
CISC 868 Fall 2011

Week 9

November 14, 2011

Line Arrangements

After convex hulls, Voronoi diagrams, and Delaunay triangulations the next most important concept
in computational geometry are so called, line arrangements. This structure is based on an input
that is a set of lines. That said its primary utility will be to solve problems on sets of points, by
using an ingenious dual transform. We will postpone examining that transform until after we look
at line arrangements, and an efficient algorithm to build one.

Let L be a set of lines in the two dimensional plane. As usual we will start with inputs that are
non-problematic, that is, we will assume that the lines are in general position. The general position
assumption implies that no two lines from L are parallel, and no three lines from L intersect at the
same point. Thus the lines in L span the infinite plane, and outline a mosaic of faces. Observe that
each face in the arrangement is convex, because it is in essence the intersection of half-planes. The
vertices are intersection points of lines and the edges are line segments found between consecutive
intersection points on a line. The size of an arrangement of n lines is O(n2). We know that the
number of vertices is

(
n
2

)
, and the number of edges is n2. Euler’s relation can be used to determine

the number of faces. That quantity can be found in Mark de Berg, Otfried Cheong, Marc van
Kreveld, and Mark Overmars Computational Geometry:Algorithms and Applications (CGAA),
but for now you can be satisfied that the numbers of faces is proportional to the number of vertices
and edges, justifying the claim that O(n2) is the size of the arrangement. There is a technical
difficulty dealing with the unbounded faces of the arrangement. That can be resolved by wrapping
the plane over a sphere and thinking of a single point at infinity. A more pedestrian trick is to
simply but a big rectangle around all the vertices of the arrangement, effectively adding four more
vertices and a bunch of new edges. Nevertheless, the complexity of the “boxed in” arrangement is
still O(n2) and now all of the faces are bounded.

A line arrangement of L, denoted by A(L), can be thought of as a data structure that stores the
planar subdivision induced by L. One can assume that this is stored in something like a DCEL, so
that one can navigate the subdivision, so that in constant time determine adjacent neighbours of
edges, faces, or vertices of A(L). It is important to realize that simply computing the intersection
points induced by the lines in L, is not enough to construct A(L). In essence getting the adjacencies

1



is akin to sorting the intersection points along each of the lines. If we in fact do this sorting, n sorts
of n− 1 intersection points on each of the lines, we can obtain A(L) in O(n2 log n) time. Knowing
that Ω(n log n) is a lower bound for sorting one might think that a O(n2 log n) algorithm is the
best that we can hope for. However, the

(
n
2

)
points are not any arbitrary collection of points. They

emanate from n lines. It’s possible that there is something special about the structure of these
intersection points that would allow us to get the n sorted lists with less effort. (Take a moment
to contemplate this paragraph to make sure you understand the subtleties that are involved.)

The remarkable result about arrangements is that we will be able to compute A(L) in O(n2)
time. The algorithm is simple and incremental, using no data structure more complicated than
the DCEL. The result is not an expected time result, rather it is a worst case result, that works
for any arbitrary insertion sequence that is used. A full statement of the algorithm in its elegant
simplicity is found in Algorithm MakeArrangement.

Algorithm 1: MakeArrangement

Input: A set of n lines L
Output: A DCEL D storing the arrangement A(L).

1 initialize D empty;
2 for i = 1 to n do insert the next line into D;
3 return D ;

The important detail missing in the description of Algorithm MakeArrangement is the procedure
used to insert a line into the arrangement. This is easiest to explain through an illustrative example.
Refer to Figure 1 for a pictorial rendition of the insertion algorithm. Note that this figure is copied
from CGAA. Please refer to CGAA for further details.

The combinatorial complexity of an arrangement is the total number of vertices, edges, and faces in the arrange-
ment. The following shows that all of these quantities are O(n2).

Theorem: Give a set of n lines L in the plane in general position,
(i) the number of vertices in A(L) is

(
n
2

)
,

(ii) the number of edges in A(L) is n2, and
(iii) the number of faces in A(L) is

(
n
2

)
+ n + 1.

Proof: The fact that the number of vertices is
(
n
2

)
is clear from the fact that each pair of lines intersects in a

single point. To prove that the number of edges is n2, we use induction. The basis case is trivial (1 line and
1 edge). When we add a new line to an arrangement of n−1 lines (having (n−1)2 edges by the induction
hypothesis) we split n − 1 existing edges, thus creating n − 1 new edges, and we add n new edges from
the n − 1 intersections with the new line. This gives a total of (n − 1)2 + (n − 1) + n = n2. The number
of faces comes from Euler’s formula, v − e + f = 2 (with the little trick that we need to create one extra
vertex to attach all the unbounded edges to).

Incremental Construction: Arrangements are used for solving many problems in computational geometry. But in
order to use arrangements, we first must be able to construct arrangements. We will present a simple incremental
algorithm, which builds an arrangement by adding lines one at a time. Unlike most of the other incremental
algorithms we have seen so far, this one is not randomized. Its asymptotic running time will be the same,
O(n2), no matter what order we insert the lines. This is asymptotically optimal, since this is the size of the
arrangement. The algorithm will also require O(n2), since this is the amount of storage needed to store the final
result. (Later we will consider the question of whether it is possible to traverse an arrangement without actually
building it.)
As usual, we will assume that the arrangement is represented in any reasonable data structure for planar graphs,
a DCEL for example. Let L = {!1, !2, . . . , !n} denote the lines. We will simply add lines one by one to the
arrangement. (The order does not matter.) We will show that the i-th line can be inserted in O(i) time. If we
sum over i, this will give O(n2) total time.
Suppose that the first i − 1 lines have already been added, and consider the effort involved in adding !i. Recall
our assumption that the arrangement is assumed to lie within a large bounding box. Since each line intersects
this box twice, the first i − 1 lines have subdivided the boundary of the box into 2(i − 1) edges. We determine
where !i intersects the box, and which of these edge it crosses intersects. This will tell us which face of the
arrangement !i first enters.
Next we trace the line through the arrangement, from one face to the next. Whenever we enter a face, the main
question is where does the line exit the face? We answer the question by a very simple strategy. We walk along
the edges face, say in a counterclockwise direction (recall that a DCEL allows us to do this) and as we visit each
edge we ask whether !i intersects this edge. When we find the edge through which !i exits the face, we jump to
the face on the other side of this edge (again the DCEL supports this) and continue the trace. This is illustrated
in the figure below.

l l

Traversing the arrangement The zone

Figure 71: Traversing an arrangement and zones.

Lecture Notes 83 CMSC 754

Figure 1:

Let L denote a set of n lines and let A(L) its arrangement. Now consider inserting one additional
line ` into A(L). The zone of ` is the collection of faces in A(L) that are incident to `. Algo-
rithm MakeArrangement is implemented so that the complexity of inserting ` into A(L) is directly
proportional to the complexity of the zone of `. Observe that there may be faces in the zone of `
that themselves have complexity O(n), so some subtle counting argument is needed to show that
the complexity of the whole zone of ` is O(n). This result is known in the literature as the zone
theorem. The proof of this theorem is covered in detail in CGAA. It should now be apparent

2



that the zone theorem implies that A(L) can be computed in O(n2) time using a simple insertion
algorithm.

Point-Line Duality

The utility of an arrangement of lines is revealed when one sees that a set of points can be rep-
resented in a dual space as a set of lines. The dual transformation is useful because the line
arrangement reveals a structure that is not apparent when one considers the points. Consider a
point p : (px, py). The dual transform of p is the line p∗ : y = pxx − py. The dual of a line
` : y = mx + b is the point `∗ : (m,−b). We will refer to the “space” that points like p live in as
the primal space and the space that the line p∗ inhabits as the dual space. Suppose the point p lie
on line `. Thus we have

py = mpx + b. (1)

If we look to dual space we can verify that equation (1) implies that the point l∗ lies on the line
p∗. Furthermore, if ` is a line passing through two points p and q, the dual lines p∗ and q∗ must
intersect at the point `∗.

Now consider a set of points in the plane P , and we want to determine whether three or more
lie on the same line. One way to do this would be to determine the line equation for all pairs of
points and then see if any two are the same. The lower bound for determining whether any two of
O(n2) objects are the same is Ω(n2 log n). However by using the insertion algorithm to construct
arrangements and the dual transform this very same problem can be solved in O(n2) time. This is
just one example where duality and line arrangements reveal structure in the input that was not
apparent in the primal space.

3


