
CISC 868 Fall 2011

Week 10

November 21, 2011

Randomized Algorithms

Several weeks ago we discussed the expected value, that is, O(logn), for the number of extreme
points of a set of n points that are uniformly distributed in a square. We also saw an algorithm,
the gift wrapping algorithm, that computes the convex hull of a set of points with complexity
O(nh) where n and h represent the number of input and extreme points respectively. Thus, by
our result for points from a uniform distribution one can say that the gift wrapping algorithm has
an expected complexity of O(n log n). This statement is the expectation of the complexity if the
algorithm is run over many different input sets that are come from a uniform random distribution.
The weakness of this type of analysis is that it does not say much about what one would expect to
happen for a particular input, or inputs from a particular source, where we know little about how
the points are distributed.

In this lecture we will see a result that is quantifiably superior. We will do an expected time
analysis, but the analysis will be independent of the distribution of the input. Rather it will only
depend on the order in which elements from the input set are processed. Thus, if we run the
algorithm repeatedly over the same input set, on average we will get a good running time.

Lets begin with a simple one dimensional problem. Our input set is a set of numbers, in no
particular order, and the task at hand is to determine the median value. One obvious way in which
we can do this is to sort the numbers first. A linear scan will find the middle element and complete
the task giving us an O(n log n) algorithm. Consider the following approach which we will show
has an expected running time of O(n). Our recursive procedure will be more general as it will be
able to find the kth ranked element, for any value of k, such that, 1 ≤ k ≤ n. See Procedure Select.

It should be clear that Procedure Select successfully determines the median element of S by setting
k = n/2. The question is how much work does Select do. It is not hard to show that in the worst
case, if we are very unlucky, Select can recurse O(n) times resulting in a complexity of O(n2).

We are much more interested in the expected behaviour of the algorithm. The following lemma
provides the ingredients for obtaining the expected running time of the algorithm.

1

Procedure Select(S, k)

Input: S a set of n numbers, and k an integer such that 1 ≤ k ≤ n.
Output: The kth smallest element of S.

1 Choose a random element of S, v;
2 // Partition S into SL, Sv, and SR.
3 for all element s ∈ S do
4 case s < v : SL ← SL ∪ {s};
5 case s = v : Sv ← Sv ∪ {s};
6 case s > v : SR ← SR ∪ {s};
7 // Now recurse over the appropriate subset.
8 case |SL| ≥ k : Select(SL, k);
9 case |SL| < k ≤ |Sv|+ |SL| : return (v);

10 case |SL|+ |Sv| < k : Select(SR, k − |SL| − |Sv|);

Lemma 1. After two recursive calls the expected size of the input to Procedure Select is no more
that 3n/4.

Proof. Any choice of a v that is ranked between n/4 and 3n/4 would give the favourable split.
Since half the elements of S are within this range, so we would expect at most two choices to get
an element v that gives a favourable split.

We can now characterize the expected behaviour of Select with the recurrence relation T (n) ≤
T (3n/4) + g(n), where g(n) is a linear function.

Thus we can conclude that T (n) is in O(n).

Randomized Algorithm to Compute a Delaunay Triangulation

Algorithm 1: RandomizedDT

Input: A set of points in general position P = {p1, p2, . . . , pn}, with the sequence
p1, p2, . . . , pn in random order.

Output: The Delaunay triangulation (DT) of P
1 Add three dummy points a, b, c, far enough and outside of P so that all of P is enclosed

within a triangle a, b, c , and so that when we are done we can remove a, b, c without
affecting the correct DT;

2 Set DT0 to triangle abc;
3 for r = 1 . . . n do
4 Compute the DT of {a, b, c, p1, p2, . . . , pr}, DTr, by calling the procedure Insert(pr, DTr);
end

5 Remove a, b, c and all edges incident to them, and return the resulting triangulation of P

The algorithm itself is quite simple to explain. There are some implementation details that are

2

somewhat complicated. However, perhaps the most complicated part is the analysis. One can see
the inherent advantage of having a simple algorithm that is hard to analyze over a complicated
algorithm that is easy to analyze. The algorithm that I describe in these notes assumes that the
points are in general position, no three input points on a line, and no four on a circle. The algorithm
in the text book is more general and handles the case where there can be four or more input points
on a circle. Refer to Algorithm RandomizedDT for a detailed description.

Procedure Insert(p,DT)

1 Find the triangle pipjpk in DT that contains the point p;
2 Insert the edges pip, pjp, pkp, into DT ;
3 LegalizeEdge(p, pipj , DT);
4 LegalizeEdge(p, pjpk, DT);
5 LegalizeEdge(p, pkpi, DT);

Procedure LegalizeEdge(p, qr,DT)

1 Let qrs be the triangle adjacent to triangle pqr;
2 // Determine whether the edge qr is illegal by checking to see if p is in the circumcircle of

triangle qrs.
3 if qr is illegal then
4 Flip edge qr with edge ps;
5 LegalizeEdge(p, qs,DT) LegalizeEdge(p,rs,DT);

6 end

Obviously all of the work is performed with the Procedure Insert. And Insert uses LegalizeEdge.
Figure 1 (This figure comes from lecture notes prepared by David Mount of the University of
Maryland, and is used with his permission.) illustrates the result of inserting a point p.

Tracing through the algorithm one can see that the effect of inserting a point p into the existing
DT , may create as few as three new triangles, if all adjacent edges are legal. However, it may be
the case that there can be numerous calls to LegalizeEdge, and they can cascade. So it appears
that we may do a considerable amount of work whenever a new point is inserted. Furthermore,
it is not clear that these tests suffice. It can be shown that when we insert a point p into a legal
triangulation the only edges that can possibly become illegal are those edges that are incident to a
triangle that changes. It can also be shown that any edge incident to the new point p is guaranteed
to be legal. These two observations are enough to prove that we are in fact doing all of the required
tests when we insert a point p. The justification for why these observations are in fact true can
be found in chapter 9 of Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars,
Computational Geometry:Algorithms and Applications (CGAA).

Accepting that the algorithm is correct, we now need to determine its complexity. We do an
expected time analysis. Observe that the complexity of the algorithm is determined by the amount
of effort required to find the triangle that contains the point p, in line 1 of Procedure Insert. To do
the point in triangle quickly we maintain a pointer from every point to the triangle that contains
it. Initially all the points are in the same triangle. As the algorithm progresses new triangles are
created. We can update our pointers so that whenever we subdivide a triangle into three new ones,
we update the pointers of the points within the triangle. Also whenever we flip an edge we have

3

to update pointers of points that lie in either of the two triangles. Once the triangle is located we
need to perform some number of calls to the Procedure LegalizeEdge. If we store the triangulation
in a robust data structure such as the doubly connected edge list (DCEL) we can, in constant time,
find adjacent triangles. We also assume that we can determine the legality of an edge in constant
time. Thus we can bound the amount of work that is done by the number of calls to Procedure
LegalizeEdge.

We use a technique called backwards analysis, where we consider running the algorithm to its
conclusion. We then symbolically rewind a tape of the algorithm to get a sense of how much work
was done. So suppose we just ran AlgorithmRandomizedDT and the last point that was inserted
is the point p. Notice that we can bound the number of calls to LegalizeEdge by the degree of p
in the triangulation. In the worst case the degree of p can be O(n). However, we expect that the
degree of p is much smaller. Recall that we showed that the number of edges in a triangulation of
n points is 3n − 3 − h. Therefore the number of edges is less than 3n, and the average degree of
a node is at most 6. Therefore, we expect that the degree of p is 6, we can bound the expected
number of calls to LegalizeEdge at any iteration at O(1).

Now we go back to the analysis of locating a point within a triangle. We will track the expected
number of times that an arbitrary point q has its triangle pointer updated. We will call this a
rebucketing operation. So let us assume that we just completed iteration r where we inserted point
p. The point q has not been inserted yet, that is q is not a vertex of Tr. What is the probability
that q is effected by the insertion of point p at iteration r, and has to be rebucketed? To answer this
question consider the triangle that q is in after iteration r. Call it ∆. If none of the vertices of ∆ is
p then we are certain that q is not affected by the insertion and no rebucketing is necessary for q.
If one of the vertices of ∆ is the point p then we might have had to rebucket q. From our previous
analysis, we know that the number of rebucketing operations for q at this iteration is bounded
by a constant. The probability that one of the vertices of ∆ is p is 3/r, because Tr consists of r
vertices and ∆ is a triangle (with 3 vertices). Extending this reasoning to every non inserted point
at iteration r we can say that the total number of rebucketings is a constant times (n− r)3/r. To
bound the total number of rebucketings throughout the life of the algorithm we have the sum

n∑
r=1

3

r
(n− r) ≤

n∑
r=1

3

r
n = 3n

n∑
r=1

1

r
∈ O(n log n)

Thus the total expected time for all the rebucketing operations is O(n log n) as was claimed at the
start. It is not hard to see that the storage requirement is in O(n). Implementing this algorithm
is fairly straight forward. The only complications are the data structures for implementing the
triangulation, and a search structure for the bucketing operations.

4

the three surrounding vertices. This creates three new triangles,!pab,!pbc, and!pca, each of which may or
may not satisfy the empty-circle condition. How do we test this? For each of the triangles that have been added,
we check the vertex of the triangle that lies on the opposite side of the edge that does not include p. (If there is
no such vertex, because this edge is on the convex hull, then we are done.) If this vertex fails the incircle test,
then we swap the edge (creating two new triangles that are adjacent to p). This replaces one triangle that was
incident to p with two new triangles. We repeat the same test with these triangles. An example is shown in the
figure below.

Triangle pbf is okay.

Triangle pbc is illegal.

Triangle pfc is okay. Triangle pca is okay.

Triangle pdb is illegal.Triangle pad is okay.Triangle pab is illegal.

b

c

p

a

Triangle pde is okay.

e

d

Triangle peb is okay.

e

d

a

p

c

b

b

d

a

p

c

b

d

ac

b

p
d

a

p

c

f d

a

p

c

b

e

f d

a

p

c

b

e

d

a

p

c

b

e

e

f d

a

p

c

b

Figure 68: Point insertion.

The code for the incremental algorithm is shown in the figure below. The current triangulation is kept in a global
data structure. The edges in the following algorithm are actually pointers to the DCEL.
There is only one major issue in establishing the correctness of the algorithm. When we performed empty-circle
tests, we only tested triangles containing the site p, and only sites that lay on the opposite side of an edge of such

Lecture Notes 79 CMSC 754

Figure 1: A trace of the calls to LegalizeEdge after inserting the point p.

5

