CISC-868 FALL 2011

HOMEWORK 9

Please read chapter 8 of Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars Computational Geometry:Algorithms and Applications. You can obtain this chapter online for free from the Queen's University Library QCAT, or from the authors at http://www.cs.uu.nl/geobook/

- **Exercise 8.3:** Use Euler's formula to show that the maximum number of faces is $n^2/2 + n/2 + 1$ for an arrangement with n(n-1)/2 vertices and n^2 edges.
- **Exercise 8.6:** Let S be a set of n points in the plane and let L be a set of m lines in the plane. Suppose we wish to determine whether there is a point in S that lies on a line in L. What is the dual of this problem?
- **Exercise 8.13:** Given a set L of n lines in the plane, give an $O(n \log n)$ time algorithm to compute the maximum level of any vertex in the arrangement $\mathcal{A}(L)$.
- **Exercise 8.14:** Let S be a set of n points in the plane. Give an $O(n^2)$ time algorithm to find the line containing the maximum number of points in S.
- **Biggest slope:** Given a set of n points in the plane, no three on the same line, find a pair that yields a line with the largest slope. This should be easy to do in $O(n^2)$ time. Can you come up with an $O(n \log n)$ algorithm?
- **Right-most point in an arrangement:** Given a set of n lines L no two parallel and no three intersecting at the same point, find a right-most vertex in the arrangement $\mathcal{A}(L)$ in $O(n \log n)$ time.

1