CISC-471 WINTER 2016

HOMEWORK 5

Please work on these problems and be prepared to share your solutions with classmates in class on February 22. Assignments will not be collected for grading.

Programming
 Problems

These questions come from An Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A. Pevzner.

Problem 6.4: Modify DPCHANGE to return not only the smallest number of coins but also the correct combination of coins.
Problem 6.6: Find the number of different paths from source (n, m) to $\operatorname{sink}(0,0)$ in an $n \times m$ rectangular grid. These paths are described in section 6.3 The Manhattan Tourist Problem. A valid path can only go up or left (no diagonal moves). Write a dynamic programming algorithm to determine this quantity. You can also obtain the result by thinking of a valid path as a string of length $n+m$ using n ' U 's and m 'L's. BONUS: Now also allow diagonal moves (up and left). Update your program to handle this additional move. The combinatorial solution now must deal with this additional move in a non-trivial way.
Problem 6.18: What is the optimal global alignment for MOAT and BOAST? Show all optimal alignments and the corresponding paths under the scoring matrix below and indel penalty -1 .

0	A	B	M	O	S	T
A	1	-1	-1	-2	-2	-3
B	0	1	-1	-1	-2	-2
M	0	0	2	-1	-1	-2
O	0	0	0	1	-1	-1
S	0	0	0	0	1	-1
T	0	0	0	0	0	0

