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Abstract 

Given a collection of line segments in the plane 
we would like to connect the segments by their 
endpoints to construct a simple circuit. (A simple 
circuit is the boundary of a simple polygon.) However, 
there are collections of line segments where this cannot 
be done. In this note it is proved that deciding whether 
a set of line segments admits a simple circuit is NP- 
complete. Deciding whether a set of horizontal line 
segments can be connected with horizontal and vertical 
line segments to construct an orthogonal simple circuit 
is also shown to be NP-complete. 

1. Introduction 

A natural generalization of the problem of finding 
simple circuits from a set of points, is the problem of 
finding a simple circuit from a set of line segments. In 
general, a set of line segments does not necessarily 
admit a simple circuit. An example of a set of line 

segments that does not admit a simple circuit is given in 
figure 1. An interesting question is: When do a set of 
line segments admit a simple circuit? 

The task of obtaining a simple circuit from a set 
of points is a recurring theme that appears in a variety 
of applications. In network routing problems, the tour 
of shortest Euclidean distance that begins and ends at a 
common site, and visits all other sites exactly once, is a 
simple circuit. This is the Euclidean travelling 
salesman problem, and is known to be NP-complete 
[GJT,IPS,LLRKS]. Simple circuits have also been used 
in the arca of pattern recognition, for extracting 
perceptual information from sparse data 
[M,O’RBW,Tl,T2]. Surprisingly, the problem of 
computing simple circuits from a set of line segments 
has not received much attention, 
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Given a collection of sites on a plane, and the 
requirement that certain sites are visited in a prescribed 
order, the task of Iinding a shortest tour reduces to 
finding shortest tours from a set of line segments, or 
chains of line segments. If in addition, edges in the tour 
that cross greatly increases the cost of the tour 
(because bridges or tunnels are required), then one is 
interested in fmding a shortest tour with few crossings. 
In the extreme, this reduces to deciding if a set of line 
segments, or chains of line segments, admits a simple 
circuit. In the context of pattern recognition, 
meaningful perceptual information may be obtained 
from a collection of line segments, or chains of line 
segments, by computing a minimaI set of disjoint simple 
circuits. Again, in the extreme, this problem reduces to 
deciding if a set of line segments admits one simple 
circuit. 

In [RIT] it was shown that if the set of line 
segments are constrained so that every segment has at 
least one of its endpoints on the convex hull of the 
segments, an O(nZogn ) algorithm can be used to 
determine whether the set admits a simple circuit. 
Furthermore, one can deliver simple circuits, and even 
optimii over the area and perimeter of the polygons 
constructed, in the same time bound. Other special 
cases of the problem of obtaining a simple circuit from 
a set of line segments are discussed in [R2]. 

In this note, it is shown that to determine 
whether a set of segments admits a simple circuit is 
NP-complete. After preliminary definitions a reduction 
is given to a variant of this problem. In this variant we 
are given a set of orthogonal line segments, and are 
required to construct a simple circuit whose edges are 
all orthogonal to the coordinate axes. It is then shown 
how to reduce the orthogonal simple circuit problem to 
the simple circuit problem. 

2. Preliminaries 

A simple circuit is a sequence of edges, e,,e,,...,e, , 
such that for all 0 I i < k, e, and e(,+,) mod k intersect 
at their endpoints, and no other intersections between 
edges occur. A simple circuit is the boundary of a 
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simple polygon. Let S be a set of line segments in the 
plane. We require that the segments be properly 
disjoint, that is, no segments intersect in their interiors. 
However, we permit segments of S to intersect at their 
endpoints. If a set A can be found such that S U A is 
a simple circuit of ]S ] + ]A ] edges, then we say that 
S admits a simple circuit and A is a set of 
argntenhtg segntetlts . To obtain a set of augmenting 
segments, we begin by considering a set of segments as 
candidates. We say that two points see each other, if 
the line segment between them does not intersect any 
segment. Since we are looking for crossing free 
circuits, it is natural to choose as candidates 
connections of endpoints of segments that see each 
other. 

An odlogonal simple circuit is a simple circuit 
whose edges are orthogonal to the coordinate axes. 
One can say two points orthogonal& see each other, if 
they agree in one of their coordinates and they see each 
other. 

It will be shown that the following problem is 
NP-complete. 

Simple Circuit (SC) 

INSTANCE: A set of line segments S . 

QUESTION: Does S admit a simple circuit? 

To simplify the presentation it will fast be shown 
that the following more structured problem is NP- 
complete. 

Orthogond Simple Circuit (OSC) 

QUESTION: Is there a Hamiltonian path in G? 

The idea behind the transformation of HPPCG to 
OSC is to build modules out of collections of line 
segments. Given a planar cubic graph G, the collection 
of modules M(G) is constructed. Each module nr,, will 
uniquely represent a vertex a of G. The edges of the 
graph will be simulated by a subset of the candidates of 
the collection of modules. The remainder of this 
section will lead to the conclusion that a Hamiltonian 
path exists in a planar cubic graph if and only if the set 
of corresponding modules admits an orthogonal simple 
circuit. 

To obtain modules from vertices, it is necessary 
to fust compute a rectihhearplanar layout of the graph. 
This layout maps vertices to horizontal line segments 
and maps edges to vertical line segments, with all 
endpoints of segments at positive integer coordinates. 
Two horizontal segments are intersected by the 
endpoints of a vertical segment, if and only if the 
corresponding vertices are adjacent in the graph. 
Figure 2 shows a straight line drawing of a planar cubic 
graph with its rectilinear planar layout. 

In [RT] it has been shown that a rectilinear 
planar layout can be computed for planar graphs with n 
vertices in O(rt ) time. The height of the layout of this 
algorithm is guaranteed to be at most n, and the width 
at most F, where F is the number of faces in the 
graph. In cubic graphs F = n /2 + 2 by Eulers 
relation. For details regarding the algorithm used to 
obtain rectilinear planar layouts, refer to [RT]. 

Given a planar cubic graph G= (V,E), modules 
are built using the following procedure: 

INSTANCE: A set of line segments S orthogonal with 
respect to the coordinate axes. 

ALGORITHM CONSTRUCT MODULES 

1. Obtain a rectilinear planar layout of G. 

QUESTION: Does S admit an orthogonal simple 
circuit? 

3. Orthogonal Simple Circuits is NP-complete. 

In this section it will be shown that the 
orthogonal simple circuit problem (OSC) is NP- 
complete. The following problem is known to be NP- 
complete ]GJT]. 

2. for each vertex v in G do 
Let (4 y), (x,$) denote the coordinates of the 
horizontal line segment h that corresponds to v. 
Every vertex in G is of degree three. Therefore, 
there are three vertical segments intersecting h. 
Denote their intersection points as (x1$), (x28) 
and (xsiy). if 4 is the top endpoint of iis vertical 
line segment 

then top, t true else top, 4- fake. 
Hamiltonian Path in Planar Cubic Graphs (HPPCG) 

INSTANCE: A planar cubic (all vertices are of degree 
three) graph G = (V,E). 

2.1. Construct an outer rectangle with diameter, 
(6r, ,4y), (6(&+1)-1,4y$3) and an inner rectangle 
with diameter, ($f1,4y+ l), (6(x,+ l)-2,4y+2). 
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2.2. for i + 1 to 3 do 
if topi is true then 

Place a gap of width one at (& +2,4y) of 
the outer rectangle and at (&+2,4y+l) 
of the inner rectangle. 

else 
Place a gap of width one at (& + 2,4y + 3) 
of the outer rectangle and at 
(6q +2,4y+2) of the inner rectangle. 

The graph in figure 2, yields the modules shown 
in figure 3. 

The gaps in the outer rectangular frame will be 
denoted as doors. The segments of the inner 
rectangular frame will be denoted as enforcers, because 
this most accurately reflects their purpose. The nature 
of their enforcement will become clear later in the 
discussion. If the edge (a ,b ) is in G, then a door of 
module (I faces a door of module b. We say that these 
doors are rteighbours. By a logical extension, modules 
a and b are also termed as neighbours, if their doors 
are neighbours. Obscrvc that all modules are 
topoIogically equivalent. 

There is a relationship between Hamiltonian 
paths in planar cubic graphs and orthogonal simple 
circuits in the modules just constructed. Suppose we 
are given a planar cubic graph and a Hamiltonian path 
in the graph, where we label the vertices 1, . . . . n 
representing the permutation that corresponds to the 
Hamiltonian path. It will be shown how to obtain an 
orthogonal simple circuit from the corresponding 
configuration of modules. Since for every vertex in a 
planar cubic graph there is a unique module, we can 
label modules the same way we have labeled the 
verCices. For every edge, (i ,i+ l), i = l,..., n -1, in the 
Hamiltonian path, we connect the doors of module i to 
module i+ 1. Doors that are not used to comect 
ncighbours arc connected to their enforcers. There is 
one cxccplion; the modulos corresponding lo 1 and 11, 

the terminal vertices in the Hamiltonian path, have one 
of their unused doors closed. Finally, the remaining 
augmenting segments connecting enforcers are now 
uniquely dclined. A collection of modules, connected 
as prcscribcd above is shown in figure 4, where the 
path of modules 1,2,4,3,7,6,5,8 is a simple circuit. To 
verify that an orthogonal simple circuit is obtained, 
notice that each module (except 1 and tt ) has two 
simple paths running through it. These two paths run 
through the entire network of modules until the 
terminal modules are reached, that is, modules 1 and n . 
These modules have a single orthogonal simple path 
running through them, and in turn, complete the IWO 

previously mentioned paths. 

Let a path of modules denote a sequence of 
modules rn,~n, * * * g?tk where, a) mi is a neighbour of 
m,+, for 15 i <k-l, b) nti is connected to nIi+ with 
two augmenting segments, and c) enforcers are 
connected as described above. 

Lemma 1: A path of modules is an orthogonal simple 
circuit. 

ProoE Follows directly from the preceding discussion. 
0 

Lemma 2: Given a planar cubic graph, G, and a 
permutation of its vertices representing a Hamiltonian 
path, then an orthogonal simple circuit can be obtained 
in a collection of modules, M(G), in polynomial time. 

ProoE Construct the path of modules according to the 
prescribed permutation. This can be done in linear 
time. 0 

It remains to show that every orthogonal simple 
circuit in M(G) can be used to obtain a Hamiltonian . 
path in G in polynomial time. 

Let us examine the ways in which a module can 
be connected to its neighbouring module with 
augmenting segments. A first step is to establish for 
each module a list of candidates. In figure 5, a module 
is shown with its entire set of candidates drawn in 
dotted limes. 

The following lemma exhibits a crucial property 
of two neighbouring modules. 

Lemma 3: If two neighbouring modules are connected 
by a single augmenting segment, then an orthogonal 
simple circuit cannot be obtained in the collection of 
modules. 

Prool: First obscrvc that all doors of modules have a 
similar structure. There are cases where there are two 
doors that are in the same vertical row. This is the case 
that will be argued. In the simpler case (for example 
the unlabeled door in figure 5) a similar but simpler 
argument is required. Referring to figure 5, assume we 
have the augmenting segment (7,x). The edge (8,6) is 
forced, because we are assuming there is only one 
augmenting segment between modules. Now 5 can only 
be connected to 3, which causes a disjoint circuit. This 
rules out the possibility of getting a single orthogonal 
simple circuit. Assume instead that we have 
augmenting segment (8,~). This forces (7,s) and (6,4) 
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which forces (3,l). But this causes a disjoint circuit, 
Therefore, ncighbouring modules are connected with 
two augmenting seg@ents, in every orthogonal simple 
circuit . 0 

We have established that at each door modules 
are conpected with two augmenting segments. 
Therefore, saying two modules are connected, refers to 
the inclusion of the two augmenting segments between 
the doors of modules. Another fact that is necessary is: 

Lemma 4: A module can be connected to al most two 
of its neighbours. 

Proof: Assume that a module is connected lo three of 
its neighbours. This leaves the enforcers disconnected 
from the -rest of the segments of the module and 
isolated from all other modules. q 

It should now be clear how the internal structure 
used for each module acts as an enforcer. It forces each 
door to have two augmenting segments connecting each 
neighbour, and it forces each module to be connected 
to at most Iwo of its neighbours. In the construction 
that led to lemma 1, it was shown that a module can be 
connected to one or two of its neighbours in an 
orthogonal simple circuit. 

It is obvious that every module must be 
connected to at least one other module in every 
orthogonal simple circuit. Let the circuit degree of a 
module denote the number of neighbours a module is 
connected to in an orthogonal simple circuit. 

Lemma 5: Every orthogonal siiple circuit through a 
collection of modules is a path of modules, that is, it 
has exactly two modules of circuit degree one, and all 
other modules of circuit degree two. 

ProoE WC cannot have an odd number of modules 
with circuit degree one. To see this, first obtain the 
total sum 0 of all circuit degrees. If there is an odd 
number of modules of circuit degree one, thena is odd. 
But u must always be even, since Q counts each module 
connection twice. 

Suppose there are four or more modules with 
circuit degree one. Since each module can have circuit 
degree at most two, o is at most 2(n -4) t4. As in 
graphs, if the sum of the degrees is less than 2n (less 
than n edges), then the graph must have disconnected 
components. Similarly with u less than 2n there must 
be some disconnected modules. 

Suppose there are no modules of circuit degree 
one. Therefore, all modules are of circuit degree two. 

325 

It has been shown in lemma 1 that a path of modules is 
a simple circuit. If all modules are of circuit degree 
two, then we have the equivalent of a path of modules 
that is connected at its endpoints (module m, is 
connected to nt, .) This is topologically equivalent to 
taking a simple circuit, breaking it into two disjoint 
paths, and connecting each path to itself, thus creating 
hvo disjoint circuits. 

Therefore, every orthogonal simple circuit must 
be a path of modules. 0 

Finally, the preceding lemmas lead to the 
conclusion: 

Theorem: OSC is NP-complete. 

Proofz It is routine to show that OSC is in NP. If we 
are given a set of orthogonal segments with a set of 
augmenting segments, then the existence of a simple 
orthogonal circuit can be checked ;! linear time. We 
have shown that given a planar cubic graph, G, we can 
construct a a collection of modules, M(G), such that 
there is a Hamiltonian path in G, if and only if there is 
an orthogonal simple circuit in M(G). Therefore OSC 
is N&complete. Cl 

In the reduction that has just been given there are 
segments that intersect at their endpoints. It is not 
hard to convert the collection of modules into a set of 
disjoint horizontal segments. Simply remove the 
vertical edges of each module, and place each module 
on a row of its own. Modules with these changes are 
shown in figure 6. By examination one can see that all 
the vertical segments that were removed are now forced 
in the new layout of horizontal segments. 

It is worth noting at this point that a remarkably 
similar problem has a polynomial time solution. 
Suppose we are given a set of orthogonal line segments, 
and we wish to determine if the segments admit an 
alternating oriiaogonal simple circuit. This restricts the 
resulting orthogonal simple circuit to have edges that 
alternate between horizontal and vertical. An 
algorithm due to 0’ Rourke [O’R], to decide whether 
there is an alternating orthogonal simple circuit in a set 
of points, can be applied in a straightforward manner. 
This algorithm returns an orthogonal simple circuit, if it 
exists, in O(nlogrt ) time. Furthermore, it is shown that 
if an alternating orthogonal simple circuit exists, then it 
is unique. Concerning (not necessarily alternating) 
orthogonal simple circuits of points, this problem has 
been shown to be NP-complete [Rl,R2]. 
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4. Simple Circuit is NP-complete 

In this section it wiJl be shown that OSC 
polynomially transforms to SC. Following the strategy 
taken in the previous section, we will build a collection 
of modules out of line segments. As a distinguishing 
feature we will denote the modules described in this 
section as SC modules, and those of the previous 
section as OSC modules. 

SC modules are constructed in much the same 
way as OSC modules. Each module has an inner and 
outer rectangular frame with doors on the outer frame. 
Shown in figure 7, is a collection of SC modules 
corresponding to OSC modules in figure 3, and 
ultimately to the graph in figure 2. In SC modules 
greater care must be taken to limit the visibility of 
doors. For this reason the doors are recessed. Each 
door in an SC module is one unit wide, in a recessed 
three unil enclosure that is two units deep. See figure 
7. This limits the field of view of any door to an angle 
of forty five degrees. Let D be the distance between 
the top of the lowest module and the bottom of the 
highest module. If h is the total number of rows in the 
rectilinear planar layout (h is bounded by n, the 
number of vertices in G), and each module is w units 
wide (SC modules are constructed with a width of 10 
units), with a one unit space between rows of modules, 
then D = (jr-2)(tv + 1) t 1. Doors are spaced so that 
the distance between them is at least D. The limited 
field of view ensures that a door can only see its proper 
neighbour. Another feature found in SC modules, and 
not in OSC modules, is the obstacle that runs the 
length of every module. These obstacles ensure that 
the visibility between a door and its enforcer remains 
local. The details concerning the construction of OSC 
modules are omitted, as they are quite tedious, but 
given the above informal description it is a routine 
matter to construct the SC modules in O(n) time. 

A correspondence between the candidates of an 
OSC module and an SC module will be established. 
Since there are some candidates (endpoints that see 
each other) in SC modules that do not exist in OSC 
modules, it will be necessary to introduce the notion of 
a useful candidate. A candidate is useful if it can 
eventually appear as an augmenting segment. As will 
be shown, there are some candidates in SC modules 
that are not useful. However, all useful candidates in 
SC modules correspond exactly to the useful candidates 
of an OSC module. 

Referring to figure 7, there are candidates in 
OSC modules that cross. For example the candidates 
(5,6) and (6,7). It will be shown that all these crossing 
candidates arc not useful. Since the candid&s found 

at every door of every module are equivalent, it is 
sufficient to examine a single door. Referring to figure 
7, the inclusion of (5,8) forces (6,7), a crossing. 
Similarly (6,7) forces (5,8), a crossing. Therefore, (6,7) 
and (5,8) can never be augmenting segments, Including 
(7,~) forces either (8,x), (8,6) or (8,5). With (8,x) we 
get a crossing, with (8,6) we isolate 5, and (8,5) = ($8) 
was shown to be forbidden. As is the case for (7,y), 
(8,x) can never appear in a simple circuit. Therefore, 
W), (6,7), (7,~) and (8,x) cannot be augmenting 
segments. 

We can now conclude that the list of useful 
candidates in OSC modules is identical to those in SC 
modules. It is not hard to see that OSC modules are 
topologically equivalent to SC modules. Therefore: 

Theorem: There is an orthogonal simple circuit in OSC 
modules if and only if there is a simple circuit in the 
corresponding SC modules. 

The main result of the paper can now be proved. 

Theorem: SC is NP-complete. 

ProoE It is rouline to verify that SC is in NP. Since 
OSC is NP-complete the previous theorem implies that 
SC is also NP-complete. 0 

In the previous section it was shown that OSC 
modules could be built from individual disjoint line 
segments. This does not appear to be the case for the 
SC modules described here. It remains an open 
problem to determine if SC is NP-complete even if we 
insist that all segments are disjoint. 

Observe that all the segments used in this 
reduction for SC are orthogonal. Therefore, SC is NP- 
complete for orthogonal segments. 
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