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Preliminaries

The objective of this course is to familiarize students with the field of computational geometry.
There are several motivators for obtaining this skill. Obviously if one wishes to become a researcher
in the field or in a related field then the motivation is crystal clear. However, even if your interests
are fairly removed from theoretical computer science, algorithms, or computational geometry in
particular, an ability to access the computational geometry literature may provide you with a
palpable advantage over others in your field who do not possess this skill.

This course will for the most part deal with abstractions. Problems will be succinctly described,
with only a passing mention of applications. The main objective will be to state problems clearly
and precisely, design algorithms that are arguably correct and analyze the computational complexity
of the algorithm. There is no claim that this paints the entire picture for the practitioner. On the
contrary there is a significant effort required to go from the paper version of an algorithm to a
robust and practical implementation. However, as stated above, the objectives for this course is
to understand the theoretical aspects pertaining to the algorithms. To gain an appreciation of
the techniques used to argue about the correctness and complexity of algorithms, that is, how to
effectively read and understand results written in the style of an algorithms literature.

The basic input we assume is a set, which we can denote by S = {s1, s2, . . . sn}. The set has
n distinct elements in no particular order. The n will usually represent the size of the input,
denoted by |S|, regardless of the nature of the objects. The complexity of an algorithm will be
expressed using so called “Big-Oh” notation. I like to think of O(f(n)) as a set of functions where
g(n) ∈ O(f(n) if g(n) is bounded from above by a constant multiple of f(n) for sufficiently large
values of n. This can be expressed formally as:

g(n) ∈ O(f(n)) if there exists constants c > 0 and m > 0 such that g(n) ≤ cf(n) whenever m ≤ n

When we get a Big-Oh result we are providing an upper bound for the complexity of an algorithm,
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that is we show that in the worst case the number of operations performed by our algorithm is
bounded by a function in a Big-Oh set.

We use Big-Ω to denote lower bounds. The definition is similar to the one above:

g(n) ∈ Ω(f(n)) if there exists constants c > 0 and m > 0 such that g(n) ≥ cf(n) whenever m ≤ n

The notation Θ(f(n) denotes functions that are in both O(f(n) as well as Ω(f(n)).

Examples

Suppose A and B are sets with |A| = |B| = n. Show that A ∪ B can be determined in O(n log n)
time.

Suppose A and B are sets with |A| = |B| = n. Show that A ∩ B can be determined in O(n log n)
time.

What is the maximum/minimum size of A ∪B? of A ∩B?

Our first geometry problem

The convex hull of a set of points is the standard first problem to look at when studying computa-
tional geometry.

The real plane, also known as R2 or R×R, or even two dimensional Euclidean space, is the domain
of most of the problems that we will look at. If you draw a circle with diameter 1meter and measure
a piece of string that is equal to the perimeter of that circle, you will have a length of string that
is π meters long. The quantity π cannot be expressed as a rational number, so it is hopeless
to expect to be able to represent it exactly as a finite precision floating point. Nevertheless our
underlying assumption when developing algorithms is that we can represent any real number in a
constant amount of space. We will also assume that we can do arithmetic, that is, add, subtract,
multiply and divide, real numbers in constant time. Quite often we will even assume that we can
compute square roots and evaluate trigonometric functions in constant time. The algorithms that
we develop will sometimes make decisions based on quantities that may be irrational. Thus, using
approximations of a real number would add an additional detail to the all ready complex task of
designing an efficient algorithm. By allowing the luxury of a model that can do real arithmetic we
can concentrate on the combinatorial aspects of the problem, and this is what will be emphasized
in this course.

Returning to the convex hull, our input will be a set of points in the plane. Typically we use the
letter n to denote the size of the input. In our example we have n points, where each point p is
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represented by an x, an a y coordinate, which will be denoted as px, and py.

Definition 1. A subset S of the plane is called convex if for any pair of points p, q ∈ S the line
segment pq is completely contained in S.

At this point it would be useful if you could draw examples of convex and con-convex subsets of
the plane. If you can’t look it up in the course material or on the web.

Definition 2. The convex hull of a set of points in the plane P , which we will denote as conv(P )
is the smallest convex subset of the plane that contains P .

A way of visualizing conv(P ) is to think of the points P as nails protruding from a plane flat board.
Stretch a large elastic band so that it surrounds the nails, and let the band shrink so that it is as
small as possible. The elastic band is on the boundary of the smallest convex region enclosing the
nails.

Another way to say this is that conv(P ) is the intersection of all convex sets that contain P . Can
you see why this statement follows from the definition?

Definition 3. Given a set of points P an extreme point is a point p ∈ P such that there is a line L
that passes through p and avoids every other point of conv(P ). Such a line L is called a supporting
line. Observe that the line bounds a minimal half-plane that contains P .

It will be useful to have a concise representation of the convex hull of a set of points. Clearly we
can represent the convex hull by its corners or vertices which are simply the extreme points of P .

Finding the extreme points is another matter. It turns out that it will be most convenient to get
the extreme points in pairs, that is, the pair of corners at the ends of a common side of the convex
hull, or formally the endpoints of an edge of the convex hull.

Given an ordered triple of 3 points p, q, r in the plane, we say that they have

• positive orientation if they define a counter-clockwise orientated triangle;

• negative orientation if they define a clockwise orientated triangle;

• zero orientation if they are collinear.

In the plane, this can be determined by solving a determinant as follows:

orientation = det

 1 px py
1 qx qy
1 rx ry


Given a pair of distinct points p, q ∈ P p and q are endpoints of an edge of the convex hull of P ,
and the edge is oriented clockwise about the boundary of conv(P ) if every other point r ∈ P is to
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the right of the edge pq oriented from p to q, that is p, q, r have negative orientation, or if p, q, r
are collinear, they are oriented with r between p and q, that is p, q, r have zero orientation and r is
between p and q. We will leave the notion of being between p and q vague for now.

Algorithm 1: SlowConvexHull.

Input: A set of points P = {p1, p2, . . . , pn} in the plane. Note the points are given in no
particular order.

Output: A set CH containing the extreme points of P in no particular order.

1 CH ← ∅ ;

2 for all ordered pairs (p, q) ∈ P × P with p 6= q do
3 valid← true;
4 for all points r ∈ P, r 6= p 6= q do
5 if r lies to the left of the directed line from p to q or if p, q, r are collinear and r is

not between p and q then valid← false;

6 end
7 if valid then CH ← CH ∪ {p, q}.;
8 end

9 return CH

It should be clear that Algorithm 1 implements our ideas. At this point we need to determine
the worst case cost of running the algorithm. The outer loop (for all ordered pairs) uses O(n2)
iterations. The inner loop (for all points) uses O(n) iterations resulting in an overall complexity of
O(n3).

We can design a far more efficient algorithm to compute the convex hull of a set of points. Our
efficient algorithm makes use of the same geometric observations as the slow algorithm. The gains
in efficiency are obtained by processing the points in a particularly favourable order. The order
that we chose is to process the points from left to right. In the case where two points have the
same x-coordinate we break the tie using the y coordinate. This is called lexicographic ordering
or the ordering that is used to sort words in a dictionary. (For example the two letter word “if”
comes before “it”.)

If we look at the convex hull of a set of points one observes that the points on the boundary of the
convex hull can be partitioned into two. An upper hull and a lower hull. To be precise consider
p1 and pn in the lexicographic order. The upper hull is a lexicographically increasing sequence of
points beginning at p1 and ending at pn, so that taking any two points p, q in sequence from the
upper hull all other points r ∈ P are to the right, or possibly collinear with p and q but between
them. The lower hull ends at p1 and begins at pn, and is lexicographically decreasing, so that
taking any two points p, q in sequence from the lower hull all other points r ∈ P are to the right,
or possibly collinear with p and q but between them.

An algorithm to compute an upper hull processes points in lexicographic order. At every iteration
we have an upper hull that is correct for the points that have already been processed (and oblivious
to points that haven’t been processed yet!) Initially we have two points on the upper hull p1 and
p2, so these two points must be on the upper hull of the set {p1, p2}. At iteration k we add pk to
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the upper hull, because pk must be on the upper hull of the set {p1, p2, . . . , pk}. However there may
be points that are on the upper hull of the set {p1, p2, . . . , pk−1} but are not on the upper hull of
{p1, p2, . . . , pk}. The crux of our algorithm is to determine which points those are. We will express
these ideas in pseudo code.

We can now make the notion r between p and q precise. If p, q, r are collinear then r is between
p and q if it is between p and q in lexicographic order. Consider the following primitive operation
which takes three points p, q, r in lexicographic order as input and returns true if r is to the right
of the directed edge p, q or r is collinear with p and q and between the two.

Function good(p, q, r)

Input: Three points p, q, r, such that p < q < r in lexicographic order
Output: true if the orientation of p, q, r is negative

1 return orientation(p, q, r) = negative

We are now ready to describe the algorithm in pseudo code

Algorithm 2: Efficient Convex Hull

Input: A set of points P in the plane. Note the points are given in no particular order.
Output: A set CH containing the extreme points of P in no particular order.
// Initialize

1 Sort the points, resulting in a lexicographically ordered sequence p1, p2, . . . , pn;
// Upper Hull

2 Put the points p1 and p2 in a lexicographically ordered list Lupper , with p1 as the first point;
3 for i← 3 to n do
4 Append pi to Lupper ;
5 while Lupper contains more than two points p, q, r and good(p, q, r) is false do
6 Delete q the middle of the last three points from Lupper .
7 end

8 end
// Lower Hull

9 Put the points pn and pn−1 in a list Llower , with pn as the first point;
10 for i← n− 3 downto 1 do
11 Append pi to Llower ;
12 while Llower contains more than two points p, q, r and good(p, q, r) is false do
13 Delete q the middle of the last three points from Llower .
14 end

15 end
16 CH ← Llower ∪ Lupper ;
17 return CH

The correctness of the algorithm should be apparent from our development, and can be proved by
induction on the number of points. Consider the following lemma that where we prove that the
upper hull is computed correctly, the correctness of the lower hull follows by symmetry.

Lemma 1. The upper hull is computed correctly by Algorithm 2.
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Proof. We use induction. For the base case p1 and p2 are obviously on the upper hull of {p1, p2}.
We assume that we have the correct upper hull for {p1, p2, . . . , pk}. The point pk+1 is obviously on
the upper hull of {p1, p2, . . . , pk+1} because it is extreme. We then traverse back on the hull to see
what to keep and what to dispose of. The test good(p, q, r) in effect tests to see whether the points
in counter-clockwise order on the hull make a right turn. If not then the middle point can’t be on
the hull. Points in this way are discarded until we find a triple that are good. By the induction
hypothesis we remain with an upper hull so that all consecutive triples are good. Thus the upper
hull is computed correctly.

The complexity analysis of this algorithm is a bit tricky. The first sorting step is in O(n log n).
Subsequently we have a while loop nested within a for loop. The for loop iterates once for each
element in the sequence. The while loop on the other hand iterates until a good triple is found,
and this can vary depending on the example. One can be tempted to say that in the worst case the
while loop iterates O(n) times, that is over the entire upper hull, and conclude that the complexity
is O(n2). However upon further reflection one notices that if during one iteration the while loop
iterates frequently, then there should be a trade off with other iterations where the while loop does
not iterate frequently. The following lemma make this very notion precise.

Lemma 2. Algorithm 2 computes the upper hull in O(n log n) time.

Proof. The sorting step is clearly in O(n log n). The subsequent step has a for loop that iterates
O(n) times with a nested while loop. Observe that every time a triple fails a good test we remove
a point from the upper hull. As soon a triple passes the good test the while loop terminates, Thus
the total number of times the while loop iterates over the entire life of the algorithm is in O(n).
Therefore we can conclude that the complexity of computing the upper hull is in O(n log n).

There is an obvious symmetric argument for the lower hull, thus we can conclude with our main
result.

Theorem 1. The convex hull of a set of points in the plane can be computed in O(n log n) time.

Polygons

This is the first topic in the text book “Discrete and Computational Geometry” by Satyan Devados
and Joseph O’Rourke.

Definition 4. A polygon is the closed region of the plane bounded by a finite collection of line
segments forming a closed curve that does not intersect itself.

We can represent a polygon P as sequence of its vertices in counter clockwise order around the
boundary of P . We can notate the boundary of P as ∂P .

Definition 5. A diagonal of a polygon P is a line segment connecting two vertices of P lying in
the interior of P and not touching ∂P except at its endpoints.
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Lemma 3. Every polygon P with more that three vertices has a diagonal.

Proof. Let v be the leftmost bottommost vertex of P , and let a and b be neighbouring vertices
of v on ∂P . If ab is a diagonal then we are done. Otherwise let L be a line parallel to segment
ab passing through v. Sweep L upward from v until it hits the first vertex, x, inside triangle abv.
Observe now that xv is a diagonal.

Definition 6. A triangulation of a polygon P is a maximal set of non crossing diagonals.

Using the fact that every polygon with four or more vertices has a diagonal we can use induction
to prove that every polygon has a triangulation. Induction can also be used to prove that every
triangulation of a polygon with n vertices has exactly n − 3 triangles and n − 2 diagonals. The
inductive proof is constructive and thus leads to the following (inefficient) recursive algorithm.

Algorithm 3: Triangulate Polygon Slow

Input: A polygon P = (p1, p2, . . . , pn).
Output: If P has more than three vertices a diagonal of P is output.

1 if P has more than 3 vertices then
2 Find a diagonal d of P ;
3 output d ;
4 Let P1 and P2 be the two polygons obtained by partitioning P with diagonal d;
5 Triangulate Polygon Slow (P1); Triangulate Polygon Slow (P2);

6 end

A straightforward method can be used to get the diagonal in O(n) time. In essence we implement
the construction in the proof of lemma 1.3 of the text book. We test every point of the polygon
to see if it lies in the triangle 4abv, and then find the one that would be hit by the sweeping line.
That is doable in linear time. However this method is inherently inefficient. A recurrence relation
describing the cost of the algorithm would be:

T (n) = cn+ T (n1) + T (n2)

Where n1 and n2 respectively denote the number of vertices in P1 and P2. To interpret the
recurrence we have the cost of finding a diagonal plus the cost of triangulating polygon P1 and the
cost of triangulating polygon P2. In the worst case every time we find a diagonal with partition
into a triangle plus the remaining polygon. Therefore the recurrence can be re-written as:

T (n) = cn+ T (n− 1)

This recurrence evaluates to the sum:

n−3∑
i=0

c(n− i)
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which in turn is in O(n2).

Concepts

Going through a sequence of definitions in class can be quite tedious. Review any of the concepts
and definitions that were given this week. Look these up in the suggested texts for this class, other
texts that you may have, or look them up on the web. See whether the definitions are consistent
and whether you really understand what they mean.

If you have difficulties with proofs by induction, recurrence relations, summations, or big-O notation
you should review these concepts in any standard algorithms text book.

Disclaimer

I will attempt to fill in holes left by our text with these notes. However, I don’t expect that I
will provide anything as lengthy as this week’s notes every week. This week is different because I
presented quite a bit of material that is not in the text.
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