
Moving Coins

Manuel Abellanas1, Sergey Bereg2, Ferran Hurtado3, Alfredo Garćıa Olaverri4,
David Rappaport5, and Javier Tejel4

1 Universidad Politécnica de Madrid, Spain mabellanas@fi.upm.es
2 University of Texas at Dallas, USA besp@utdallas.edu

3 Universitat Politècnica de Catalunya, Spain hurtado@ma2.upc.edu
4 Universidad de Zaragoza, Spain {olaverri/jtejel}@unizar.es

5 Queen’s University, Canada daver@cs.queensu.ca

Abstract. We consider combinatorial and computational issues that
are related to the problem of moving coins from one configuration to
another. Coins are defined as non-overlapping discs, and moves are de-
fined as collision free translations, all in the Euclidean plane. We obtain
combinatorial bounds on the number of moves that are necessary and/or
sufficient to move coins from one configuration to another. We also con-
sider several decision problems related to coin moving, and obtain some
results regarding their computational complexity.

1 Introduction

Consider a collection of discs or coins. The coins are found resting on a plane
surface so that no two overlap. We explore issues involved in moving the coins
from their initial positions to some desired final position.

To be more precise, we can move a coin centered at point a to a position
centered at point b if the trajectory of the coin along the line segment ab does
not collide with another coin. We say that such a translation in one fixed direction
is one move. We are given as input a set of coins C = {c1, c2 . . . cn} positioned
at initial source locations P = {p1, p2, . . . pn} and a set of final destinations
Q = {q1, q2, . . . qn}, where P and Q are sets of points. Associated with each coin
ci is ai ⊆ Q, a set of possible destinations. As output we need to produce an
itinerary, an ordered list of moves so that each coin moves to one of its possible
destinations The objective is to produce an efficient itinerary. The cost of an
itinerary is simply the number of moves used.

1.1 Motivation

This problem is motivated by measuring the difference between various configu-
rations. For example one can measure the difference between two strings of text
by their edit distance [10]. The edit distance is the minimum number of text ed-
itor operations needed to go from one string to another. A distance with a more
geometric flavor is the earth movers distance [13]. The earth movers distance
measures the minimum amount of work needed to go from one configuration to

another. The notion of work is flexible and conforms to the application. Thus
our problem of moving coins is in the same vein as the previous examples. We
are interested in the minimum number of move operations needed to go from
one configuration of coins to another.

Our problem can also be viewed as a simplified model of multi-robot path
planning. Consider a collection of robots, whose footprints are discs, maneuvering
in a common workspace. A robot’s tasks may take it from one destination to
another. Our notion of moving a coin to one of its possible destinations is a
simplified way to model this type of situation. A survey paper by Hwang and
Ahuja [9] discusses the general robot path planning problem and multi-robot
path planning in particular.

Erik and Martin Demaine with Helena Verrill [4] examine coin moving puz-
zles, that is, moving coins from one configuration to another subject to some
given constraints. They consider a model where unlabeled unit coins are located
on a grid, and may be picked up (as opposed to sliding on the plane) and placed
on an unoccupied grid position adjacent to at least two other coins. They present
theorems on the solvability of such puzzles, and algorithms to produce worst case
optimal solutions when they exist. They also include references to other similar
puzzles, including some sliding coin puzzles.

1.2 Variations

We consider several different versions of our coin moving problem. Some of our
results are combinatorial and relate to upper and lower bounds for the number
of moves that are necessary or sufficient to go from one configuration to another.
In these cases our upper bound arguments imply polynomial time algorithms,
however, we do not dwell on the actual complexity of the algorithms. We also
consider the computational complexity of some coin moving problems.

For our combinatorial results we assume that we are given an image of both
the initial and final configurations, so that we know the size of the coin at its
destination. For the case of congruent coins the set of possible destinations for
each coin is all destinations. For the case of coins with a variety of sizes, the set
of possible destinations for a coin of diameter d is the set of all destinations of
diameter d.

In some of our upper bound arguments we need to use intermediate moves
that are very far from both the initial position and the final destination. This
motivated us to examine cases where moves are confined to a smaller area. We
enumerate the different confining assumptions that are used.

Unbounded No bounds placed on moves.
Narrow All n coins are of unit diameter with the union of initial and target

positions lying in an a× b bounding box, where a ≥ n and b ≥ 1. We confine
moves to the bounding box.

Wide Coins are of various diameter with value D representing the sum of the
diameters. The union of the initial and target positions lie on an a × b
bounding box, where a ≥ D and b ≥ D. We confine moves to the bounding
box.

TooTight All n coins are of unit diameter with the union of the initial and
target positions lying in an a × b bounding box. The bounding box itself
may be too tight to allow sufficient movement, so we confine the moves in a
small box of dimension ⌈a⌉ × (b + ⌈n/a⌉).

Using the descriptors for confining moves the following table summarizes our
combinatorial results.

Diameter Confining Assumption Necessary Sufficient

Unit Unbounded ⌊8n/5⌋ 2n − 1
Various Unbounded 2n 2n
Unit Narrow ⌊8n/5⌋ 3n

Various Wide 2n 4n
Unit TooTight ⌊8n/5⌋ 6n

Table 1. This table lists combinatorial results that we have obtained.

We also explore some computational complexity issues related to coin moving.
We consider the problem of deciding whether we can move each coin directly
to its destination in a single move. For the special case where we have n coins
of various sizes, there is a unique destination for every coin and the source and
destination do not overlap we have have a O(n2) algorithm. Actually we develop
an output sensitive algorithm that may be more efficient in certain cases, the
details will be given in section 3. At the other end of the spectrum if we allow
the set of possible destinations to be at least two per coin then we show that
deciding whether there is an itinerary of cost n is NP-complete.

We also consider the coin placement problem, that is, we do not have an
image of the final configuration, just the coins centers and we need to determine
whether the set of destinations can accommodate all of the coins without overlap.
We show that deciding a non-overlapping coin placement is NP-complete.

2 Upper and Lower Bounds

In this section we determine bounds on the number of necessary and sufficient
moves needed to produce a valid itinerary.

Consider a set of n coins with sources P and destinations Q. We assume we
are given an image of both the initial and final configurations, so that we know
the size of the coin at its destination. By structuring the problem in this way we
avoid having to determine a feasible placement of the coins. As it is shown in
Section 4, simply deciding whether a set of coins of various sizes can be centered
at a set of destination points is NP-complete.

Throughout this section, (xi, yi) and (x′

i, y
′

i) will be the coordinates of sources
pi and destinations qi, respectively, and, without loss of generality, all the co-
ordinates will be positive. Notice that, if a valid itinerary is found for moving

the coins from P to the destinations Q, then reversing the process we have a
valid itinerary for moving the coins from Q to the destinations P . Using this rea-
soning, we move the destination coins, meaning that, in fact, we do the reverse
moves.

For two distinct sources pi and pj we say that pi precedes pj in a lexical
ordering whenever xi = xj , and yi < yj , or xi < xj . We lexically sort the
n sources. Without loss of generality, we assume a labeling that has the coins
c1, . . . , cn in lexical order. Then, the following lemma holds.

ε

σ

cn

cn-1

c4

c3

c2

c1

Fig. 1. Coin cn can be moved to infinity.

Lemma 1. There exists an ǫ > 0 such that for all σ, 0 ≤ σ ≤ ǫ, cn can be

moved to infinity in the positive y-coordinate half-plane following the line passing

through the center of cn and that forms an angle σ with the x-axis.

Proof: Let rn denote a ray tangent to the top of cn and pointing to the right.
Observe that rn does not intersect the interior of any other coin because cn is
lexicographically last. Now rotate the coin cn and the ray rn counterclockwise
about the center of cn until the rn meets another coin c. Let ǫ denote the angle
of rotation, see Figure 1. Observe that ǫ > 0, because cn is lexically the last coin.
Then, for all σ, 0 ≤ σ ≤ ǫ, cn can be moved to infinity on the ray emanating
from the center of cn that forms an angle σ with the x-axis. 2

Obviously, as the coordinate axes can be rotated, once a moving direction
is established, there always exists a coin that can be moved to infinity in this
direction. Notice that this property holds even if tangent coins are allowed.

Lemma 2. There is an itinerary of cost 2n for any configuration of coins.

Proof: Without loss of generality, we can assume that the largest diameter
of any coin is 1. Let Y = max{y1, . . . , yn, y′

1, . . . , y
′

n}.
By the previous lemma, cn can be moved to a point at infinity either horizon-

tally or with an angle less than ǫn; then cn−1 can be moved either horizontally
or with an angle less than ǫn−1, and so on. Let us choose ǫ = min{ǫ1, . . . , ǫn}.

The key observation is that, for a sufficiently large value M , we can always
move c1, . . . , cn, in such a way that the coins can be placed at the positions
(M, Y + 2), (M, Y + 4), . . . (M, Y + 2n) in any order, by first moving cn, then
cn−1 and so on.

In fact, we can choose any value M satisfying the following conditions:

• arctan Y +2n−yi

M−xi

< ǫ, for all i, (this assure that any coin can be moved to
(M, Y + 2j), for all j, using an angle less than ǫ.)

• yi − (Y + 2n) >
√

3(xi −M), for all i. (Supposing that we have the biggest
coin located at position (M, Y +2n) and a copy of it at position (M, Y +2n−2),
the equation y − (Y + 2n − 1) =

√
3(x − M) corresponds to the line tangent

to these two coins with positive slope. This condition assures that there are no
collisions when we move the coins to their aligned positions, because all the coins
are completely on the upper half-plane defined by this line.)

The previous process can also be applied to the coins starting at their destina-
tions, and suitable angles and M ′ exist to move the coins from their destinations
to positions (M ′, Y +2), (M ′, Y +4), . . . (M ′, Y +2n) in any order, by first moving
c′n, then c′n−1 and so on.

By choosing M ′′ = max{M, M ′}, we can move c1 to (M ′′, Y + 2), c2 at
(M ′′, Y + 4) and so on, by moving first cn, then cn−1, and so on. Then, we
can reverse the process to move the coins from the aligned positions to the
destinations.

The number of moves that we use is 2n.

2

Consider the case now where we have a set of congruent discs and every disc
can move to any of the destinations, that is, ai = Q, for all i. The following
result follows from our previous lemma.

Corollary 1. There is an itinerary of cost 2n− 1 for any configuration of con-

gruent coins.

Proof: We can use the almost same moving strategy as in the proof of lemma
Lemma 2. The only exception is that c1 can go directly to the destination c′1 in
a single move.

2

Note that we can implement the strategy of the previous lemma in O(n)
time, after the coins are lexically ordered. Moreover, 2n moves is a tight bound
as is shown in the following lemma.

Lemma 3. There are configurations of n coins of various diameter that require

2n moves for a valid itinerary.

c

c1

2

Fig. 2. A configuration of 2 coins that requires 4 moves.

Proof: Figure 2 shows two different coins c1 and c2 tangent to the same point
of an horizontal line, L. The destinations coins are also tangent in a common
point on the same horizontal line, but in the reverse order. If there exists an
itinerary using less than 4 moves, then at least one of the coins goes to its
destination in a single move. Without loss of generality suppose it is the coin
c1, since choosing c2 results in a similar symmetric argument. Observe that
before c1 can go directly to its destination, c2 must be moved out of the way. In
doing this c2 can only be placed in the half-plane below L. After moving c1 to its
destination, any trajectory for moving c2 from below L directly to its destination
is blocked. Thus c2 must be moved to a position above L before it can be moved
to its destination. Thus if c1 moves directly to it destination in a single move c2

needs at least three moves: one move to the lower half-plane, another move from
the lower half-plane to the upper half-plane, and a third move to its destination.
Hence we need at least four moves even if c1 moves directly to its destination in
a single move.

A configuration formed by n copies of the previous figure, each pair and its
destinations tangent on an arbitrary common line in opposite orders, needs 4n
moves.

2

We remark in passing that the previous result uses the fact that the source
and destination positions come in tangent pairs. If tangent coins are not allowed,
then the best example we have shows that n coins need only 2n− 1 moves for a
valid itinerary. It would be interesting to settle the question of whether one can
force 2n moves without using tangencies.

For congruent coins and ai = Q, for all i, we have the following result.

Lemma 4. At least ⌊ 8n
5 ⌋ moves are needed to move a set of n coins to their

destinations.

Proof. First we show that there exists a set of 5 coins so that at least 8 moves
are needed to move them to their destination. The sources P of the coins are
given as follows. Let the p1 = (0, 0) and p2 = (2 sinα, 2 cosα). We choose α small
enough so that the centers of 5 destination coins can be located on the x-axis
below the line passing through p2 with angle −α. The centers p1, p4, p5 are the
vertices of the regular triangle with side length 2 and p4p5 vertical, see Figure
3.

A coin is good if it makes just one move, otherwise the coin is bad.

p1

p2

p3

q1 q2 q3 q4
q5

α

p4

p5

Fig. 3. Configuration of 5 congruent coins that needs 8 moves for a valid itinerary.

We prove that there are at least 3 bad coins. Clearly, either c1 or c2 (or both)
is bad. Similarly, either c1 or c3 is bad. Also, either c4 or c5 is bad.

If {c1, c2, c3} contains at least 2 bad coins then the claim holds. Suppose that
{c1, c2, c3} contains only one bad coin (no bad coins is impossible). It should be
c1. At the time of the first move of c1 the coins c2 and c3 are at the initial
positions. Therefore, c2 moves by (x, y) such that x < 0. Then c4 and c5 must
have already been moved which means that they are bad. Thus the total number
of bad coins is 3.

We prove the claim when n is a multiple of 5 by repeating the construction for
5 coins as follows. We place n/5 groups of coins by shifting 5 coins horizontally
so that they do not overlap. The shifting vector can be (−4, 0) for example. The
destination positions are placed to the right of the source positions on the x-axis.
The angle α is chosen so that the centers of all destination coins are below the
line with angle −α as defined by every group of 5 coins. This can be verified
by simply checking the leftmost group of coins with the rightmost destination
positions. The argument above generalizes for this construction.

Now consider the case when n ≡ m (mod 5) where 1 ≤ m ≤ 4. Starting
with the construction for 5⌊n/5⌋ place ⌊m/2⌋ pairs of coins as the pair c1, c2

in Figure 3. Every such pair requires 3 moves. If m is odd then place one coin
anywhere in the plane. We place all additional destinations to the right of the
others on the x-axis. The total number of bad moves is 3⌊n/5⌋+ ⌊m/2⌋. Thus,
the total number of moves is n + 3⌊n/5⌋+ ⌊m/2⌋ = ⌊8n/5⌋.

2.1 Confined Workspaces

For the previous results we were able to move coins arbitrarily far to obtain our
upper bounds. If the coins are confined to a smaller workspace, we need to apply
different strategies. Let us assume that we have n coins so that the union of the
sources and destinations lie in an a× b bounding box. Without loss of generality
we assume that a ≥ b,. Let d1, d2, . . . , dn denote the diameters of the coins and
let D =

∑
di.

Now, let us assume that we have divided a box B of size D × b into n non-
overlapping boxes from left to right, in such a way that box b1 has size d1 × b,
the second box b2 has size d2 × b, and so on. Then the following lemma holds.

Lemma 5. We can translate each coin i to its corresponding box bi with a total

of n horizontal moves.

Proof: Let (x′′

i , yi) be the center of coin i if it is moved horizontally to lie
inside bi. We classify the coins into two classes. A coin i will be type − if xi ≤ x′′

i

(the source is on the left of the box bi), and type + otherwise.
If we examine the coins from left to right, we obtain a sequence of minuses

and pluses according to the types of the coins. If the sequence starts with a plus,
then we can move the first coin horizontally to the left until it reaches box b1.
Now recursively solve a problem with n − 1 coins and B′ = b2 ∪ · · · ∪ bn.

If the sequence starts with a minus, then we follow the sequence until a plus
appears. If this run of minuses has size i, we move coin i horizontally to the
right until it reaches box bi (there are no collisions because there is a plus in
position i + 1), then we move coin i− 1 to the right until it reaches bi−1, and so
on. When the first i coins are located in their corresponding boxes, we continue
the process with a problem with fewer coins and a smaller box. 2

c1

c2

c3

c4

c5

c6
c7

c8

c9

5
3

9

10

7
6

2

4

1

c10 8

a

b

b
6

b
5

b
4

b
3

b
2

b
1

b
7
b
8 b9

b
10

Fig. 4. Separating the coins horizontally with n moves.

Figure 4 shows an example of the lemma with a = D. The table given below
illustrates how pluses and minuses are used to obtain an ordered list of moves
for the example of Figure 4.

coin c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

type + − − − + − + − − −
order 1 4 3 2 5 6 7 10 9 8

In this example, first, c1 is moved to the left to put it inside b1, then c4, c3, c2

are moved to the right in this order to put them inside b4, b3, b2, respectively,
then c5 is moved to the left to put it inside b5, and so on.

If the coins are ordered then only O(n) time is used to implement the algo-
rithm from the previous lemma.

In the following, we will only describe the processes to obtain the number of
moves desired, and not the correct order in which the coins must be moved (in
most of the situations, this order is evident). In addition, we will use the terms
“source coin” and “destination coin” to mean that the coin is at the source and
that the coin is at the destination, respectively.

Corollary 2. Given n unit coins, with sources and destinations lying in the

confines of an a × b confining box, if a ≥ n, b ≥ 1 and ai = Q, then we can

always determine a valid itinerary of cost at most 3n.

Proof: We can apply the previous lemma to the source coins and to the desti-
nation coins. This leaves one source coin and one destination coin in each box bi.
The sequence of moves sources to their correct box, followed by a move within
each box of a source to its destination, and finally the reverse application of the
lemma of the destination coin inside its box to its actual destination location.2

Corollary 3. Given n coins of various diameters, with sources and destinations

lying in the confines of an a× b confining box, if a ≥ D, b ≥ D and ai = qi, then

we can always determine a valid itinerary of cost at most 4n.

Proof: We use 2n horizontal moves and 2n vertical moves. Suppose that the
coins c1, . . . , cn have been horizontally separated to positions (x̄1, y1), . . . , (x̄n, yn)
using Lemma 5, and in the same way the destination coins have been vertically
separated to the positions (x′

1, ȳ
′

1), . . . , (x
′

n, ȳ′

n). If the destination of the coin
ci is (x′

π(i), y
′

π(i)), then, first move each coin (x̄i, yi) vertically to (x̄i, ȳ
′

π(i)) and

then, move each coin (x̄i, ȳ
′

π(i)) horizontally to (x′

π(i), ȳ
′

π(i)).
2

If the size of the box is too small, the coins may be blocked. Therefore,
in order to move the coins, we have to allow moves in a bigger box. For this
situation, we have the following result.

Corollary 4. Given n unit coins, with sources and destinations lying in the

confines of an a×b confining rectangle, if we allow moves in an ⌈a⌉×(b+⌈n/a⌉)
confining box, then we can always determine a valid itinerary of cost 6n.

Proof: As the size of the confining box is ⌈a⌉ × (b + ⌈n/a⌉), we have added
at the top of the a × b rectangle ⌈n/a⌉ empty rows of size ⌈a⌉ × 1.

Let us assume that we have sorted the coins in non-increasing order according
to their y-coordinates. Then, we process the first ⌈a⌉ coins by moving them
vertically upwards, then horizontally separating them by applying Lemma 2.5,
and finally moving them vertically upwards until they reach the top row of the
box. So, doing 3⌈a⌉ moves, the first ⌈a⌉ coins are placed in the top row.

We process the second ⌈a⌉ coins putting them into the second row of the box,
and so on. At the end, we have located all the coins into the ⌈n/a⌉ empty rows.
We can ensure that there are no collisions when using this process by applying
an inductive argument.

As usual, the same process can be used to put the destination coins into the
⌈n/a⌉ empty rows. Hence, by reversing this second process, we can move the n
coins from the sources to the destinations using 6n moves.

2

3 Decision Problems

In this section we consider the problem of deciding whether there is an itinerary
of cost at most n for n coins.

In the first instance consider the case where each coin has a single possible
destination. Observe that unless each coin has a distinct destination there is no
valid itinerary. Thus without loss of generality, we can designate the destination
for coin i di, that is, ai = {di}. Furthermore, a valid itinerary exists only when
no two destinations overlap.

Our algorithm begins by constructing an outline of the trajectory of each
coin from its source location to its destination. This outline takes the shape of a
racetrack or hippodrome, thus we use hi to denote the area of the hippodrome for
the trajectory of coin i from si to di. Observe that the geometry of a hippodrome
is the union of a rectangle and two discs. Let σi and δi respectively denote the
area of hi that contains ci when it is in it’s source and destination position. See
Figure 5 for an illustrative example.

h

s

d

Fig. 5. The hippodromes corresponding to coin trajectories. The shaded discs represent
destinations. We have labeled one hippodrome to illustrate the areas h, σ, and δ.

Our strategy will be to construct a directed graph G. Each vertex in G
corresponds to a coin, and a directed edge (i, j) will be used to specify that coin
i must be moved before coin j. It remains to show how G is constructed.

For every ordered pair of coins ci, cj we assign directed edges as follows: (i, j)
if σi intersects hj because ci must move before cj , and (j, i) if δi intersects hj

because cj must move before ci.

Theorem 1. There is an itinerary of cost at most n if and only if G does not

contain a directed cycle.

Proof: Suppose there are no directed cycles in G. We can begin the itinerary
with all coins that correspond to vertices in G with no incoming edges. We can
now remove these vertices from G and find a new set of vertices with no incoming
edges. This process can be repeated until all of the coins have been moved.

On the other hand suppose that G does contain a directed cycle. Let vγ1
, vγ2

,
. . . , vγk

, vγ1
denote the shortest directed cycle in G. The resulting conundrum

is that vγ1
must before vγk

and vγk
must move before vγ1

, and that clearly is
impossible. 2

We can compute all of the intersections and construct G in O(n2) time. We
can use an output sensitive algorithm to compute the intersections in O(n log n+
k) time where k denotes the number of intersections [1, 2]. This value k is also
proportional to the number of edges in G. We can traverse G and determine
whether there are directed cycles also in O(k) time. Thus the complexity of our
algorithm is O(n logn+k). Note that this approach is similar to Buckley’s results
on coordinating the motion of multiple robots [3].

We now show that a similar problem is intractable. Our results are related
to the general multi robot path planning which is known to be intractable [7,
8]. In this version of our problem we put no restriction on the size of ai, it may
contain an arbitrary number of destinations. Thus we have:

One Move per Coin (OMC)
Instance: A set of coins, sources, destinations and possible destinations for each
coin.
Question: Can the coins be moved from their sources to destinations with an
itinerary that uses at most one move per coin?

Our reduction will be from the following problem which Plesńık [12] proved
to be NP-complete.

Hamilton Path in Directed Bipartite Graph (HPDBG)
Instance: A directed bipartite graph (V, E) where the vertices in V are labeled
1 . . . n = 2k. Vertices with odd labels and have out-degree 2 and in-degree 1,
except for vertex 1 which has out-degree 2 and in-degree 0. Vertices with even
labels have out-degree 1, and in-degree 2, except for vertex 2 which has out-
degree 0 and in-degree 2.
Question: Is there a directed Hamilton Path in G starting at vertex 1 and
ending at vertex 2.

Suppose we have an instance of HPDBG, then for every vertex i in G, except
for vertex 2, we use a coin ci. The coins are positioned in two rows, spaced out suf-
ficiently, in a way one would normally draw a bipartite graph. The possible desti-
nations for the coin ci corresponds to the outgoing neighbours of vertex i, as is il-
lustrated in Figure 6. More precisely, let G = (V, E) with V = {1, 2, . . . , n = 2k}.
Now consider a set of points S = {(δi, l1), (δi, l2) : i ∈ {1 . . . k} and δ, l1 and l2
are three suitably defined constants}. Now we have n − 1 coins with sources
at the points in S excepting the point (δ, l2). The destinations also come from
the set S except for the point (δ, l1). In this way we construct an instance of

6

5

4

1 3

2

7

8

Fig. 6. There are coins at every position except 2. Observe that we can move the coins
with an itinerary: 3 → 2, 4 → 3, 5 → 4, 6 → 5, 7 → 6, 8 → 7, and 1 → 8. This itinerary
traces a Hamilton path from 1 to 2 in reverse.

OMC from HPDBG in time proportional to the size of G. It is routine to verify
that a Hamilton Path in G corresponds to an itinerary using one move per coin.
Observe that the first move, of any itinerary that uses n − 1 moves, must move
one of two coins to the destination at point (δ, l2). This observation leads to an
inductive argument showing that any itinerary consisting of n − 1 moves in the
given instance of OMC corresponds to a Hamilton Path in the graph G.

The preceding discussion leads us to conclude with the following theorem:

Theorem 2. OMC is polynomial reducible from HPDBG, thus OMC is NP-

complete.

This result shows the remarkable difference between the coin moving problem
with one destination per coin compared to the case where a fixed fraction of the
coins have a choice between two destinations.

4 Placing Coins

Consider a set, S, of n coins of various diameters and a set, P , of n destinations
points in the plane. Is there a way to place the coins so each coin is centered at
a point of P and no two coins overlap? Let’s call this decision problem the Coin
Placement Problem (CPP).

We show that CPP is NP-complete by reducing it from a variant of 3SAT.
In this variant, named 1-in-3SAT, we insist that each clause has exactly one
variable set to true and two variables set to false. With this added constraint
we do not need to consider negations of variables [6]. Thus an instance of 1-in-
3SAT consists of a set V of n boolean variables, and a set C of clauses of the

disjunction of three literals, each referring to a variable in V . We then ask, is
there an assignment of truth values to the variables such that the conjunction
of the clauses is true, and no clause has more than one variable set to true?

Given an instance of 1-in-3SAT we construct an instance of CPP. We will use
some gadgets to make sure that there is a valid placement if and only if there
are assignments that satisfy the instance of 1-in-3SAT. There are two types of
gadgets. For each clause we have a clause gadget that ensures that each clause
has exactly one true literal. For each variable we have a consistency gadget to
ensure that the truth assignments over all literals for that variable are consistent.

At this point some readers may benefit by consulting the example shown in
Figure 9 to obtain an overview of the completed construction.

4.1 Construction details

For each literal we use four coins which we label T, F, T ′, andF ′. The basic strat-
egy is to use T and T ′ in either the clause gadget or the consistency gadget, and
F and F ′ in the other gadget. These pairs of coins can be arranged in one of two
ways, representing an assignment of true or false.

Et
Ef

Tz

Fz Fy

T'z

Ty

T'y

EtEf
F'z F'y

(a)

(b)

Fig. 7. We see two ways to arrange the coins in a consistency enforcing gadget. In (a)
the coins are arranged in a true sequence, that is they represent setting two literals z
and y of the same variable to true. In (b) the arrangement of coins represents setting
the same literals to false.

The consistency gadget uses two of its own coins Et and Ef . The placement
points of this gadget accommodate the coins in exactly two ways, one represent-
ing setting the variable v = true and the other v = false. See Figure 7.

Tx

Df

Cf

T'x

Ct

Fy

F'y

Dt

Tz

Dg

Cg

T'z

Fig. 8. A clause gadget. In this clause the literal y is set to true, and both x and z are
set to false. Note: The coins labeled F represent true and T represent false when they
are used in the clause gadget.

The clause gadget has three pairs of coins of its own Ct, Dt, Cf , Df , and
Cg and Dg. The first pair fits with coins that represent a true assignment and
the second two pairs fit with coins that represent false. See Figure 8.

The placement points of the consistency enforcing gadget are collinear, and
spaced using three distinct distances, d1, d2 and d3. The truth enforcing gadget
may also be laid out on a single line, however, in the interest of clarity, we use
a layout using three distinct lines in our example. Let r(Fi) (and similarly for
other coins) denote the radius of a coin that is used to represent variables vi.
We set the radii so that the following equations hold.

r(Fi) + r(F ′

i) = r(Ti) + r(T ′

i) = d1 (1)

We also have:

r(Et
i) + r(Ti) = r(Ef

i) + r(Fi) = d2 (2)

r(Et
i) + r(F ′

i) = r(Ef
i) + r(T ′

i) = d3 (3)

For each literal within a clause j we place coins spaced using three distances
as well. The distance d1 in equation (1) is used, as well as:

r(Ct
j) + r(Fi) = r(Cf

j) + r(Ti) = r(Cg
j) + r(Ti) = d4 (4)

r(Dt
j) + r(F ′

i) = r(Df
j) + r(T ′

i) = r(Dg
j) + r(T ′

i) = d5 (5)

The differences between true and false coins is a common value ǫ, that is:
ǫ = r(F) − r(T) = r(T ′) − r(F ′) = r(Et) − r(Ef) = r(Cf) − r(Ct) = r(Cg) −
r(Ct) = (Dt) − r(Df) = r(Dt) − r(Dg).

Given an instance of 1-in-3SAT we can construct an instance of CPP that
has a valid placement if the instance of 1-in-3SAT is satisfiable. To show that
every valid placement of an instance of CPP IC corresponds to a satisfiable
instance of 1 − in− 3SAT , we set the sizes of the coins so that the distances di

for i = 1 . . . 5 are unique for each variable and clause. Let N = max(|C|, |V |)+1.
We will represent the radii of the coins using positive integers in base N . For
the variable vi we have:

r(Ti) = 0000i0N

r(Fi) = 0000i1N

r(T ′

i) = 000i01N

r(F ′

i) = 000i00N

r(Et
i) = 00i001N

r(Ef
i) = 00i000N

And for the clause cj :

r(Ct
j) = 0j0000N

r(Cf
j) = 0j0001N

r(Cg
j) = 0j0001N

r(Dt
j) = j00001N

r(Df
j) = j00000N

r(Dg
j) = j00000N

Now to specify the points comprising the gadgets. We start with the con-
sistency gadget. Suppose there are t occurrences of the variable i in the given
instance of 1-in-3SAT. We need a total of 2t + 2 points. Since the points are
collinear we only use a single number to specify the points. Specifying point one
as the constant p(i, 1), the second point p(i, 2) = p(i, 1) + 00i0i1N. The next
2t− 1 are given by the expression p(i, k) = p(i, k− 1)+ 000ii1N. The final point
is at p2t+2 = p2t+1 + 00ii01N. For each clause gadget we have three groups of
four points, one for each variable in the clause. Let q(j, l, 1) now represent the
first point used for the lth variable vi in a clause cj . The subsequent three points
are given by: q(j, l, 2) = q(j, l, 1) + 0j00i1N, q(j, l, 3) = q(j, l, 2) + 000ii1N and
q(j, l, 4) = q(j, l, 3) + j00i01N.

Lemma 6. Given an instance of IS, 1-in-3SAT we can construct an instance IC

of CPP in polynomial time that has a valid placement whenever IS is satisfiable.

Proof: It is a routine matter to place the coins once satisfiable truth assign-
ments are given. 2

In Figure 9 we give an illustration of our construction given the 1-in-3SAT
instance (x, y, z), (x, y, w), and the truth assignment y = true and x = z = w =
false. Note that for practical reasons the coins are not drawn to scale.

Tx

Df

Cf

T'x

Ct

Fy

F'y

Dt

Tz

Dg

Cg

T'z

Tx

Df

Cf

T'x

Ct

Fy

F'y

Dt

Tw

Dg

Cg

T'w

x

y

z

w

Et

Ef

Ef

Et Ef Et

Et
Ef

Fig. 9. A placement of coins that corresponds to the the 1-in-3SAT instance
(x, y, z), (x, y,w), and the truth assignment y = true and x = z = w = false. Note
that this representation does not assign distinct sizes to the coins as specified by the
construction. Using sizes as specified would require a drawing that is too big to be
practical. We also have altered our notation in the figure to better suit the example.
The intended meaning should be clear.

To show that every valid placement of IC corresponds to a satisfiable truth
assignment of IS we make use of the distinct sizes of coins and spaces between
the coins.

We begin by showing that the coins C and D that we use in the clause
gadgets are forced to go there.

Lemma 7. In any valid placement of coins the coins Ct
j , C

f
j , Cg

j must be placed

at one of the points q(j, 1, 1), q(j, 2, 1) and q(j, 3, 1) and the coins Dt
j , D

f
j and

Dg
j must be placed at one of the points q(j, 1, 4), q(j, 2, 4) and q(j, 3, 4).

Proof: Let m denote the number of clauses. Due to their size, a radius of
at least m00000N, the only placement of the coins Dt

m, Df
m and Dg

m is at one of
the points q(m, 1, 4), q(m, 2, 4) and q(m, 3, 4). Otherwise these coins overlap two
or more placement points. Once these coins are placed the remaining available
locations forces the placement of Dt

m−1, D
f
m−1 and Dg

m−1 at one of the points
q(m − 1, 1, 4), q(m − 1, 2, 4) and q(m − 1, 3, 4). Continuing in the same way, we

must place the coins Dt
j , D

f
j and Dg

j at one of the points q(j, 1, 4), q(j, 2, 4) and

q(j, 3, 4). Similarly the coins Ct
j , C

f
j , Cg

j must be placed at one of the points
q(j, 1, 1), q(j, 2, 1) and q(j, 3, 1). 2

The consistency gadget coins Et and Ef are also forced into place by a similar
argument. Thus:

Lemma 8. In any valid placement of coins the coins Et
i and Ef

i must be placed

at the points p(i, 1) and p(i, 2t + 2) where the variable vi appears t times in the

instance of IS .

Proof: Again due to the sizes once the coins D and C are placed we force
the placement of the coins Et

n and Ef
n where n denotes the number of variables

in IS . The subsequent coins are forced in a similar manner. 2

We are left with the coins representing the variables themselves that is Ti,
Fi, T ′

i and F ′

i . We call a placement of the coins, Ti, Fi, T ′

i and F ′

i , tight if each
of these coins are incident to exactly two others. Observe that the placement we
obtain from a satisfiable truth assignment is tight. Once the coins C, D Et and
Ef are placed we see that all valid placements must be tight. This remark is
formalized by the next lemma.

Lemma 9. Every valid placement uses a tight placement of Ti, Fi, T ′

i and F ′

i ,

in either the true position or the false position. Thus every valid placement of

IC corresponds to a satisfiable assignment of IS.

Proof: The placement corresponding to a satisfiable truth assignment is
tight. Thus the linear measure of the coins and the spaces remaining are exactly
equal. We show that this implies that every placement must be tight.

Consider the consistency gadget for the variable vi, where vi appears t times.

First consider placing Et
i at p(i, 1) then the gap between the edge of Et

i

and p(i, 2) is of length 0000i0N which is exactly the radius r(Ti). This forces a

placement of the coins in a true sequence with Ef
i at p(i, 2t +2). Now we have t

copies of the coins Fi and F ′

i that need to be placed. Without loss of generality
assume that there is an occurrence of the variable vi as the first literal in clause
cj . A tight placement forces Ct

j at q(j, i, 1), Dt
j at q(j, i, 4) and the coins Fi and

F ′

i at q(j, i, 2) and q(j, i, 3) respectively.

On the other hand assume that Ef
i is placed at p(i, 1). This forces the coins

in a false sequence. Furthermore the t copies of Ti and T ′

i must be placed in their
appropriate places within their clause gadgets.

Therefore we conclude that if we have a valid placement of the coins IC then
we can assign truth values satisfying IS . 2

We conclude with the main theorem of this section.

Theorem 3. CPP is NP-complete.

Proof: Observe that it is possible to determine whether a placement of coins
is valid, in polynomial time, thus the problem CPP is in NP. By the arguments
in Lemma 6 and Lemma 9 we can conclude that the NP-complete problem 1-in-
3SAT is polynomial reducible from CPP. Therefore CPP is NP-complete. 2

Note: our construction can be laid out so that all coin centers lie on a common
line.

Alberto Márquez [11] has proposed an alternate proof to show that CPP is
NP-complete. The reduction is to planar 3-SAT and uses coins with only two
different sizes. The construction is closely related to that of Forman and Wagner
in their paper on map labeling [5].

5 Discussion

We have presented some combinatorial and algorithmic results on moving coins
in the plane. There are several issues that remain unresolved, and we conclude
by briefly summarizing them.

The number of moves required to satisfy an itinerary of n unit coins in an
unrestricted work space has a lower bound of ⌊ 8n

5 ⌋ and an upper bound of 2n−1.
It would be interesting to close this gap.

In terms of complexity we have shown that some decision problems related
to moving coins are hard. The complexity of determining the optimum number
of moves to satisfy the itinerary of a set of unit coins remains open.

Acknowledgments

Ferran Hurtado is partially supported by projects DURSI 2001SGR00224 and
MCYT BFM2003-0368. Alfredo Garćıa Olaverri and Javier Tejel are partially
supported by project DGA 228-61. David Rappaport is partially supported by
NSERC of Canada Discovery Grant 9204.

References

1. Ivan Balaban. An optimal algorithm for finding segment intersections. Proc. 11

Annu. ACM Sympos. Comput. Geom., pages 211–219, 1995.
2. J.-D. Boissonnat and J. Snoeyink. Efficient algorithms for line and curve segment

intersection using restricted predicates. Comput. Geom. Theory Appl., 16(1):35–52,
2000.

3. S. J. Buckley. Fast motion planning for multiple moving robots. Proc. of IEEE

Int. Conf. on Robot’s and Automation, pages 322–326, 1989.
4. E. Demaine, M. Demaine, and H. Verrill. Sliding coin puzzles. In R. J. Nowakowski,

editor, More Games of No Chance, pages 405–431. Cambridge University Press,
Collection of papers from the MSRI Combinatorial Game Theory Research Work-
shop, Berkeley, California, 2002.

5. Michael Formann and Frank Wagner. A packing problem with applications to
lettering of maps. In SCG ’91: Proceedings of the seventh annual symposium on

Computational geometry, pages 281–288, New York, NY, USA, 1991. ACM Press.
6. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman

and Company, 1979.
7. J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion planning

for multiple independent objects pspace hardness of the warehouseman’s problem.
Int. J. Robotics Res., 3(4):76–88, 1984.

8. J. Hopcroft and G. T. Wilfong. Reducing multiple object motion planning to graph
searching. SIAM J. Comput ., 15(3):768–785, Aug. 1986.

9. Y. Hwang and N. Ahuja. Gross motion planning- a survey. ACM Computing

Surveys, 24(3):219–291, September 1992.
10. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Phys. Dokl, 10:707–710, 1966.
11. Alberto Márquez. Lettering and covering. In Abstracts from JCDCG 2004, the

Japan Conference on Discrete and Computational Geometry, pages 116–119, 2004.
12. J. Plesńık. The NP-completeness of the Hamiltonian cycle problem in planar

digraphs with degree bound two. Information Processing Letters, 8(4):199–201,
April 1979.

13. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth movers distance as a metric
for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

