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Abstract 

A largest empty convex subset of a flnite set of 
points, S, is a maximum cardlnality subset of S, that 
(1) are the vertices of a convex polygon, and (2) con- 
tam no other points of S lnterlor to their convex hull. 
An O(n’) time and 0( n e) space algorithm is intro- 
duced to And such subsets, where n represents the 
cardinality of S. Empirical results are obtalned and 
presented. In particular, a configuration of 20 points 
is obtained with no empty convex hexagon, giving a 
partial answer to a question of Paul Erdijs. 

1. Introduction 

Esther Klein showed that from any flve points 
in the plane, no three collinear, it is always possible 
to select four of them that determine a convex qua- 
drilateral. Miss Klein suggested the following prob- 
lem: Determine, for a given integer n > 3 , the 
smallest number / (n ) , such that from every set of 
at least f (n ) points, it is always possible to select 
n points forming a convex polygon. In a paper 

published in 1035 that was to shape an entlre fleld of 
mathematics, Erdiia and Ssekeres (3) proved that 

f(n) L (“,“-l) + 1. 
In 8 later paper [4) they showed that 

f (n) 2 a”-‘+ 1. 

An interesting account of the history of the former 
paper, and a reprint of It, is contained in the collec- 
tion of papers by Erdijs edited by Spencer !S]. The 
exact value of / (n ) is still unknown, except for the 
values f (3)=3, / (4)=5, f (5)=0 , see Moser [O]. 
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The corresponding problem in computational 
geometry Is to design an efficient algorithm to flnd a 
largest convex subset of a set of n points in the 
plane. An 0 (n’) algorithm for this problem was 
found by Chvatal and Klincsek [l]. 

In this paper, we will be concerned with the fol- 
lowing related problem, also posed by Erdijs. Given a 
set S, of n points In the plane, no three collinear, we 
are Interested in computing a maximum cardinality 
subset of S, Q(S), with the following properties: 

(1) The points in Q(S) he on the vertices of a 
convex polygon. 

(2) There are no points of S that lie interior to 
this polygon. 

a(S) is the largest empty convex subset of S. We 
introduce a method for finding @(S) In the next sec- 
tion. Let lO(S)l denote the cardlnality of 4(S). Deflne 
g(k) ss the smallest integer such that any set of g(k) 
points, no three collinear. contains an empty convex 
k-gon. It has been shown that 
g (3)=3, g (4)=5, and g (5)=10 [7]. For values of k 
2 7, Joe Horton has proved (81 that g does not exist. 
The value of g(6) remains an open problem. In this 
paper we exhibit a 20 point set with no empty convex 
B-gon showlng that g(6) 2 21. 

To compute a(S), Chvatal and Klincsek’s [l] 
result is used. It wlll be seen, that by adding an 
appropriate pre-processing step, a simple modification 
of the algorithm to compute largest convex subsets, 
can be used to solve the problem at hand. 

2. Preliminaries 

Some fundamental objects will be defined. A 
simple polygon P is a simply connected subset of the 
plane whose boundary is a closed chain of line seg- 
ments with adjacent edges intersecting at their end- 
points and no two non-adjacent intersecting edges. A 
polygon will be represented 85 a sequence of vertices, 
such that the interior of the polygon lies to the right 
as the vertices are traversed. We will denote the 
edge e inaide a polygon P if e does not intersect the 
exterior of P. Let Y and z be points interior or on the 
boundary of P. Point y is said to be visible from z if 
the line segment (Y,z) lies entirely inside P. A COR~C~ 
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polygon ls a slmple polygon such that every pair of 
points interior to the polygon are mutually visible. A 
convex polygon of k vertices will be known as a con- 
vex )-gon. A polygon P is a /an with root x, a vertex 
of P. if all vertices of P are visible from x. For con- 
venience we label the points in S, pl,p,,..., p,, in 
order of increasing x-coordinates. By rotating the 
points about the coordinate axes if necessary, we may 
sssume that no two points in S have the same x- 
coordinate. 

Set S, = S and for 1 = 2,..., n set St = 
{Pi tPi+lr**-r pI }. Deflne d(Si ) as the largest empty 
convex subset of Si that includes the point pi. Then 
we observe that ]@(S)l = maxi I&Si)I. This fOiiOWS 
by noting that (1) for every 1 = l...., n, 4(Si) can 
contain no point from the set S - Si in the interior of 
its convex hull due to the fact that the points in S are 
sorted and hence (2) if pi is the point in Qr(S) with 
smallest label then $(Si) is a largest empty convex 
subset of S. 

We denote by i, and ir the x and y coordinates 
Of a point pi in S. Let S(pi ,pj ) = (jr - ir ) / (is - 
i*). A sequence of points c r,..., e, of S deflnes a 

conuez chain of length m-l if 

s(c ,A,) I s(c,*c,) 5 “’ 5 tic,-l&l 1 

or a coneaue chain of length m-l if 

The points c I and c, are endpoints of the chain. 
Concatenation of a convex chain and a concave chain 
with identical endpolnts yields a convex polygon. 

As a first step in computing &Si) a set of legal 
edges L (Si ) are found. TWO vertices pj , pk , i 5 j C 
k, form a legal edge in L(Si ) lf and only If they form 
an edge of an empty convex subset of Si, containing 
the point pi . 

The sets of legal edges are computed from a set 
of fans constructed on S. Define the polar angle of a 
point as the angle relative to a fixed polar origin and 
a fixed polar line. Let pi be the polar origin and let 
the line y = ir be the polar line. We deflne the fan 
F(Si) = fisji+ls-**s j* where fi = pi 1~ the mt 
and ji+lt fi+ga***, j, is a permutation of the points 
Pi+l9---9 pm of S in descending order by polar angle. 
See flgure (1). 

The set L (Si ) can now be expressed in terms of 
F(Si I* 

Lemma: An edge ls in the set L (Si ) if and only if it 
1s inside the fan F (Si ). 

Proof: First we will show that every convex subset 
including pi = f i with an edge of its convex hull 

figure( 1) 

intersecting the exterior of F(Si ) is not an empty con- 
vex subset. We need only consider edges of the form 
(fj,fk) where l,k # i, Since eVel’Y edge (fitfk) is 
inside F(Sj ) by deflnltlon. Suppose ( f j ) f k ) is not 
inside F(& ). Observe that every convex polygon 
including f i and an edge ( j j ,f k ) which intersects 
the exterlor of F(Si), contains a triangle T with ver- 
tices fi,fj,fk* Slnce(fj,fk)lntersectstheexterlor 
of F.(Si) while (fisfj) and (fk,fi) do not, then T 
contains at least one point of S in its interior. There- 
fore (f j , f k ) is not a legal edge. 

COnVerSeiY, lf ( f j , f k ) iS inside F(Sj ), then the 
triangle jitjjsfk isempty, hence(fj,fk)lsalegal 
edge. 

0 
Shames (111 describes the vlslblllty graph of a 

polygon. This graph has nodes corresponding to the 
vertices of a polygon and has two nodes connected by 
an edge if and only if the associated vertices are 
mutually visible. The task of computing L (Si ) is 
reduced to constructing the fan F (Si ) and then com- 
puting the vlslblllty graph of F (Si ). 

An O(n e) algorithm exists for computing the 
vlslbllity graph of a slmple polygon. An O(n) aige 
rithm due to El-Glndy and Avis [2) for computing the 
visible vertices in a polygon from a point is repeated 
n times. At each iteration a vertex is used ss the 
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viewpoint and all other vertices of the polygon visible 
from it are found. A new method for computing the 
visible vertices in fans is proposed. Although there Is 
no improvement In the asymptotic complexity, the 
algorithm presented in section three exploits the 
structure found in fans resulting in a simpler pro- 
cedure. 

Once the legal edges L(Si) are found, +(Si) can 
be computed by modifying an algorithm due to 
Chvatal and Klincsek [l]. This algorithm computes 
largest convex subsets. Denote &Si ) as the largest 
convex subset of Si that includes the point pi . &Si ) 
ls not necessarily an empty convex subset. 

The method used to compute &Si ) is to flnd 
convex and concave chains of largest cardinality. We 
will say the chain of largest cardinality is the longest 
chain. Computing longest convex and concave chains 
is symmetric so only the convex case need be dis- 
cussed. 

The longest chain from pi to pk for 1 C k 5 n 
will be found in stages. Denote C[j,k] as the length of 
the long& COnVeX chain (pi ,Cs),(C2,Cs),..., (pi ,pk). 
The value of C[j,k] = m - 1 where m is the number 
of points in the chain, or C[j,k] = 0 if there is no 
such convex chain. 

Initially set j = I and trivially set C[i,k] = 1 
for all 1 < k 5 n. We then set j = 1+1,1+2 ,..., n, 
and determine Cb,k] for all J < k 5 n. We will use 
two arrays RXGHT and LEFT to assist in the compu- 
tation of C[J,k]. Copy the indices i,i+l,..., J-1 to the 
array LEFT and COPY the indices j+lJ+2,..., n to the 
array RIGHT. Now sort the values in LEFT so that 
dPtEFTIrj*Pi) < tiPLEFT[s]oPi) < **a < 
s((P~~rlj~ltPj) and sort the values in RIGHT so that 
$(Pj UPRIGHT 111) < 
s(Pi SPRINT Ir-jl) 

S(Pj ~PR~WTIS]) C 1.. C 
Fixing j, an algorithm to compute 

C[l,k] for all j < k 5 n is described below in Pascal- 
like code. 

Input: Values of C[h,k] for 1 5 h c j and the 
arrays LEFT and RIGHT. 

Output: The row J of C[j,k]. 

1. L <= 1; LLIM c= j-i; RLKM C= n-j; 

2. while C[LEFT(L],J] = 0 
do L c= L+l; 
{There is always an L < LLIM 
such that C[LEFT[L],j] > 0) 

4. while 
(dPLEFT(LI*Pj ) > fdPj pP~~~~~~~~)) 

and (R 5 RLlM) 
do begin 

C[j,RIGHT[R]] <= 0; R <= R+l 
end: 

5. while R 5 RLIM 
do begin 

while 
(S(Pj UPRIGHT IR 1) > ~(PLEFT IL I*Pj )) 
and (L 5 LLlM) 
do begln 

M <= msx(M,C[LFFT[L],j]); 
L <= L+l 

end; 
C[J,RIGHT(R)] <= M+l; 
R <= R+l; 

end: 

Algorithm 2.1 

It ls easy to see that algorithm 2.1 requires O(n) 
time. To compute C[j,k] for all 1 c J 5 n the algc+ 
rithm must be repeated O(n) times, resulting in O(n’, 
tlme and O(n’) space to store the table. 

Similarly we may compute values D[J,k] for 1 5 
J < k 5 n representing the length of the longest con- 
cave chains (pi ,c s),(cc,c &.,(pi ,pk ). Stire the max- 
imum value of column k of C[J.k] In MVE?C[k] and 
store the maximum value of column k of D[J,k] in 
MCAVEI[k] for all i < k 5 n. The value of l&Si)I 
= mu) (MVJX[k] + MCAVE[k]). Let T be the 
value of k that maximizes the above sum. 

To And $(Si ) we must reconstruct a convex 
chain (Pi ,C J.(c 2.~ J.....(c~~~E~ITI.PT) of length 
-PI. Similarly we must reconstruct the 
corresponding concave chain. The method of recon- 
structing these chains are symmetric so only the con- 
vex csse will be described. We will use the values 
C[J,k] for 1 < J < k < n in the computation of the 
chain. Algorlthm 2.2 succinctly describes the recon- 
struction procedure in Pascal-like code. 

Input: Values of C[j,k] for all 1 c 1 5 k 5 n. 

Output: The indices of the points in a convex chain 
of length MVEX[T] stored in the array 
CHAIN. 

1. CHAIN[l] <= 1; M <= MVEX[T]; 
CHA.IN[M+l] <= T; 

3. M <= C[LEFT[L] ,J]; R <= 1; 
2. find a point p, such that 

C(v,CHAIN[M]] = M; 
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then set, 
CHAINFI] <= v; M <= M-1; 

3. while M > 1 
do begin 

find a point p, such that 
C[v,CHAIN[M+1]] = h-i and 
dP. ~PcHAIN(Y+l)) < a(P. ~Pcwv(Y+I]) 

then set 
CHAINS] <= v; M <= M-l 

end; 

Algorithm g. d 

Algorithm 2.2 requires O(n *) time. For further 
details regarding the computation of &S,- ) see (I]. 

We may now return to the problem of comput 
lng &Si ). Observe that if we have a convex chain 
comprised entirely of legal edges, and a concave chain 
comprised entirely of legal edges, with identical end- 
points, then the interior o! the resulting convex 
polygon is empty. When compuflng values C[j,k) for 
1 < j c k 5 n. to ensure that only legal edges are 
considered, we copy into array LEFT the subset U, of 
indices l,l+l,..., J-l, such that if u is in U fhen 
(P. ,pi 1 la a leoal edge. We now sort the values in 
LEFT #M before. Similarly we copy into the array 
RIGHT the subset W, of indices j+l j+2..., n such 
that if w is in W then (pi ,pr ) is a legal edge. Sort 
the values in RIGHT as before. The procedures 2.1 
and 2.2 may be applied as before with the excepUon 
that LLIM and RLIM are assigned the values IV\ and 
IWl respectively. 

Recall @B(S) = maxi 1 #(Si ) I , therefore O(n’) 
time and O(n’) space suffice to compute a(S). These 
algorithms have been implemented. In section four 
some empirical results relating I@(S)! to ISI are 
presented and discussed. 

8. Visibility in Fans 

Given a fan F = f ,,I ,,..., f. with root / 1 an 
algorithm is shown to compute the vertices of F vlsl- 
ble from a viewing posltlon that is itself a vertex in 
F. Let the viewing podflon be denoted fp . Define 
the /e/t fan as the vertices of F left, of the line seg- 
ment (/ ,,I,). The right jan is similarly defined. To 
find the vertices of F visible from /,, , first find the 
vertices visible in the left fan followed by the vertices 
visible in the right fan. 

A primitive function performed by the following 
algorithm is the turn function: 

turd/i e/j JL 1 = (h - is 1 (it - $1 
- (k, - i,)(h - 5) 

If turn ls positive (negatlve,rero) the fum is 
denoted as left(rlght .no) . Another function 
accept(j{ ) ~ctpts f i 8s vlslble and puts /i on the 
visible vertex list. De!lne a(b,c,d) as the clockwlse 
angle between the rays (c,b) and (c,d) at the vertex c. 

An algorithm VIS-LFAN that computes the 
visible vertices in a left tan is described below in 
Pascal-like code. 

Input: The vertices of a tan F = / J *, . . ..I., and 
a viewing position f, a vertex of F. 

Output: A subset of F, the vertices In the left fan 
visible from f , . 

0. Extend the line segment (/, , f J 
and find its intersection with 
the boundary of F. 

if the ray (f, ,f ,) intersecta F 
at an edge (fi Bfi+d 

then term C= 1 
else term <= 0; 

1. u <= p-1; 
if u > term then accept( f, ); 
v <= p-2; 

9. while{ v > term) 
do begin 

if tum(/, ,fr J.) is left 
then begin 

accept( /, );u <= v 
end; 
v <= V-l 

end; 

Algorithm VIS-LFAN 

Lemma: A vertex accepted by VI!%LFAN 1s visible 
from jp. 

Proofi We prove the following statement inductively: 
at every sttp of VI!%LFAN the edge (f p ,I s ) is inside 
F. Inltlally the hypothesis is frue since ( f p , fp-J is 
a fan edge. 

Every time a triple f ,, , I, , f , is a left turn. 
f, is accepted. It will be shown that this implies 
that f 1, f , , / l , fp lie on the vertices of a convex 
quadrilateral inside F. 

Constder the sequence of vertices f . ,f .+..., 
f r+l. Every point in this sequence lies to the right of 
(f , ,/, ). Recall that the vertices of F are in polar 
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order. Since v > term and the angle 
4s trm+lJ d, ) I R (we ~111 consider 41 J J. 1 
to be equal to x), then a(f, ,f r,f,) < it. This 
implies f ,, f , , f , lie on the vertices of 8 triangle, 
T,, Inside F. It can also be shown that / r, f, , j, 
are vertices of a triangle, T,, inside F. T, and T, 
are adjacent. It Is clear that a(f,, ,fr ,j, ) is convex. 
The angle 41, .I &J can be shown to be convex 
by using the polar order in fans. Therefore f I, f , , 
f, , jr lie on the vertices of a convex quadrilateral 
inside F, implying /, is visible from f , . 

0 

Lcmms: If a vertex is not accepted by algorithm 
VIS-LFAN then the vertex is not visible from I,, . 
Proof: If turn(f,, ,fr ,f , ) is left then v Is accepted. 
Observe that if turn( fp , /, , /, ) is right then / r, 
I, , /, , f ,, Is a quadrilateral with concave vertex 
5 , . Therefore triangle f r, f , , /,, contains the 
point. f , implying f , is not vlsible from f , . Exit- 
ing when reaching the point fftrn 1s Justlfled by the 
polar order of the vertices in fans. 

0 
Using the above results we have: 

Theorem: Algorithm VIS-LFAN Ands the vertices 
vislble from a vertex of a fan in O(n) time. 

To find the visibllty graph of the fan VIS- 
LFAN mlly be applied to the vertices f. ,j,,-r,..., f s 
sequentially, resulting In an O(ns) algorithm. Note 
that step 0 Is required only if a fan has Its root at a 
concave vertex. In the application considered in this 
paper this case never arises. 

The preceding method can be generallsed for 
solvlng various other vlsibillty problems In special 
classes of polygons. These can be found in [lo]. 

4. Empirical Resulti 

The algorithms described in sections 2 and 8 
have been programmed. The following experiments 
have been performed. 

An Input of a random set of points was used 
and I@(S)] was computed. The experiment was 
repeated for different set sizes. A table in figure (4) 
shows a breakdown of the results. It Is Interestfng to 
note that using this method we have obtaIned a set of 
15 points with ]4(S)] = 5. A total of 830,000 experl- 
ments were performed wlth random sets of 16 points, 
and no set without empty 6-gons were found, 

A different approach was then tried. Taking a 
point set with lb points and no empty 5gons a new 
point was tried to see If it caused the formation of an 
empty Bgon. If no &gon was found then the point 
was added to the set, and the experiment was 

repeated. In this way a set of 20 points with no 
empty B-gons wss found. However to date that is the 
largest sized point set found such that l@(S)] = 5. 
This configuration of points is shown in figure (2). 

Harborth [7] shows a set of 9 points wlth no 
empty convex pentagons. As a result of these experl- 
ments a set of 9 points with 14(S)! = 4 was generated 
figure (3). Goodman and Pollack [6] deflne an “order 
type” for sets of points. It can be shown that the 
conflguration of 9 points shown in figure (3) differs 
from Harborth’s example in “order type”. We can 
conclude that a configuration of 9 points such that 
14(S)] = 4 Is not unique. 

Some timings are listed in figure (5). The tim- 
lngs represent CPU time required to perform 100 
experiments, denoted In mlnutes and seconds. 

The programs used to perform these experi- 
ments were written in the C language. The expert- 
ments were run on a VAX 750 computer running 
UNIX. These facilities were provided at the McGill 
School of Computer Science, Computational 
Geometry Laboratory. 
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