CISC-471 WINTER 2016

HOMEWORK 1

Please work on these problems and be prepared to share your solutions with classmates in class on Monday January 11. Assignments will not be collected for grading.

Programming

Write a program in the language of your choosing (I recommend Python) and verify that it works on the sample data. For each problem be prepared to tell us why you think your algorithm is correct (whether you program worked on the sample data or not). Also provide an estimate of the time and space complexity of your algorithm.

Frequent Words Problem: A k-mer is defined as a string of length k. We define Count(Text, Pattern) as the number of times that a k-mer Pattern appears as a substring of Text. For example,

Count(ACAACTATGCATACTATCGGGAACTATCCT,ACTAT) $=3$.

We note that Count(CGATATATCCATAG, ATA) is equal to 3 (not 2) since we should account for overlapping occurrences of Pattern in Text.

We say that Pattern is a most frequent k -mer in Text if it maximizes Count(Text, Pattern) among all k-mers.

For example, "ACTAT" is a most frequent 5 -mer in "ACAACTATGCATCACTATCGGGAACTATCCT", and "ATA" is a most frequent 3-mer of "CGATATATCCATAG".

Frequent Words Problem Find the most frequent k-mers in a string.
Input: A string Text and an integer k.
Output: All most frequent k-mers in Text.

```
        Sample Input:
    ACGTTGCATGTCGCATGATGCATGAGAGCT
    4
    Sample Output:
    CATG GCAT
```

Frequent Words with Mismatches: Find the most frequent k-mers with at most d mismatches in a DNA string.

A k-mer is defined as a string of length k. We define Countd(Text, Pattern, d) as the number of times that a k-mer Pattern appears as a substring of Text with at most d mismatches. For example:

Count(ACAACTATGCATACTATCGGGAACTATCCT,CTATG, 1) $=2$,

because both CTATG and CTATC are substrings of Text. We say that Pattern is a most frequent k-mer in Text if it maximizes Countd(Text, Pattern, d) among all kmers.
Input: A DNA string Text as well as integers k and d.
Output: All k-mers, Pattern, maximizing the sum Countd(Text, Pattern)

Sample Input:
 ACTATGCATACTATCGGGAACT
 51
 Sample Output:
 CTATG CTATC ACTAT

Problems

These questions come from An Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner.

Problem 2.2: Write one (or two if you wish) algorithms that iterate over every index from $(0,0, \ldots, 0)$ to $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$. Your algorithm can be iterative or recursive.
Problem 2.3: Is $\log n \in O(n)$? Is $\log n \in \Omega(n)$? Is $\log n \in \Theta(n)$?
Problem 2.10: Prove that $\sum_{i=1}^{n} i=n(n+1) / 2$, for all $n \in \mathbb{N}, n \geq 1$.
Problem 2.11: Prove that $\sum_{i=1}^{n} 2^{i}=2^{n+1}-2$, and that $\sum_{i=1}^{n} 2^{-i}=1-2^{-n}$ for all $n \in \mathbb{N}, n \geq 1$.

