
CISC 868 Fall 2011
Week 2

September 19, 2011

The Art Gallery Theorem

Please see the presentation slides outlining this gem of a theorem. This material is taken from
Chapter 1. of Joseph O’Rourke’s other text book on Computational Geometry [1].

Triangulating a Polygon

Two algorithms were presented, one from our text book and the other is taken from Chapter 2.
O’Rourke’s book [1].

References

[1] Joseph O’Rourke. Computational Geometry in C second edition Cambridge University Press,
1998.
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Art Gallery Theorem
The floor plan of an art gallery modeled as a simple polygon with n
vertices. How many guards needed to see the whole room?

Each guard is stationed at a fixed point, has 360o vision, and cannot
see through the walls.

Story: Problem posed to Vasek Chvatal by Victor Klee at a math conference
in 1973. Chvatal solved it quickly with a complicated proof, which has since
been simplified significantly using triangulation.
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Formulation
Visibility: p q visible if pq P.
y is visible from x and z. But x and z not visible to each other.

..

.

x

y

z

g P min. number of guards to see P
g n max

P n
g P

Art Gallery Theorem asks for bounds on function g n : what is the
smallest g n that always works for any n-gon?
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* These slides copied from Tom Fevens of Concordia U.
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22−gon.

7 Guards

Theorem:
g n n 3

1. Every n-gon can be guarded with n 3 vertex guards (sufficient).
2. Some n-gons require at least n 3 (arbitrary) guards.

Necessity Construction
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Fisk’s Proof
Lemma: Triangulation graph can be 3-colored.

P plus triangulation is a planar graph.
3-coloring means vertices can be labeled 1,2, or 3 so that no edge
or diagonal has both endpoints with same label.
Proof by Induction:

1. Remove an ear.
2. Inductively 3-color

the rest.
3. Put ear back, coloring

new vertex with the
label not used by the
boundary diagonal.

3

2

1

Inductively 3−color

ear
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Proof

1

2
3

1 2

1

2
1 3

2

1

1

3

2

2

1

2

1

3

1

3

2

3

3

Triangulate P. 3-color it.
Least frequent color appears at most n 3 times.
Place guards at this color positions—a triangle has all 3 colors, so
seen by a guard.
In example: Colors 1, 2, 3 appear 9, 8 and 7 times, resp. So, color
3 works.
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Triangulation: Theory
Theorem: Every polygon has a triangulation.

Proof by Induction.
Base case n 3.

p

q

r

z

Pick a convex corner p. Let q and r be pred and succ vertices.
If qr a diagonal, add it. By induction, the smaller polygon has a
triangulation.
If qr not a diagonal, let z be the reflex vertex farthest to qr inside pqr.
Add diagonal pz; subpolygons on both sides have triangulations.
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Algorithm Triangulate Polygon I.

Input:  A polygon P = ( p1, p2, ..., pn) 
represented by its vertices in counter-
clockwise around its boundary

Output: T(P) = (d1, d2, ..., dn-3) a  triangulation 
of P represented by its diagonals. 

1. Find a diagonal, d, of P, partitioning P into 
two polygons P1 and P2.

2. Recursively triangulate P1 and P2. 

     T(P) = T(P1) ∪  T(P2) ∪{d}.



1. The computational complexity of finding a 
diagonal is O(n). 

2. In the worst case one of the two polygons 
resulting from the partition is a triangle. So we 
get the recurrence:

f(n) = f(n-1) + cn  where c is a positive 
constant.  Therefore f(n) = O(n2)

Worst  case complexity 



Algorithm Triangulate Polygon II.

Input:  A polygon P = ( p1, p2, ..., pn) 
represented by its vertices in counter-
clockwise around its boundary

Output: T(P) = (d1, d2, ..., dn-3) a  triangulation 
of P represented by its diagonals. 

1. Partition P into trapezoids.

2. Add trapezoid diagonals whenever possible 
yielding a partition of P into triangles and uni-
monotone polygons.

3. Triangulate the uni-monotone polygons 
arising from the partition in step 2.



A horizontal 
trapezoidilization 
of a polygon P is 
obtained by 
drawing a 
horizontal line 
through every 
vertex v of P until 
it hits the edge(s) 
of P closest to v. 



v

For efficiency 
we need to find 
the circled 
intersection 
points quickly, 
that is O( log n) 



Sorting the vertices of P (from top to 
bottom) and maintaining a dynamic structure 
allows us to find every horizontal trapezoid 
edge in total time complexity O(n log n). 



v

Maintain a 
dynamic data 
structure 
supporting 
efficient 
insertion and 
deletion to 
keep track of 
the 
intersection of 
a horizontal 
line with the 
polygon



* This figure is copied from Joseph O’Rourke 
Computational Geometry in C.



* This figure is copied from Joseph O’Rourke 
Computational Geometry in C.



There is  a 
diagonal in a 
trapezoid 
whenever the 
trapezoid 
contains two 
non-adjacent 
vertices of P. 



• A polygonal chain C is monotone to a line 
L if every line parallel to L intersects C in 
at most one point.

• A polygon P is monotone with respect to a 
line L if the boundary of P can be split into 
two polygonal chains,  A and B such that 
each chain is monotone with respect to L.

• A polygon P is uni-monotone with respect 
to a line L if it is monotone and either 
chain A or chain B is a single edge.



A
B

L

P

Polygon P is monotone with respect to 
line L.



A

B

L

P

Polygon P is uni-monotone with 
respect to line L.



After adding 
the diagonals 
the polygon is 
partitioned 
into triangles 
and polygons 
that have the 
special 
property uni-
monotone. 





A uni-monotone polygon.



A uni-monotone polygon.

a.k.a “monotone mountain”



Triangulating a uni-monotone polygon

Label bottom right vertex of P 1 and then 
sequentially so that the bottom left vertex is labelled 
n. 

1

23

45

6



Triangulating a uni-monotone polygon

Label bottom right vertex of P 1 and then 
sequentially the bottom left vertex is labelled n. We 
refer to vertex 1 and n as the base vertices.

1

23

4

6

Initialize a list of non-base 
convex vertices of P. 

while  | list | > 1
for convex vertex k remove 
∆(k-1)k(k+1)
output diagonal (k-1)(k+1)

end while
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