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Abstract. A musical scale can be viewed as a subset of notes or pitches taken from a chromatic
universe. For the purposes of this paper we consider a chromatic universe of twelve equally spaced
pitches. Given integers (N,K) with N > K we use particular integer partitions of N into K
parts to construct distinguished sets, or scales. We show that a natural geometric realization of
these sets have maximal area, so we call them maximal area sets. We then discuss properties of
maximal area sets for the integer pairs (12,5) (12,6) (12,7) and (12,8) with the obvious relevance
to scales in our normal chromatic collection of 12 pitches. Complementary maximal area sets are
those sets where the chosen K notes realize maximal area, and the complementary N −K notes
also realize maximal area. The complementary maximal area sets closely match a significant
collection of scales identified in a book on jazz theory by Mark Levine [9].
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1. Introduction

Geometry and music are intertwined in many different ways. Music notation uses shape
and space to convey pitch and time information. Guitar players visualize harmonic struc-
tures such as scales, arpeggios and chords, as geometric shapes on the fret-board. The
origins of our musical system of seven-note scales chosen from a collection of 12 pitches
may be described in terms vibrating strings of various lengths. Recently, in a paper by
Dimitri Tymoczko [17], geometry is used to reason about voice leading techniques. Com-
binatorics is another branch of mathematics that is used in music analysis. Inevitably
combinatorial insight is supported by a picture, that is, a geometric representation.

Consider a circle with twelve equidistant points spread out on its boundary. The twelve
points represent the 12 equally spaced pitches that represent the chromatic universe using
an equal tempered tuning. From these 12 points we choose a subset of at least five points,
because musically a subset of five or more pitches are called scales. Some of these subsets,
or scales, are at the centre of western harmony.

In the examples shown in Figure 1, a subset of points are connected in sequence to con-
struct a convex polygon. We consider distinct polygons up to rotation. This corresponds
to the notion that different modes from the same scale are not different scales.

Since there are twelve equally spaced markings on the circle it makes sense to call
these diagrams clock diagrams. Representing the notes of a scale by a polygon appears
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Fig. 1. The subsets in a) and b) represent two modes of the diatonic scale, Ionian and Aeolian,
also known as the major and natural minor scales. For our purposes these two scales are con-
sidered to be equivalent. The diagram of part c) represents the ascending melodic minor scale
and is distinct from a) and b).

in a paper published in 1937 by E. Krenek [8], so sometimes these diagrams are called
Krenek diagrams as in the paper by McCartin [10]. However, in an account by Nolan [11],
Heinrich Vincent used this very same representation in his paper published in 1862 [18].
The use of clock diagrams is ubiquitous in mathematical music theory. When looking at
the notes of the usual diatonic scale, observe that they are spread out evenly amongst the
twelve chromatic pitches. The distance between two notes can be measured as the number
of scale notes between them, or the total number of notes, scalar or not, between them. In
this way we can distinguish between the scalar distance from the chromatic distance of a
pair of notes. Clough and Douthett [1] define a set to be maximally even if the chromatic
distance between two pairs of notes of the same scalar distance differs by at most one.
The maximally even sets (ME sets) are unique (up to rotation) as proved in [1] and also
in [4]. The ME sets include some of the most widely used scales in Western music, that
is, the diatonic scale, the common anhemitonic pentatonic scale, the six note whole-note
scale, and the eight note diminished scale.

When ME sets are represented by a clock diagram, then those points are subsets which
uniquely maximize the sum of inter-point distances [2–4]. A similar continuous case of
this phenomenon is described by Fejes Tóth [14]. In that paper it is shown that a finite
set of N points that maximize the sum of inter-point distances are located on the vertices
of a regular convex N -gon. That is, the points are spread out as evenly as possible on the
circumference of a circle.

In his book on harmony for the improvising jazz musician Levine [9] describes four
fundamental scales that are useful for jazz improvisation. These four scales are the seven-
note major scale, the seven-note melodic minor scale, the six-note symmetric whole-tone
scale and the eight-note diminished scale. In jazz terminology the term “melodic minor”
almost always denotes the ascending melodic minor scale, and we follow this convention.

Three of these four scales are maximally even, the exception being the melodic minor
scale which is not. Thus given pairs (12,8) (12,6) and (12,7) we may ask whether there is
a mathematical characterization that exactly describes Levine’s four fundamental scales.
In this note we arrive at such a characterization called complementary maximal area sets.

The paper is organized as follows. In the next section we provide a mathematical
discussion on a class of subsets of K elements chosen from N . This characterization is
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Fig. 2. Clock diagrams of the three MA scales. The interval structure of these scales are (a)
the diatonic scale, (b) the ascending melodic minor and (c) the Neapolitan major scale.

both combinatorial and geometric. We begin by describing the so called maximal area
sets, and prove some mathematical properties of these sets. The maximal area sets are
interesting in their own right, but do not quite satisfy the goals mentioned above, as
this characterization includes subsets of (12,8) and (12,7) that are not from the four
fundamental scales. In section 3 we then define and analyze complementary maximal area
sets and show that this characterization satisfies our requirements. The paper concludes
with some closing remarks in section 4.

2. Maximal Area Sets

A common misconception is that the prefix di in diatonic refers to the number two,
signifying the characteristic that there are two step sizes in the usual diatonic set. However,
the truth is the prefix dia refers to from the tonic [12]. Nevertheless, this definition is the
ideal spring board from which we can launch an exploration of scales that satisfy this
property, that is collections of subsets of 7 pitches from 12, so that the spaces between
consecutive pitches are either whole tones or semitones. This results in three distinct
scales. Using clock diagrams we show these three distinct scales in Figure 2. In (a) we
recognize the standard diatonic scale, (b) represents the melodic minor and in (c) we have
the symmetric whole-note scale plus a note, also called the Neapolitan major scale.

It is not hard to verify that the polygons representing the scales have equal area, and
this area is maximized for any choice of seven points from twelve. Thus we will refer to
these scales as maximal area scales, or more generically maximal area subsets which we
abbreviate as MA sets.

We generalize this notion for any subset of K pitches chosen from a chromatic universe
of N pitches. It will be most convenient to define our subsets in terms of integer partitions.

An integer partition of a natural number N is a way of writing N as an unordered sum
of natural numbers. In [7] Keith points out the connection between integer partitions and
musical scales.

Definition: A set of K pitches taken from a chromatic universe of N pitches numbered
1 . . . N , is an MA set if it satisfies the following properties.

– There is an integer partition of N using exactly K positive integer summands, that is,
N = a1 + a2 + · · ·+ aK .

– The summands differ by at most one, that is, |ai − aj| ≤ 1, for all i, j.

The following proposition provides a mathematical foundation for constructing and
analyzing MA sets.
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Proposition 1. Given integers N, K with K < N , there exist unique integers u and m
such that N = mu + (K −m)(u + 1).

Observe that for N, K, U,m as defined above we have the integer partition N = a1 +
a2 + · · · + aK with ai = u, for i = 1 . . . m and ai = u + 1, for i = m + 1 . . . K. Here we
have the understanding that i = m + 1 . . . K is the empty set in the event that m = K,
that is K divides N .

Proof: Let

u =
⌊
N

K

⌋
and v =

⌈
N

K

⌉
.

Note that if K divides N then v = u, otherwise v = u + 1.
For the case v = u we have N = Ku. Considering the case where v = u+1 we have the

equality (N −Ku)v + (Kv−N)u = N(v− u) = N. Thus m = Kv−N = K(u + 1)−N .
Since u determines m it suffices to show that u is the unique value satisfying the required
conditions. When K divides N uniqueness follows from the division algorithm [6]. When
K does not divide N we enumerate the cases of using a number larger or smaller than u.
Thus let w be an integer and w >

⌊
N
K

⌋
. However, this implies that Kw > N so w cannot

be greater than u. A similar symmetric argument can be used to show that w <
⌊

N
K

⌋
leads to a contradiction.

Thus we have shown that u is unique, completing our proof. 2

Recall that in ME sets as defined by Clough and Douthett [2,3] the chromatic dis-
tance between two pairs of notes of the same scalar distance differs by at most one. This
immediately leads to the following proposition.

Proposition 2. If a set is an ME set then it must also be an MA set.

As was shown by the example illustrated in Figure 2 that although for any N, K there
are unique values of u, m, one can possibly obtain more than one scale with step sizes
u and u + 1 by reordering the positions of the u steps with respect to the u + 1 steps.
Given (N, K, u, m) we can enumerate the distinct number of scales (up to rotation) that
are MA scales. This value depends only on K and m, and is the number of distinct K-ary
necklaces that are obtained using two types of beads, m white and K − m black, where
a K-ary necklace is defined as an equivalence class of K-ary strings under rotation, see
[13]. Distinct necklaces can be enumerated in O(K) time per necklace using an algorithm
due to Sawada and Ruskey [13].

We now turn to the question of the area of the representative polygons. Referring to
Figure 3 it is clear that the area of the septagon is obtained by summing triangle areas.

Assuming that the septagon representing these scales is circumscribed by a unit radius
circle, a formula giving the polygon area is: sin(π/6) + 5/2 sin(π/3).

In general given (N, K, u, m) the area of the representative polygons can be found by
summing the area of the triangles that partition the polygon. For our purposes it is most
convenient to partition the polygon into triangles that share a common vertex at the
centre of the circumscribing circle and whose sides are radii. From now on we refer to this
particular partition as the triangle partition of the polygon. The sum of the areas of the
triangles in any polygon representation of (N, K, u, m) is given by the formula:

m

2
sin(

2πu

N
) +

K −m

2
sin(

2π(u + 1)

N
).
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Fig. 3. One can obtain the area of the septagon by summing the areas of triangles in the traingle
partition as suggested above. The area of the triangle a, b, c is given by sin(φ)/2. The perimeter
of the inscribed polygon is also a function of the centre angles. For example the length of the
polygon edge bc is sin(φ/2)

Note that the area is a function that only relies on the values of the angles of the
triangles found at the centre of the circle. We refer to these angles as centre angles.

We claim that all of these septagons are area maximizing septagons. This is easy
enough to verify for this example. We prove the result for the general case in the next
lemma. Furthermore, we show that these polygons also maximize perimeter. The fact
that perimeter is also maximized is realized when we see that the perimeter is also a
function that relies only on the centre angles. The formula for the perimeter of polygon
representations of (N, K, u, m) is given by the formula:

2m sin(
uπ

N
) + 2(K −m) sin(

(u + 1)π

N
).

Lemma 1. Given (N, K, u, m) the polygon representations of these MA sets have maxi-
mum area and maximum perimeter.

Proof: Consider a k-gon X that is not a representation of an MA set. Thus there are
two triangles in the triangle partition of X that have centre angles α1 and α2 and the
difference α1 − α2 ≥ 2/n. Let us make the mild assumption that α1 < α2 < π. Letting
α1 + α2 = A, we have

A/2 ≥ α1 + 2π/n. (1)

Since the ordering of the triangles has no effect on the area or perimeter of the polygon
we can arrange it so that these two triangles are adjacent. We can write the sum of the
area of these two triangles as 1/2(sin(A− α1) + sin(α1)). If we take the first derivative of
the area with respect to α1, that is, 1/2(cos(α1)− cos(A− α1)), and set it to zero we see
that a value of α1 = A/2 is maximizing. Also the first derivative is positive for all values
of 0 ≤ α1 ≤ A/2.

Let α∗
1 = α1 + 2π/n and α∗

2 = α∗
2 − 2π/n. By Equation 1 we see that α∗

1 ≤ A/2 ≤ α∗
2.

Thus the new area sum is greater and X cannot have maximal area.
For perimeter we use a similar argument. The sum of the polygon edges are given by

the equation 2(sin((A−α1)/2)+sin(α1/2)), and its first derivative is cos(α1/2)−cos((A−
α1)/2). We see again that the sum is maximized when α1 = A/2, and this derivative is
positive for 0 ≥ α1 ≥ A/2. Again we let α∗

1 = α1+2π/n and α∗
2 = α∗

2−2π/n. By Equation
1 we see that α∗

1 ≤ A/2 ≤ α∗
2, and X cannot have maximal perimeter. 2
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Fig. 4. The five and six-note maximal area sets.

3. Complementary Maximal Area Sets.

Four scales that are distinguished by Levine [9, Chapter 3] in the “Chord/Scale” chapter in
his book on jazz harmony are the symmetric whole-tone scale, the major scale, the melodic
minor scale, and the diminished scale. We define a class of scales, the complementary
maximal area (CMA) scales, so that for the integer pairs (12, 6), (12, 7), and (12,8)
correspond identically to the four scales distinguished by Levine.

Definition: A set of K pitches taken from a chromatic universe of N pitches numbered
1 . . . N , is a CMA set if it satisfies the following properties.

– The set is an MA set.
– The N −K notes that are in the complementary set are also an MA set.

We showed that ME sets are MA sets. ME sets are also CMA sets because the com-
plement of an ME set is also an ME [1] set. Thus the CMA scales are a (strictly) larger
family than the ME scales.

There is a single (12,6) MA set, the symmetric whole-tone scale, shown in Figure 4
c). Clearly this scale is its own complement and thus is a CMA set . Of the three (12,7)
MA sets two have complements that are MA sets. These (12,5) CMA scales are shown in
Figure 4.

There are ten (12,8) MA sets, as described in [7, p. 31], we reproduce them in figure
Figure 5. There is only one of these MA sets whose complementary set is also an MA set.
In Figure 6 we show this set and its four note complement.

Thus we have been able to capture a mathematical property that characterizes Levine’s
four fundamental scales.

4. Discussion

We have shown that a particular integer partition of N into K parts leads to maximal
area polygons when these sets are represented with a clock diagram. These so called max-
imal area sets are computationally easy to find. However, a classification that seems more
interesting uses the complementary maximal area sets. We have demonstrated that the
complementary maximal area sets for (12,6) (12,7) and (12,8) contain the four fundamen-
tal scales as defined by Levine in his book on jazz improvisation. These fundamental four
scales by no means exhaust the large number of scales that are regularly used by jazz
musicians.

In a separate chapter Levine discusses pentatonic scales and their role in jazz impro-
visation. By far the most important of the five-note scales is the common anhemitonic
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Fig. 5. The 10 eight-note maximal area sets.

Fig. 6. The single complementary maximal area eight-note scale (the diminished scale) with its
complement (a diminished seventh chord).

pentatonic scale, which we already know to be a CMA scale. There is one more collection
of five notes that make a CMA set and they are shown in Figure 4 b). This scale can be
called a dominant pentatonic scale, as it contains a dominant chord, however, this scale
seems to be obscure, and is not mentioned at all in Levine’s book.

If we consider a rhythmic analog of the clock diagrams, that is, selected points represent
onsets of beats, then the five element CMA sets shown in Figure 4 represents the Flamenco
hand clapping pattern used in the Solea, Buleria, and Guajira, see [5].
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