterministic if P exhibits the exact same
behaviour each time 1t 1s run from the same 1nitial state.
«A program P 15 non-deterministic if P exhibits different
behaviour each time 1t 1s run from the same 1nitial state.

» Skip List operations introduce random/non-deterministic
behaviour by using values obtained from a pseudo-random
number generator.

*A pood pseudo-random number generator uses a deterministic
algorithm to generate a sequence of values that appear to be

randomly distributed. Strictly speaking, the behaviour is only
pseudo-random. However, actual performance is equivalent to
performance one would obtain using truly random numbers.

Skip Lists Formally
ﬂ skip list 5 for dictionary D consists of a number of sub-
ists
[Sos 87285, ... 5}
h is called the height of the skip list
Each list §, stores
* a subset of the items in D sorted by non-decreasing keys
« two special values —= and oo, where —2 is smaller than
every possible key that may be inserted into D and <o is
larger
Additionally,
* 5, contains every item of D and —oc, +oc
» Fori=1,..., h-1, list § contains (in addition to —= and +)
randomly generated subset of the items in list §_
» List §, contains only —= and +e¢

A Skip List

Searching in a Skip List

» Find 427

Algorithm SkipSearchik)
Input: A search key k.

Qutput: Position p in § such that the item at p has the
largest key that 1s less than or equal to k.

Let p be the topmost-left position of 5.
while below(p) # null do

p + below(p) '\ drop down
while (key(after(p)) =k) do
p + after(p) \\ scan forward

return p.

Inserting into a Skip List

* Insert 43. First find out where to put it, so search.

Inserting into a Skip List

+ Now insert. How high should the tower be?

Inserting into a Skip List

* Flip a coin until we get a head. For example three tails,
followed by one head.

Algorithm SkipInsert(k)
Input: Item(k.e).
Cutput: None.
p <+ SkipSearch{k);
q +— insertAfterAbove(p, null, (k.e))
NewLevel «+— RandomLevel();
for I from 0 to NewLevel do
while above(p) = null do %\ find the correct

p + before(p) \\ predecessor

p +— above(p)
q + insertAfterAbove(p,q.(k.e))

Algorithm RandomILevel
Input: None
Cutput: A value between 0 and MaxLevel, where MaxLevel
denotes the height of the highest allowable tower.
h «0;
while (Random() < 1/2 and h = MaxLevel) do
h++;
return h

Algorithm insertAfterAbove(p.q.l)

Input: Positions p and g, and Item L

Output: A position for an item inserted after p and above q.
SLNode r «+— new SLNode() ;

r.setltem(I);

r.setAfter{after(p)); after(p).setBefore(r);
r.setBefore(p);p.setAfter(r);

r.setBelow(q): if (q # null) g.setAbove(r);

r.setAbove (null);

return r;

Deletions in a Skip List

* Delete 20. Find it first.

Deletions in a Skip List

* Delete 20. Then remove it.

Deletions in a Skip List

* Delete 20. Then remove it.

Analysis.

* In the worst case Skip Lists may behave very poorly. (1.e. O
(N + MaxLevel) each for insert, delete, and find.)

* We use probabilistic analysis to show that the Dictionary
operations are expected to performed very quickly.

Space Analysis
* The probability that a tower 1s of height h, is the same as the
probability of getting h tails in a row when flipping a coin,
which 1s : 1/2% A pood choice for MaxLevel is O(log N) for a
Skip List of N elements. Even if we don't bound the levels
with MaxLewvel the probability that we go beyond it 1s
extremely small.

* This immediately allows us to determine the total averape
space complexity. In a skip list storing n elements we expect
n/2" elements to be in the list at level h. This leads to the
following familiar sum:

n+n2+nd4+.. <2n

* Which we recognize as O(n) .

Skip Lists: Average Height

+ For any single element, probability it gets to level 1?7

* s
e i times
2 ({ J

ru-l—
IJ|-—
I“'-'l'_

I .
2
e i n
* Probability that at least one of n elements got to level1 = T

gt c 1" n n 1
Try 1=3log,n: prob = TEEE i o
* Conclusion: Height h of skip list without MaxLevel bound
« very likely to be at least log,n

« very unlikely to more than 3log.n
+ 50, expected height h 15 O(log n)

Analysis

+ We give a probabilistic analysis of the cost of
SkipSearch. The cost of Insert and Delete follow
immediately.

+ Assume that we have found an item and let p denote its
position at level 0. We analyze the cost of the search by
following the search path backwards.

Backtrack analysis

*+ Found 42.
* Qur backtracking can go up or to the left.

Backtrack analysis

* The probability that we go up 1s 1/2. Observe that once we
are up at the top level we get to the front of the list in one
maore step.

=
N £
-__—

+

Backtrack analysis

* The number of steps needed to reach the top level of the Skip
List in effect counts the total number of steps needed to find an
item.

* We go up one level every time we flip and get a tail. The
expected number of flips until we get a tail 15 2.

» Thus the expected number of steps needed to get to the top level,
say level j, 15 2.

* With high probability j 1s O(log n). Thus the cost of a search is
O(log n) with high probability.

Backtrack analysis

« Therefore the expected cost to search, insert, delete, ina

Skip List with N elements 1s O(log N).

Skip Lists: Lessons Learnt

inspired by binary search

randomization for algorithm & data structure design

coin flipping in C+=

deterministic vs. non-deterministic programs

guaranteed worst case analysis vs. average worst case
analysis

There are no bad insertion sequences. A binary search tree
has expected height O log n) for a random insertion
sequence. However for bad insertion sequences the height
can be O(n). In the case of Skip Lists the length of the
search path depends on random *coin flips”. We have to get

a highly unlikely sequence of coin flips to realize poor
performance.

