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Abstract

We show that the visibility graph of a set of disjoint congruent discs in IR2 is Hamil-

tonian, as long as the discs are not all supported by the same line. The proof is

constructive, and leads to efficient algorithms for obtaining a Hamilton circuit.
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1 Introduction

Let S denote a set of non-intersecting closed convex objects in IR2. Consider two distinct

objects in S, a and b. We use S − {a, b} to denote {x : x ∈ S and x /∈ {a, b}}. We say that

the objects a and b see each other if there exists a straight line segment l with one point

in a and one point in b such that l lies in the complement of S - {a, b}. We call such a line

segment a line of sight. The visibility graph of S, denoted by Vis(S), associates a vertex to

each object of S, and an edge between two vertices if and only if the associated objects see

each other.

The combinatorial structure of the visibility graph for sets in IR2 has been studied

extensively. See the article by O’Rourke [10] for a comprehensive overview. Several papers

present results on the combinatorial structure of the visibility graph of line segments [12, 3,

9, 8]. This paper builds upon the result of Hosono et al. [7] that the visibility graph of a set
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of translates of the same convex polygon in IR2 contains a Hamiltonian path. We combine

their algorithms with a simple pre-processing step to produce a Hamiltonian subgraph of

the visibility graph of a set of disjoint congruent discs.

A graph has Hamiltonian path if there exists a traversal that visits every vertex exactly

once. A graph has a Hamiltonian circuit if it has a Hamiltonian path that can be augmented

with one additional edge joining the beginning to the end of the path. It is common to say

that a graph is Hamiltonian if it has a Hamiltonian circuit. Although most often associated

with the Irish Mathematician Sir William Rowan Hamilton, the interest of graphs with

Hamilton’s property pre-date Hamilton by centuries. Hoffman and Wolfe [5] have written

an account of the history of this problem.

Hosono et al. [7] show that the visibility graph of a set of translates of the same convex

polygons in IR2 contains a Hamiltonian path. Using the algorithms of Hosono et al. [7]

coupled with a simple pre-processing step we are able to obtain a Hamiltonian subgraph of

the visibility graph of a set of disjoint congruent discs.

2 Preliminaries

This section will provide some of the basic definitions and notation that we use.

We use G = (V,E) to denote a graph with vertex set V and edge set E with no loops

or multiple edges. We denote edges by two element subsets of the vertex set. A graph

G = (V,E) is planar if the vertices V can be positioned on a plane, so that all edges E can

be realized by non-crossing straight line segments. We call this a drawing of G. We use

plane graph to denote a planar graph along with a drawing of it. A plane graph partitions

the plane into disjoint regions, or faces. There is exactly one face that is unbounded,

and this is called the outer face. A two-connected plane graph is a triangulation if all

of its faces, except possibly the outer face, are triangles. A triangulation with an outer

face that is also a triangle is called maximal planar. We say that {u, v,w} ⊆ V is a 3-

clique if {{u, v}, {v,w}, {u,w}} ⊆ E. A 3-clique in a triangulation is called a separating

triangle if it contains vertices both in its interior and exterior. We call a triangulation an

NST triangulation when it contains no separating triangles. Given a plane graph, G, the

boundary graph, B, is a subgraph of G induced by the vertices of the outer face. A boundary-
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chord in a boundary graph is any edge of the boundary graph which is not an edge of the

outer face of G. Figure 1 depicts an NST triangulation and its associated boundary graph.

Figure 1: An NST triangulation and its associated boundary graph.

In a paper published in 1931, Hassler Whitney [15] proved that maximal planar graphs

with no separating triangles are Hamiltonian. The proof uses a recursive algorithm to

construct a Hamiltonian path between two adjacent vertices, thus leading to a Hamiltonian

circuit. The algorithm makes use of the following lemma

Lemma 2.1 (Whitney’s lemma) If the boundary graph of an NST triangulation has ver-

tices A,B,C, that defines the following labelling A = a0, a1, . . . , aα = B = b0, b1, . . . , bβ =

C = c0, c1, c2, . . . cγ = A, so that there are no boundary-chords of the form {ai, aj}, {bi, bj},

or {ci, cj}, then there is a Hamiltonian path from A to B.

In 1984 a new simpler proof of Whitney’s lemma is used to design an algorithm that finds

a Hamiltonian cycle in an NST triangulation in linear time [1]. Dillencourt [4] subsequently

extended Whitney’s results in several ways. We make use of the following lemma.

Lemma 2.2 (Dillencourt’s lemma) If the boundary graph of an NST triangulation has

no face using more than three boundary chords then the graph is Hamiltonian.

In this paper we show that the visibility graph of congruent discs contains a planar

subgraph that satisfies Dillencourt’s lemma. The main result of this paper is given by the

following Theorem.
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Theorem 2.3 The visibility graph of a set of congruent discs in the plane, not all supported

by the same line, is Hamiltonian.

3 Methods

The results obtained in this paper adds a pre-processing step to the algorithm described by

Hosono et al. [7]. A sketch of the algorithm of Hosono et al. [7] to find a subgraph of the

visibility graph of a set of suitably oriented translates of a convex body is given , followed

by some needed details.

Let M represent a graph such that the vertex labels in M are in a one-to-one correspon-

dence with a set S of congruent discs. Assume that the input set of discs does not have all

discs supported by the same line. Furthermore, without loss of generality, assume that no

two discs are supported by the same horizontal or vertical line. The edges of M will fall into

three classes. M contains a class I edge {v,w} whenever there is a horizontal line of sight

between the discs v and w. M contains a class II edge {v,w} whenever there is a horizontal

line H that partitions S into two disjoint subsets one entirely above and the other entirely

below H, so that v is the lowest disc in the upper subset and w is the highest disc in the

lower subset. The remaining edges of M, those of class III, will be added by an iterative

process. Before describing this process we need to introduce some geometric terminology.

Let l : ax + by = c denote an infinite line. Let l+ denote the closed half-plane bounded

by l and satisfying ax + by ≥ c. Let l−, denote the open half-plane satisfying ax + by < c.

Let Γ denote an arbitrary closed subset of IR2. We say that l supports Γ if l ∩ Γ 6= ∅ and,

l+ ∩ Γ = Γ. Note, we always use l+(Γ) to denote the closed half plane that contains Γ and

l−(Γ) to denote the open half plane that is disjoint from Γ. If γ ∈ Γ is contained in l then

we say that γ is extreme.

For a disc s we define North(s) as a horizontal support line above s, and north(s) as

the extreme point of s contained in North(s). Similarly for S a set of distinct congruent

discs North(S) is a horizontal support line for the union of the discs of S, and north(S) is

the leftmost extreme disc contained in North(S).

By analogy we define support lines, and extreme elements of a set Γ with respect to

the other compass points, using South(Γ), south(Γ), East(Γ), east(Γ), West(Γ), and
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west(Γ).

For an example of how this terminology is used consider the class II edge {v,w} as above,

and observe that the area bounded by South
−(v) and North

+(w) is in the complement

of S. This area can be descriptively denoted as a clear corridor. Furthermore, in Figure 2

north(S), south(S), east(S), and west(S) are respectively labelled N,S,E,W .

We say that s is maximal in the east direction, or east-most, if there exists a horizontal

line l such that l ∩ s contains the rightmost point in a non-empty intersection of l and S.

Let r, s, and t denote three distinct east-most elements of S with the following properties.

• north(s) is above north(r) and north(r) is above north(t)

• west(r) is to the left of both west(s) and west(t)

• {s, r} and {r, t} are edges {class I, II, or III } in M

These conditions characterize class III edges {s, t} that are added to M . A consequence

of this characterization is that the region bounded by East
−(r)∩South

−(s)∩North
−(t)

is non-empty and is contained in the complement of S. This property has been proved by

Hosono et al. [7]. We describe this region as a clear half-corridor. In a similar symmetric

way class III edges may also be characterized by west-most triples. For now we depict the

structure of this type of graph in Figure 2. The precise algorithmic details follow.

The algorithm uses the sweeping line technique common to many algorithms in com-

putational geometry [2, 11]. The algorithm sweeps a horizontal line from the top to the

bottom of the plane. A priority queue, Q, using points from {north(s), south(s)|s ∈ S}

sorted by decreasing y-coordinate determines the discrete events that signal some action.

Note: Whenever north(t) and south(s) have the same y-coordinate we queue north(t) be-

fore south(s). We assume that the input set of discs does not have all discs supported by

the same line. Furthermore, without loss of generality we assume that no two discs are

supported by the same horizontal or vertical line.

A search structure L maintains in x-coordinate order all objects currently stabbed by

the sweep line. We initialize L with dummy leftmost and rightmost entries, which we call

α and ω. The algorithm also makes use of a pair of initially empty stacks called EastStack

and WestStack that keep track of east-most and west-most objects used in the construction

of class III edges. A procedure Make-III is used to handle the creation of class III edges.
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Figure 2: A sample set of discs with the edges of graph M as constructed by the algorithm

Make-M. An empty half-corridor East
−(b)∩ South

−(a)∩North
−(c), and an empty cor-

ridor South
−(c) ∩North

−(d) are shown.

Make-M(Q,L)

1. loop

2. q ← Dequeue(Q)

3. case q of

4. q = north(s):

5. Insert s into L

{Let the left and right neighbours of s in L be respectively denoted as s− and s+.}

6. if ( s− = α ) then Make-III(WestStack,s) else Add class I edge {s, s−} to M

7. if ( s+ = ω ) then Make-III(EastStack,s) else Add class I edge {s, s+} to M

8. q = south(s):

9. Delete s from L.

10. if ( s = south(S) ) then return

{Let the former left and right neighbours of s in L be respectively denoted as s− and s+.}

11. if ( s− = α and s+ = ω ) then Add the class II edge {s, u} to M , where north(u) is the next object in Q.

12. if ( s− = α and s+ 6= ω ) then Make-III(WestStack,s+)

13. if ( s− 6= α and s+ = ω ) then Make-III(EastStack,s−)

14. if ( s− 6= α and s+ 6= ω ) then Add class I edge {s−, s+} to M

end loop
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We now give the pseudo code for procedure Make-III used to create the class III edges.

We use standard stack operation Push and Pop. We augment the standard stack operations

with an operation Size(Stack) that returns the number of elements on the stack. We use the

notation Stack(top) to obtain the value of the top element of the stack, without popping it

from the stack. Similarly Stack(top-1) is used to access the value of the next to top element

of the stack. The procedure Make-III loops as long as class III edges can be added to M .

Make-III (Stack,t)

1. loop

2. if ( Size(Stack) < 2 ) then Push (Stack,t) return

3. r ← Stack(top) s← Stack(top-1)

4. if ( Stack = EastStack ) then lr = East(r) else lr = West(r)

5. if ( l−
r
∩ s 6= ∅ and l−

r
∩ t 6= ∅ ) then

6. Add the edge {s, t} to M

7. Pop(Stack)

else

8. Push(Stack,t) return

end loop

Observe that our algorithm is iso-dependent, that is, the output varies according to the

underlying orientation of the set of discs. An example that makes this point obvious can

be seen in Figure 3.

Graph M is a subgraph of Vis(S) [7] and Figure 2 depicts its structure. A planar drawing

of M is obtained by positioning vertices at the centres of the discs. Every face in this drawing

of M is a triangle except for the outer face, and no triangle is a separating triangle and

as was proved by Hosono et al. [7] no triangle is a separating triangle. We can describe

the outer face of M by four paths. Beginning at east(S) and proceeding in a counter

clockwise direction we have, P1 = [east(S), . . . ,north(S)], P2 = [north(S), . . . ,west(S)],

P3 = [west(S), . . . , south(S)], P4 = [south(S), . . . , east(S)]. Observe that these paths are

overlapping, and all contain at least one vertex. Since the outer face may not be two-

connected some vertices other than the compass points may appear on more than one path.

Given a disc s ∈ S, we say that s is maximal with respect to the first quadrant if the region

North
−(s) ∩ East

−(s) is in the complement of S. We can similarly define maximality

with respect to the other quadrants.
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Figure 3: A rotated version of the set S from Figure 2, with the previously computed edges

of M (left) and the newly computed edges of M (right). Later discussion will focus on discs

x, y, and z.

Lemma 3.1 (see [7]) All objects on Pi are maximal with respect to quadrant i.

Lemma 3.1 implies that the graph M has no intra-path chords: all boundary-chords of

the boundary graph of M connect distinct vertices on different paths. We call the union of

the paths P1 and P4 the eastern frontier and the union of the paths P2 and P3 the western

frontier.

The graph M as currently constructed does not necessarily satisfy the conditions of our

theorem: that the graph be two-connected, that it satisfy Dillencourt’s lemma, and that

the boundary of the graph be decomposable into at most three paths with no intra-path

chords. So that graph M will meet these goals, we first compute a favourable orientation

from which to apply algorithm Make-M.
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The proper orientation is found by using the convex hull of the discs [13]. Since the

discs are congruent, we can simply find the convex hull of the disc centres, using any convex

hull algorithm for planar point sites [2, 11]. Let c(x) denote the centre of disc x and CH(S)

denote the convex hull of the disc centres of S. Identify three of elementsc(x), c(y), c(z) of

CH(S) with the following properties:

• The elements c(x), c(y) are adjacent on the hull, that is the line segment c(x)c(y) is a

convex hull edge.

• There exists lines l1 and l2 disjoint parallel lines of support of CH(S) such that l1

passes through the convex hull edge c(x)c(y) and the line l2 passes through c(z).

• There is a line l3 perpendicular to l1 that passes through c(z) and intersects the

segment c(x)c(y).

The existence of such points for any convex polygon of four or more points, has been

shown in the context of clamping a polygon [14] and of determining the width of a polygon

[6]. We now orient our coordinate system so that l1 and l2 are vertical, and l3 is horizontal.

We also translate l1 and l2 so that they become supporting lines of S. Without loss of

generality we say l1 is East(S), with x above y and l2 is West(S). We may now rotate

our coordinate system by a minuscule amount so that x is uniquely east(S) and remains

above y but no two discs are supported by the same horizontal or vertical line. This

minuscule rotation can be determined by examining all pairs of discs. In terms of efficient

computation, we need not rotate, rather we only need to simulate the rotation in a consistent

way when discs are compared in algorithm Make-M.

We prove that after re-orienting the set of discs and applying algorithm Make-M we

obtain a graph with the requisite properties.

Lemma 3.2 After re-orienting the discs the graph M is two-connected.

Proof: Recall that we obtain a planar drawing of M by placing vertices at the centres

of the discs, so that every face in this drawing of M is a triangle except for possibly the

outer face. Thus if M is not two-connected then it is the boundary of the outer face that

is not two-connected. Let δ(M) denote the subgraph of M containing just the vertices and
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edges that belong to the outer face of M . Let us assume that vertex v is a cut point of

δ(M). Thus a traversal of the cycle δ(M) must pass through v at least twice. It follows

from lemma 3.1 that v must be maximal both on the eastern and western frontiers, and v

must be maximal with respect to two quadrants. That is, v is either maximal with respect

to quadrants one and three, or quadrants two and four. We assume that v is maximal with

respect to quadrants one and three, noting that the other case is symmetric. We show that

this assumption leads to a contradiction. The centre of v, c(v) is within the region l1+

and l2+. If v is above the line l3 then c(z) is in the third quadrant of c(v), so v cannot

be maximal with respect to the third quadrant. If c(v) is below the line l3 then c(x) is in

the first quadrant of c(v), so v cannot be maximal with respect to the first quadrant. This

contradicts our assumption that v is a cut point. Thus we conclude that the graph M is

two-connected.

2

Observe that a crucial element of the preceding proof was the location of x, y and z.

This delineates the necessity of obtaining a favourable orientation. Positioning x, y, and z

also plays a role in proving that no face in the boundary graph of M uses more than three

boundary-chords.

Lemma 3.3 There are no boundary-chords i, j with i in P1, and j in P4 in the graph M .

Proof: If i is in P1 then i is either the disc we labeled x or a disc that precedes x in a

traversal of δ(M) from north(S) to x. Similarly j is either y or a disc that succeeds y in a

traversal of δ(M) from y to south(S). Thus if i, j is a boundary-chord then the following

properties hold:

1. South(i) is above North(j)

2. c(z) is below South(i) and above North(j)

3. At least one the following statements are true: c(x) is below South(i) or c(y) is above

North(j)

We enumerate through the classes of edges in M and show that any boundary-chord {i, j}

with i in P1, and j in P4 leads to a contradiction. The edge {i, j} cannot be a class I edge

because of property 1. The edge {i, j} cannot be a class II edge because of property 2.

10



Properties 1 and 2 together with the fact that x, y and z are incident to vertical supporting

lines of S ensure that there is no clear half-corridor supported by South(i) and North(j).

So the edge {i, j} cannot be a class III edge. This leads to the conclusion that there are no

boundary-chords with end points in P1 and P4. 2

Lemma 3.4 No face in the boundary graph of M has more than three boundary-chords.

Proof: Let boundary-chords that cross from the eastern frontier to the western frontier

be called east-west boundary-chords. Using the fact that the boundary graph is planar and

two connected we can make the following statements. No face in the boundary graph can

have more than two east-west boundary-chords. Also no face in the boundary graph can

have more that two boundary-chords that cross from the from P2 to P3. We call these

boundary-chords north-south boundary-chords. If a face has two north-south boundary-

chords then it can have no east-west boundary-chords. If the face has one or more east-west

boundary-chord then it can have no more than one north-south boundary-chord. Therefore

no face in the boundary graph of M has more than three boundary-chords. 2

Now we can apply Dillencourt’s lemma to obtain theorem 2.3.

4 Discussion

We have shown that the visibility graph of a set of disjoint congruent discs is Hamiltonian.

Hosono et al. [7] show that visibility graph of a set of translates of a convex polygon admits

a Hamilton Path. However, the proof falls short when it comes to Hamilton Circuits. The

results differ because for convex translates we are required to use an orientation based on

the shape of the convex polygon. For a set of congruent discs we are free to choose a

favourable orientation.

Our proof is constructive, and does not explicitly use the visibility graph. Consider a

set S of n disjoint congruent discs. The graph that we construct has complexity in O(n),

whereas the visibility graph of S may be a complete graph , that is, it has O(n2) edges.

{ Observe that Vis(S) is a complete graph when the disc centres are at the vertices of a

sufficiently large convex polygon. }. It is straightforward to show that the worst case time

computational complexity of algorithm Make-M is in O(n log n). Furthermore, Dillencourt

[4] has established that the linear algorithm of Asano et al. [1] applies in this situation too.
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Thus, given a set of n disjoint and congruent discs, a Hamiltonian circuit using visibility

graph edges can be found in O(n log n) time.
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