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Abstract

We solve the problem of computing the shortest closed path

inside a given polygon which visits every edge at least once

(Aquarium Z{eeper’s Tour). For convex polygons, we present

a linear-time algorithm which uses the reflection principle

and shortest-path maps. We then generalize that method

by using relative convex hulls to provide a linear algorithm

for polygons which are not convex.

1 Introduction

Although variously attributed to Fagnano [11] and

Steiner [5] ,[9] ,[15] ,[14], many sources insist that, over

one hundred years ago, Schwarz not only solved the

problem of computing the minimum perimeter triangle

with one vertex on each edge of a given triangle but

that he also posed the problem [4] ,[8] ,[12] ,[13]. In any

case, there is consensus that Schwarz used the reelection

principle to show that the foot points of the altitudes

of an acute triangle are the vertices of the minimum

inscribed polygon. For obtuse triangles, the minimum

perimeter inscribed triangle is realized by twice the

shortest altitude, i.e. it is degenerate with two vertices

coinciding with the obtuse vertex of the input triangle.

The earliest problem solved with the reflection principle

was even simpler than the triangle: given a line and two

points on one side of it, find the shortest path between

the two points via the line. This problem was solved by
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Heron of Alexandria in 100 AD while extending Euclid’s

work on optics [8].

In 1985, Klotzler and Rudolph [9] used a semi-

infinite simplex-method to determine the minimum

perimeter polygon with one vertex on each edge of a

given convex polygon, or the minumum perimeter in-

polygon. In 1986, Focke [5] presented an algorithm for

computing the optimum inpolygon, using a finite de-

scent method resulting from Schwarz’ reflection princi-

ple [13] and coordinate-wise descent. He presents four

examples to illustrate efficient performance of the algo-

rithm, but provides no formal complexity analysis. In

addition, his classification of correct solutions omits one

realizable type and it is unclear whether his algorithm

would in fact detect the correct solution.

At a recent workshop, Toussaint [161 Posed the
problem somewhat differently: he asked for the shortest

closed path inside a simple polygon (Aquarium Keeper’s

Tour) which visits every edge at least once. If the poly-

gon is convex, then the optimum path is, in fact, the

minimum perimeter inpolygon, and we present a linear-

time algorithm which uses the reflection principle and

shortest-path maps. We also generalize our method by

using relative convex hulls to provide a linear algorithm

for polygons which are not convex. Chin and Ntafos

have used a somewhat similm combination of the re-

flection principle and shortest-paths to solve a related

problem on rectilinear polygons [3].

The Aquarium Keeper’s Problem is related to an-

other problem Chin and Ntafos [2], the Zoo Keeper’s

Problem. In the Zoo Keeper’s Problem, given a sim-

ple polygon P of n vertices, k convex polygons (cages)

attached to edges of P, and an entry point x on the

boundary of P, the goal is to find the minimum perime-

ter tour in P and not in the interior of any cage, starting

and ending at z, that visits every cage. The paper [2]

contains an O(n log~ n) time algorithm and refers to a

O(nz) algorithm for the problem as well. If we consider

the cages as edges of P (i. e., the edges of P represent

the front glass plates of a series of aquariums) and have

n cages, then the zoo Keeper’s problem reduces tO a
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simplified version of the Aquarium Problem in which a

fixed starting point is given. Note that even without

this restriction, our complexity is appreciably less than

either O(n logn n) or 0(n2).

2 Optimum Keeper’s Tour in a Convex

Aquarium

Given a convex polygon P with vertices VO, VI, . . . . v~-1

given in clockwise order, let ei represent the edge ori-

ented in clockwise order which originates at vi. The goal

is to determine a sequence of points, wo, W1, . . . . wk. -l

such that at least one of the Wi lies on each of

the ei and such that the length of the closed path

W(), wl, . . . ~wk - 1, w(I is a minimum. Since a point w~ may

coincide with a vertex vj of P and thus lie on two dis-

tinct edges, it is possible that k < n. Since P is convex,

there can be no advantage in visiting an edge more than

once, so k ~ n.

LEMMA 2.1. If the aquarium polygon is convex,

then the optimum keeper’s tour visits the sides of the

polygon in order. In other words, the optimum keeper’s

tour is exactly the optimum inpo!ygon.

Proof. Assume that the optimum tour does not visit

the edges in order, and thus that edges Wi Wi+l and

Wj Wj+l cross each other, for i < j. Then Wi wj Wi+I wj+l

define a convex quadrilateral and from the fact that in

every triangle the length of one side is less than the

sum of the lengths of the other two sides, it follows

that the sum of lengths of the diagonals exceeds the

sum of the lengths of both pairs of opposite sides. Thus

Wlj ..., WiJWj, Wj-~, ..., Wi+2, Wi+l, wj+l, wj+2, . ..>wk. wl

describes a shorter tour, providing a contradiction.

If n is even, then one candidate tour consists of the

vertices vI, v3, v5, . . .. Vn_I. VI. In m’any inst antes, this

tour will be optimal, but not necessarily so. If the tour

does visit a side of the polygon in its interior, then the

angle of incidence equals the angle of reflection.

LEMMA 2.2. If a point Wi of the optimum tour lies

in the interior of edge ej, then angle wi–lwit.j must

equal angle Vj+l W~W~+l.

Proof. Fix points wi– 1 and wi+l. Let L represent

the line containing ej. Then a unique ellipse with foci

wi _ 1 and Wi is tangent to L at a point q which minimizes

the sum of the distances from wi_ 1 and Wi+l. If q does

not lie on ej, then w~ will coincide with the endpoint of

ej closer to q. If q ~ ej, then Wi = q. But the radii of

an ellipse to a point of tangency intersect the tangent

line in equal angles [8].

The segment of tour between a point on ei and a

point on ei+l lies in the triangle Avivi+l vi+z, whether

both points are identically equal to vi+l or the two

points are disjoint. Thus, it is possible to unwrap the

,q3( v,)

Figure 1: A convex polygon P and its triangulated

unfolding Q.

tour as follows, producing a new polygonal structure Q

of n + 2 vertices. Let Q1 represent triangle AVOV1V2

in its original position in P. To build Q2, reflect

AV1V2V3 around edge V1V2 and attach it to Q1 at VI

and V2. To build Q3, translate and rotate AvzvavA until

vertices V2 and V3 are aligned with the current position

of V2 and V3 in Qz. In general, to build Q2i, reflect

Av2i_ 1vzivzi+l around edge vzi - 1V2i and translate and

rotate it until vertices v2i_ 1 and Vzi are aligned with

v2i_l and vzi in Q2i_l. To build Qzi+l, translate and

rotate Avz; vz;+l Vzi+z until vertices Vzi and Vzi+l are

aligned with vzi and v2i+1 in Q2i. Finally, perform

the appropriate transformation of of Avn _ 1Vovl and

attach it to Qn-l to form Q. Label these second

instances of V. and V1 as Vn and Vn+l. Thus, the

vertices of Q in clockwise order can be identified as

fOllOwS: qi = Vz~+l for i = O... [n/2]; qi = vz(~-i+l)

for i = [n/2j + l...n + 1 (see fig. 1). Thus, the directed

edge VOW in P corresponds to the pair of edges qn+l q.

and qLn/2J+l~Ln/2J (resP. 9Lfl/2j91n/2j+l) in L? if n is
even(resp. odd).

Q is a polygon composed of a chain of triangles:

every triangle has one side on the boundary of Q, except

for the first and last which have two such sides each. The

triangulated polygon Q may be non-simple (see fig. 2),

but it does not matter whether it is or not. We focus

on the triangular ion we have been given.

LE~NIA 2.3. The optimum keeper’s tour in P

which starts and ends at a point on Vovl corresponds to

the shortest path from the corresponding point on qn+lqo

to its ima9e on qLn/ZJ 9Ln/ZJ+l which passes through ev-

ey triangle of Q.

Proof. Every path R from a point on qn+l q. to

its image on qLn/2J qLr@J +1 which passes through every
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P’

Figure 2: A non-simple triangulated polygon Q is

obtained from the triangle P. Any odd number of

vertices can be placed in the marked region to createa

polygon P’ whose associated triangulated polygon Q’

will be non-simple.

triangle of Q corresponds to a candidate keeper’s tour

of P. Divide R at the boundaries of all triangles it

crosses. Reflect first, and then translate and rotate the

portion of the path within Aqiqn-iqi+l (corresponding

to Av2i_ 1v2iv2i+1 ) so that its endpoints lie at the

corresponding points on e2i-1 and e2~ in P. Translate
. .

and rotate the portion of R wlthm Aq~-i+l q~qn-i

(corresponding to Av2ivz~+lv2i+z) until its endpoints lie

at the corresponding points on e2i and ezi+l in P. The

tour T formed by the union of these pieces has exactly

the same length as R. By reversing the process, every

candidate tour T in P starting and finishing at a point

two + (1 – t)vl for some t, O s t < 1 corresponds to

a path R in Q of exactly the same length from point

tqn+l + (1 – t)qO to tqLn/2J+l + (1 – ‘)qLn/2J (resp.

tqLm/zJ +(1 – t)9in/2J+l) if n is even (resp. odd). Given

the 1 – 1 correspondence between tours and paths, the

optimum tour T must correspond to the shortest path

R.

~3

‘ .<

q~

q~

%

Figure 3: In unfolded polygon Q, the shortest paths

from q. and q~+l to qin/z] and qin/2J +1 and vice versa

and the induced subdivisions of the line segments qo qn+l

and qLrz/2J qLra/2J+l.

from qn+l to 9Ln/2J+l, denoted S(Q(qo, qi~lzj )) and

S( Q(q~+l, qi@j +1)), respectively. These paths are in-

ward convex chains. In linear time [7], it is also possible

to extend the edges of these chains as well as the in-

ner common tangents of the chains so as to subdivide

edges qoqn+l and qin/zJ qinlzj+l. All points z on a single

segment Ci of qoqn+ 1 share the same shortest path to

9in/ZJ (resP. qi@~ +1) with the exception of the straight
segment from the particular point to the first vertex on

the path. That vertex is denoted left-anchor(C’~) (resp.

right- anchor(Ci )). Similarly, for a point z on the cor-

responding oriented segment Di On !lLn/zj 9Ln/zj +1, let

/eft-am%or(Di) (resp. right-anchor(.lli) equal the first

vertex on S(Q(Z, qo) (resp. S(Q(z, qn+l) (see fig. 3).

Below we use a type of case analysis on the left- and

right-anchors similar to that used by Melissaratos and

Souvaine [10] in computing the minimum length area-

separator or the minimum area or perimeter triangle

inscribed in a simple polygon.

To compute the shortest path from each segment

C’i = cici+l of VOV1 to its image Di = didi+l on

Vn Vn+l, we begin by examining the left- and right-

anchors of the two segments. In constant time, we can

decide whether Ci and Di are entirely visible from each

other in Q, entirely invisible, or partially visible. In

THEOREM 2.1. The optimum keeper’s tour in a
the first case, the goal is to find the value of t that

convex polygon P of n vertices can be computed in O(n)
minimizes the straight-line distance from tci+(1 –t)c~+l

time.
to tdi + (1 – i!)di+l. The square of this distance can be

represented as a quadratic function of t which can be

Proof. Create the triangulated polygon Q as de- minimized in constant time. It is interesting to note that

scribed above in linear time. In linear time [7], cre- if C’i and Di have opposite orientation, then the shortest

ate the shortest path inside Q from qo to qln/zJ and segment from Ci to Di either joins two endpoints or is



462 CZYZOWICZ ET AL.

perpendicular to the bisector of the angle formed by the

lines cent aining Ci and Di.

In the second case, every shortest path from a point

c E G’i to a point d G D~ inside Q passes through at

least one vertex. Let C (D) be the vertex closest to

c (resp. d). The path from C to D is independent

of starting (ending) point on c (resp. d). To determine

these two points, reflect, if necessary, and then translate

and rotate the triangle defined by Di and D until D~ is

aligned with Ci and C and D are on opposite sides of

C;. The shortest path from C to D in this new figure

is either a straight segment or a pair of segments joined

at an endpoint of c, and thus can be computed easily in

constant time.

In the third case, first perform the same procedure

adopted in the second case, possibly twice, using the

appropriate left- andjor right-anchors for C and D.

Then use the same procedure as in the first csse with the

added constraint that both left-anchors lie on one side

of the chosen segment and that both right-anchors lie

on the other side. Keep the optimum path determined

by either technique.

There are at most a linear number of segment

pairs (Ci, Di), an optimum path can be found for each

in constant time, and the shortest of all these paths

corresponds to the optimum tour.

3 Optimum Keeper’s Tour in a Non-Convex

Aquarium

Given a simple, but non-convex, polygon P with vertices

Vo, vi,... , Vn-l given in clockwise order, let ei represents

the edge oriented in clockwise order which originates at

vi. Certainly, all reflex vertices ?’0, rq, . . . . ?%- 1 can be
identified in linear time. Let ij represent the index of

rj among the original vertices of P, i.e. Vij = rj, for

all O ~ j < h -1. The goal is to determine a sequence

of points, wo, WI, . . . . wn _ 1 such that at least one of the

Wi lies on each of the ei and such that the length of the

closed path Wo, WI, . . . . wn_~, wo is a minimum. Since a

point Wi may coincide with a vertex Vj of P and thus lie

on two distinct edges, it is possible that k < n. Since

P is non-convex, then a single reflex vertex may be

visited more than once in order to touch all edges of

the polygon. We say that two edges of a polygonal path

cross if the edges intersect in their interiors at a single

point. Given a simple polygon P and two points in its

interior a and b, we use S(P(a, b)) to denote the shortest

path from a to b that lies inside P.

LEMMA 3.1. No two edges of an optimum keeper’s

tour of a simple aquarium cross.

Proof. Assume for the sake of contradiction that

there is an optimum keeper’s tour Q of a simple aquar-

ium P with the edges (wi, Wi+l) and (wj, wj+l) that

cross at the point ~. Eliminate the crossing edges

(wi, wi+l) and (wj, wj+l) from the keeper’s tour and
replace them with S(P(toi, Wj)) and S’(P(Wi+l, w3+l))

to obtain a new tour Q’. Observe that Q’ is a keeper’s

tour. The path S(P(zo~, wj )) is convex and lies within

the triangle A(wi, wj, z), because Wi is visible from Wi+l

and Wj is visible from wj+l. Therefore, S(P(Wi, wj)) is

shorter than the sum of the lengths of the edges (wi, z)

and (wj, Z). Similarly S(P(Wi+I, Wj+l)) is shorter than

the sum of the lengths of (wi+l, x) and (wj+l, z). We

have shortened a tour we assumed to be optimum, thus

obtaining a contradiction.

COROLLARY 3.1. Every optimal keeper’s tour of a

simple aquarium partitions the plane into two equiva-

lence classes, a closed and bounded interior and an open

unbounded exterior, The edges of the tour can be di-

rected so that the exterior lies to the lefi and the interior

lies to the right of a clockwise traversal.

LEMMA 3.2. Every optimum keeper’s tour visits

every reflex vertex of a simple aquarium P at least once.

Proof. Suppose that there exists an optimum

keeper’s tour Q that leaves a reflex vertex v unvisited.

Let L be a horizontal line passing through v. Assume,

without loss of generality, that the line segment 1, the

connected subset of L containing v and lying in P, con-

tains v in its interior. If this is not the case, then we

can easily make it so by rotating P by a suitable radial

angle. Thus, there exist points of intersection between

Q and 1 immediately to the left and to the right of v,

which we label a and b, respectively. Let wj and wj

respectively denote the points of contact of Q to P that

are encountered immediately before a and immediately

after b when traversing Q in a clockwise orientation. It

follows from the corollary of lemma 3.1 that the part of

Q from a to b keeps the interior of Q to its right. Thus

we can shorten the tour by replacing the path Wi, . . . . Wj

by the path wi, . . ..a. b, . . . . wj in Q. Since the line seg-

ment ab is shorter than the path a, . . .. b in Q, we have

demonstrated that any tour that leaves a reflex vertex

unvisited must be suboptimal.

We use Q(rl, rz) to denote the part of the optimum

keeper’s tour that passes from rl to (the first occurrence

of) rz, two adj scent reflex vertices of a simple aquarium.

Let the intermediary edges of P between rl and r2 be

denoted as l(P(rl, r2)).

LEMMA 3.3. Q(rl, r2) of a simple aquarium P,

touches every edge of I(P(rl, r2)) in order, and is

constrained to lie in a region bounded by I(P(rl, r2))

and S(P(rl, rz)).

Proof Assume that one or more edges of

I(P(rl, r2) are not visited by Q(rl, r2). Let e denote



THE AQUARIUM KEEPER’S PROBLEM 463

a)

Figure 4: a) A simple aquarium with shaded region P1

structure Ql obtained from P1.

one such edge. Let a and b denote the points of contact

of Q(rl, rz) and l(P(T1, T2) immediately preceding and

succeeding the edge e in a clockwise traversal.

Thus all of e lies to the left of the part of Q(rl, T’2)

when traversed from a to b. Since Q must visit e

there is at least one point of e in the interior of Q,

a contradiction. Thus we can assume that the shortest

path between rl and rz visits every edge of I(P(rl, rz)).

If rl sees rz, that is, S(P(rl, rz)) is the edge (rl, rz),

then Q(rl, rz) is the shortest path from rl to rz visiting

every intermediary edge in a convex polygon. As shown

in sect. 2, this path must visit edges in order. On the

other hand rl may not necessarily see r2. We claim that

the path Q(rl, r2), since it is constrained to lie within

P, must lie in a region bounded by S(P(rl, rz)) and

the intermediary edges I(P(rl, rz)). If Q(rl, m) crosses
the path S(P(rl, r2)) then it must cross S(P(rl, rz))

an even number of times. The parts of Q(rl, rz)

between the odd and even numbered crossings can be

replaced by parts of S(P(rl, r2)) thus making the entire

path shorter. Thus Q(rl, rz) must visit -v edge in

I(p(rl, rz)) in order on the boundary of l’, and mUSt

lie in the region bounded by Q(r,, ~2) and S(P(TI, Tz)).

The first step, then, is to compute the boundaries

for all of the subproblems. Tot ackle the problem naively

and compute the shortest path tree from every reflex

defined by consecutive reflex vertices rl and rz. b) The

vertex could take time O (n2) in the worst case.

LEMMA 3.4. The polygon R consisting of the reflex

vertices of P and the shortest paths joining adjacent

reflex vertices in P has size U(n) and can be computed

in O(n) time. R may be non-simple as vertices of

the boundary may be repeated, but each region of finite

area defined by R lies to the right of the oriented edges

bounding it.

Proof. The polygon R is in fact the relative- convez-

hull (also geodesic convex huil) of the set of reflex

vertices of P with respect to P [17]. In [17], an

O(n log n) time and O(n) space algorithm is presented

for computing the relative convex hull of a set S of

n points in s simple polygon P. The opt imalit y of

the algorithm follows because S can lie anywhere in

P. However, if S consists of a set of vertices of

P, then the algorithm in [17] simplifies considerably

and is dominated only by triangulating P. Since P
can be triangulated in O(n) time with Chazelle’s new

algorithm [1], the result follows.

The global problem of computing the optimum

Aquarium tour now reduces to h subproblems of finding

the shortest path from one fixed vertex rj to another

rj+l that touches every edge of the boundary convex

chain joining rj and rj+ 1 without crossing a second
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convex chain which joins the same two vertices. Let

us say that these two convex chains define a polygon P~

(where Pj is in fact a spiml polygon).

Since P~ is nearly convex, we can solve each of

these subproblems using essentially the same procedure

we described in section 2. To create the polygonal

structure Q1, however, we no longer reflect and translate

only triangles. The segment of tour between a point

on ei and a point on ei+l still lies in the triangle

Av/vi+l rri+z, but since the diagonal from vi-1 to Vi+l

may no longer lie in the interior of the polygon, we may

need a greater restriction. In fact, we need to focus

on the starshaped polygons determined by ei_ 1, ei and

the inward convex chain S(P(v(i_ lj~~d ~, v(i+I)~Od ~ ))
which represents the shortest path from ~f~- 1)~~~ n to

V(i+ ~)mOd ~ for every i along each individual convex

chain. As all vertices in this polygons are visible from

Wi, diagonals from vi triangulate the polygon and can

be added in the process of creating Qj (see fig. 4).

LEMMA 3.5. For each of the h subproblerns on a

polygon Pj composed of two nested convex chains, the

polygonal structure Q? can be formed in time and space

linear in the size of Pj.

THEOREM 3.1. The optimum keeper’s tour in a

simple polygon P of n vertices can be computed in O(n)

time.

Proofi If P should be convex, then the procedures

of sect. 2 apply. Otherwise, P has at least one reflex

vertex which must lie on the shortest tour. Thus the

problem reduces to finding the shortest path from the

image of each reflex vertex rj to the image of the

succeeding vertex ~j+l (possibly equal to ~j !) in the

triangulated polygonal structure Q~. For each j, this

can be done in time linear in the size of Q~. But the

sum of the sizes of all the Qj is O(n). Thus, the tour

can be computed in d(n) time.
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