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Abstract

We show that the visibility graph of a set of non-intersecting translates of the same compact
convex object in R2 always contains a Hamiltonian path. Furthermore, we show that every other
edge in the Hamiltonian path can be used to obtain a perfect matching that is realized by a set
of non-intersecting lines of sight. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let S denote a set of non-intersecting compact convex objects in R2. We say that
two objects a and b from the set S see each other if there exists a straight line
segment l with one point in a and one point in b such that l lies in the complement
of S − {a; b}. We call such a line segment a line of sight. The visibility graph of S,
denoted by Vis(S), associates a vertex to each object of S, and an edge between two
vertices if and only if the associated objects see each other.

The combinatorial structure of the visibility graph for sets in R2 has been studied
extensively. Some results on the combinatorial structure of the visibility graph of line
segments can be found in [10,4,8,7]. For a survey of results pertaining to visibility
problems see the Handbook of Discrete and Computational Geometry [6].

In [7] the notion of a set of equal width objects is introduced. Let s denote a
compact object in R2. The f-width of s is the perpendicular distance between two
distinct parallel lines of support of s with direction f. Two compact objects in R2

have equal width if pairwise their f-widths are equal for every value f. Hosono and
Matsuda [7] conjecture that the visibility graph of any even cardinality set of disjoint
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Fig. 1. Consider S a set of 10 polygons, and let P denote the set of points contained in polygon 0. Then
north(S) = 0 and north(P) = p.

convex equal width objects has a perfect matching, realized by non-crossing lines of
sight.

In this paper we strengthen the notion of equal width to guarantee that the visibility
graph of a set of convex objects with these properties contain a Hamiltonian path, and
by extension a perfect matching when the cardinality of the set is even. Our class of
objects contains any set of translates of the same compact convex object in R2. Our
main results are found in Theorems 3.9 and 4.2.

2. Preliminaries

This section will provide some of the basic deHnitions we use and introduce some
notation.

Let l : ax + by = c denote an inHnite line, and let l+, and l−, denote half-planes
bounded by l and respectively satisfying ax+by¿c and ax+by¡c. Let � denote an
arbitrary compact subset of R2. We say that l supports � if l∩� �= ∅ and, l+∩�=�.
Note, the direction of a line of support l is implicit, as we always use l+(�) to denote
the closed half-plane that contains � and l−(�) to denote the open half-plane that is
disjoint from �. If � ∈ � is contained in l then we say that � is extreme.

For a compact set � we deHne NORTH(�) as a horizontal support line above �. We
use north(�) to denote the leftmost element, of � contained in NORTH(�). For example,
let � denote a convex polygon in R2, Then NORTH(�), and north(�) respectively
denote a horizontal support line above �, and the leftmost point on the boundary of
� contained in NORTH(�). We use the same notation when � is used to denote a
set of compact convex subsets of R2. Then north(�) denotes an element � ∈ � that
is incident to a horizontal support line above

⋃
�∈� �, which is called NORTH(�). See

Fig. 1.
By analogy we deHne support lines, and extreme elements of a set � with respect

to the other compass points, using SOUTH(�), south(�), EAST(�), east(�), WEST(�),
and west(�).
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Fig. 2. Objects s and t are of axis equal width. That is, d(north(t); centre(t)) = d(north(s); centre(s)),
d(south(t); centre(t)) = d(south(s); centre(s)), d(east(t); centre(t)) = d(east(s); centre(s)), and d(west(t);
centre(t)) = d(west(s); centre(s)). The objects s and t are also axis aligned.

Let s be used to denote a compact convex subset of R2. We say that s is axis
oriented if the line passing through north(s) and south(s) is vertical, and the line
passing through east(s) and west(s) is horizontal, that is, these lines are parallel to a
rectilinear bounding box of s.

We deHne the centre of s, denoted by centre(s), as the point of intersection of
the line through north(s) and south(s) and the line through east(s) and west(s). Let
d(p; q) denote the Euclidean distance between two points p and q. We say that two
axis oriented convex objects s and t are of axis equal width, if the distance from the
centre of s to any of its compass points is equal to the corresponding distance in t.
See Fig. 2.

Let S denote a set of at least two compact convex objects in R2. For s; t ∈ S we
say that s and t are axis aligned, if both NORTH(s)=NORTH(t) and SOUTH(s)=SOUTH(t),
or if both EAST(s)=EAST(t) and WEST(s)=WEST(t).

We deHne a set, S, of disjoint compact convex subsets of R2, a non-aligned axis-
oriented set, if every s ∈ S is axis-oriented, and every pair s; t ∈ S are of axis equal
width, and not axis aligned.

We show that if S is a non-aligned axis-oriented set then Vis(S) contains a
Hamiltonian path. Barring axis alignment is not essential, however, it will simplify
the discussion if we adhere to sets that are not axis aligned. In Section 4 we show that
our results can be applied to any set of translates of the same compact convex object
in R2.

We now set down some necessary graph theory terminology. A standard reference
is [3]. We use G= (V; E) to denote a graph with vertex set V and edge set E with no
loops or multiple edges. We denote edges by two element subsets of the vertex set. A
graph G = (V; E) is planar if the vertices V can be positioned on a plane, so that all
edges E can be realized by non-crossing straight line segments and no vertex is interior
to any edge. We call this a drawing of G. A drawing of a planar graph partitions a
plane into disjoint regions, or faces. There is exactly one face that is unbounded, and
this is called the outer face. A drawing of a planar graph is a triangulation if all of its
faces, except possibly the outer face, are triangles. (Note: the deHnition that we use for
triangulation is slightly non-standard, as we include in our deHnition graphs that are
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not two-connected, that is the outer face may not have a two-connected boundary.) A
triangulation with an outer face that is a triangle is called maximal planar. We say that
{u; v; w}⊆V is a 3-clique if {{u; v}; {v; w}; {u; w}}⊆E. A 3-clique in a triangulation
is called a a separating triangle if it contains vertices both in its interior and exterior.

In [12] Whitney has shown that a maximal planar graph with no separating triangles
is Hamiltonian. A graph G is an NST triangulation if it has a drawing that is a tri-
angulation, and it has no separating triangles. We use QNST triangulation to denote
an NST triangulation with an outer face that is a quadrangle. In [5] Dillencourt ex-
tends Whitney’s results in several ways. We use Dillencourt’s result that every QNST
triangulation is Hamiltonian and there is always a Hamiltonian cycle in it that passes
consecutively through three adjacent edges of its outer face.

In Section 3 we show that given a non-aligned axis-oriented set, S, we can always
Hnd a subgraph, M , of Vis(S) that is an NST triangulation. Furthermore, if M has an
outer face of more than four vertices, then we can augment M with four additional
vertices, to create a QNST triangulation. We then use the results in [5,12] to show that
the visibility graph of a non-aligned axis-oriented set admits a Hamiltonian path. We
also show that there is a perfect matching that uses non-crossing lines of sight. Let s
be a compact convex subset of the plane. We say that S is a set of convex translates
(of s) if every element of S is a translation of the model s. In Section 4 we show that
our results apply for any set of convex translates.

3. An NST subgraph of Vis(S)

We assume throughout that S denotes a non-aligned axis-oriented set. Consider a
graph M obtained from S. For each object in S we associate a corresponding vertex
in M . Our goal is to construct M , so that M is both a subgraph of Vis(S) and an NST
triangulation. We Hrst give an informal description of the graph M , and follow it with
an algorithm that precisely shows how M is constructed.

For expository purposes we partition the edges of M into three classes. We use s
when referring to the vertex associated to the object s ∈ S and assume that the meaning
of the symbol will be clear from the context. We use st to denote an edge between
the vertices s and t, in M .

An edge st in class I connects two vertices if there exists a horizontal line of sight
between objects s and t.

An edge st in class II has the property that SOUTH−(s)∩NORTH−(t) is not the
empty set and is contained in the complement of S. We call the area deHned by
SOUTH−(s)∩NORTH−(t) a clear corridor.

The remaining edges of M , those of class III, are added by an iterative process. We
say that s is maximal in the east direction, or eastmost, if there exists a horizontal line
l such that l ∩ s contains the rightmost point in a non-empty intersection of l and S.

Let r; s; and t denote three distinct eastmost objects of S so that s is above r and
r is above t, r is to the left of both s and t, and both of sr and rt are edges in M . In



K. Hosono et al. / Discrete Applied Mathematics 113 (2001) 195–210 199

Fig. 3. Edges of class I, II, and III are illustrated from left to right.

such a situation we add the class III edge st to M . We show in Lemma 3.2 that the
region bounded by EAST

−(r) ∩ SOUTH
−(s) ∩ NORTH

−(t) is non-empty and is contained
in the complement of S, so we call it a clear half-corridor. This iterative process
of adding edges will be made precise by the algorithm used in procedure Make-III
described below. Similarly we can deHne edges for westmost triples. See Fig. 3 for an
illustrative example.

We give a pseudo code algorithm that computes the graph M using standard termi-
nology. The algorithm uses the plane sweep technique common to many algorithms in
computational geometry [2,9]. The algorithm sweeps a horizontal line from the top to
the bottom of the plane. A priority queue, Q, using points from {north(s); south(s) | s ∈
S} sorted by decreasing y-coordinate determines the discrete events that signal some
action. (Note: Whenever north(t) and south(s) have the same y-coordinate we queue
north(t) before south(s).) A search structure L maintains in x-coordinate order all ob-
jects currently intersected by the sweep line. We initialize L with dummy leftmost and
rightmost entries, which we call � and !. The algorithm also makes use of a pair
of stacks called EastStack and WestStack that keep track of eastmost and westmost
objects used in the construction of class III edges. A procedure Make-III is used to
handle the creation of class III edges.

Make-M(Q; L)
1. loop
2. q← Dequeue(Q)
3. case q of
4. q= north(s):
5. Insert s into L

{Let the left and right neighbours of s in L be respectively de-
noted as s− and s+.}

6. if(s− = � then Make-III(WestStack,s) else Add class I edge ss− to M
7. if(s+ = ! then Make-III(EastStack,s) else Add class I edge ss+ to M
8. q= south(s):
9. Delete s from L.

10. if (s= south(S) return
{Let the former left and right neighbours of s in L be respectively
denoted as s− and s+.}
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11. if (s− = � and s+ = ! Add the class II edge su to M , where north(u) is the
next object in Q.

12. if s− = � and s+ �= ! Make-III(WestStack,s+)
13. if s− �= � and s+ = ! Make-III(EastStack,s−)
14. if s− �= � and s+ �= ! Add class I edge s−s+ to M

endloop

We now give the pseudo code for procedure Make-III used to create the class
III edges. We use standard stack operation Push and Pop. We augment the standard
stack operations with an operation Size(Stack) that returns the number of elements on
the stack. We use the notation Stack(top) to obtain the value of the top element of the
stack, without popping it from the stack. Similarly Stack(top−1) is used to access the
value of the next to top element of the stack. The procedure Make-III loops as long
as class III edges can be added to M .

Make-III (Stack,t)
1. loop
2. if (Size(Stack) ¡ 2 Push (Stack,t) return
3. r ← Stack(top) s← Stack(top− 1)
4. if (Stack = EastStack) then lr = EAST(r) else lr = WEST(r)
5. if l−r ∩ s �= ∅ and l−r ∩ t �= ∅) then
6. Add the edge st to M
7. Pop(Stack)
else

8. Push(Stack,t) return
end loop

We will analyse procedure Make-III assuming operations on the stack EastStack.
Clearly symmetric arguments apply for the WestStack. Let e1; e2; : : : ; em denote the
sequence of eastmost objects in S ordered from top to bottom. Observe that eiei+1, for
i = 1; : : : ; m− 1 is always a class I or class II edge in M .

Lemma 3.1. Upon entering procedure Make-III; if Size(EastStack)¿2 then {Stack
(top);Stack(top− 1)} is an edge in M .

Proof. Observe that if Make-III is called with t = ei then upon entering Make-III
the top of a non-empty EastStack contains ei−1. This follows from the fact that t
is pushed onto the stack in all cases prior to returning from Make-III. Therefore, if
no objects are popped from the stack our lemma holds. In the case that we do pop
elements from the stack, see line 7 of Make-III, we add the edge st. Thus when
we Hnally exit Make-III and push t onto the stack, we have added the edge st to
M , where s is the value Stack(top−1) the next time we enter procedure Make-III.
Since all stack operations on EastStack occur in Make-III we conclude that the lemma
holds.
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Fig. 4. The region EAST−(r) ∩ SOUTH+(r) ∩ NORTH+(r) ∩ SOUTH−(s) ∩ NORTH−(t).

Consider the situation in procedure Make-III where we add the edge st to M . We
call the region bounded by EAST−(r) ∩ SOUTH

−(s) ∩ NORTH
−(t) a clear half-corridor.

We prove in Lemma 3.2 that this region is non-empty and is in fact contained in the
complement of S.

Lemma 3.2. Consider r; s and t as above such that a class III edge is added in
Make-III using the EastStack stack. Then EAST

−(r) ∩ SOUTH
−(s) ∩ NORTH

−(t) is not
the empty set and is contained in the complement of S.

Proof. If s = ei−2, r = ei−1, and t = ei, i.e., is s; r and t are consecutive eastmost
objects, then the lemma holds because the regions bounded by EAST

−(r)∩NORTH
−(r)∩

SOUTH
−(s) and EAST

−(r) ∩ SOUTH
−(r) ∩ NORTH

−(t) are either empty or are in the
complement of S, and the region EAST

−(r) ∩ SOUTH
+(r) ∩ NORTH

+(r) ∩ SOUTH
−(s) ∩

NORTH
−(t) is a non-empty subset of the plane and is in the complement of S. See

Fig. 4. On the other hand, suppose we have s = ei−k2 , r = ei−k1 , where k2¿k1¿1.
Assume inductively that for all values of k such that 16k ¡k2 our hypothesis holds.
Therefore, whether the edges rs and rt are of class I, II, or III we are guaranteed
that the half-corridors EAST

−(r)∩NORTH
−(r)∩SOUTH

−(s) and EAST
−(r)∩SOUTH

−(r)∩
NORTH

−(t) are either empty or are in the complement of S. As above EAST
−(r) ∩

SOUTH
+(r)∩NORTH

+(r)∩SOUTH
−(s)∩NORTH

−(t) is non-empty and in the complement
of S. Therefore the lemma holds.

We now show that the edges we added to M are actually realized by lines of sight
between objects of S.

Lemma 3.3. M is a subgraph of Vis(S).

Proof. The edges added to M in Make-M are realized by lines of sight in the obvious
way. For class I edges, in lines 6 and 7 of Make-M an edge ss− or an edge ss+ is
realized by a horizontal line segment emanating from the point north(s), and in line
14 we use a horizontal line of sight between s− and s+ that is just below s. For those
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Fig. 5. The cases for realizing a class III visibility edge.

edges of class II of the form su, added in line 11 of Make-M, we use the line of sight
with endpoints south(s) and north(u).

For the edges added in the procedure Make-III a more subtle argument is needed.
To simplify the discussion let us assume that we are adding an edge st where r; s and
t are on the EastStack.
Case 1: south(s) sees north(t). These points can be used as endpoints of a line

of sight between s and t. Note: If the line of sight between south(s) and north(t) is
blocked, then it must be blocked by r.
Case 2: south(s) does not see north(t) and s and t are intersected by a common

vertical line. If s and t are intersected by a common vertical line, then we can always
Hnd a vertical intersecting line that misses r. Thus let h denote such a vertical inter-
secting line. We claim that a subset of h, with one endpoint p on the boundary of s
and one endpoint q on the boundary of t is a line of sight. If there is any occlusion
that blocks this line of sight, then by the clear half-corridor property, that occlusion
must occur either above SOUTH(s), or below NORTH(t). We consider the possibility
that an occlusion occurs above SOUTH(s) and show that this leads to a contradiction.
A similar symmetric argument can be made against the case for an occlusion below
NORTH(t).

Observe that the point p occurs on the boundary of s, clockwise between east(s) and
west(s), and if there is any occluding object then it must intersect the region bounded
by the boundary of s, SOUTH(s), EAST(s), and WEST(s), as illustrated in Fig. 5. Suppose
there is an object x ∈ S somewhere in this region. By the clear half corridor property
south(x) is above south(s). However, since the objects are axis-oriented we have that
east(x) and west(x), must both be above east(s) and west(s). So if x is in the region,
then x also intersects s. However, our initial assumption is that our objects are disjoint.
Therefore we have established the desired contradiction, and conclude that we have
realized a valid line of sight between s and t.
Case 3: south(s) does not see north(t) and s; and t are not intersected by a common

vertical line. If t is to the right of s then let h denote a line passing through the point
of intersection of SOUTH(s) and EAST(s) and the point of intersection of NORTH(t) and
WEST(t). A subset of h with endpoints on s and t is a line of sight between s and t.
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Fig. 6. A non-aligned axis-oriented set, with a drawing of its associated graph.

See Fig. 5. This claim is justiHed by an argument similar to the one given for case 2.
If s is to the right of t then let h denote a line passing through the point of intersection
of SOUTH(s) and WEST(s) and the point of intersection of NORTH(t) and EAST(t), and
we argue as above.

In conclusion we have shown that all edges in M can be realized by lines of sight,
so M is a subgraph of Vis(S).

Once the actual lines of sight have been established it is a routine matter to obtain
a planar drawing of M .

Lemma 3.4. M is a planar graph.

Proof. We prove that M is planar by giving a planar drawing of it. Each vertex of
M is realized by its centre. Given the explicit lines of sight used to construct M ,
it is a routine matter to see that using the centres of each object as the vertex in a
straight line drawing results in a planar graph. For an illustrative example see Fig. 6.
We sketch some of the details. A class II edge requires a clear corridor, so clearly no
class II edge can participate in a crossing. Suppose we have two class I edges that
cross, and we call them e and f, such that the horizontal line of sight corresponding
to e is above the horizontal line of sight corresponding to f. We label from right to
left the objects incident to e and f e1; e2 and f1; f2. This implies that the f line of
sight passes below at least one of the objects incident to e. Let us assume that the
line passes below e2, then the centres of the f1 and f2 are both below the centre of
the e1. So the centre to centre edges do not cross. Finally consider the possibility of
a class III edge participating in a crossing. However, our argument regarding the clear
half corridor property precludes any class III edges crossing.

At the conclusion of the algorithm Make-M the stacks EastStack and WestStack
are guaranteed to be non-empty. The objects north(S) and south(S) both appear on
both stacks. All those objects on the boundary of the outer face of the graph M also
remain on the stacks, and some (the ones that are cuts points) are on both stacks. Let
D denote the number of objects that are found on both stacks at the conclusion of
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algorithm Make-M. Thus let m= Size(WestStack) + Size(EastStack)−D. Consecutive
elements on EastStack, and WestStack represent edges on the outer face of M . In
Lemma 3.1 we showed that consecutive elements on EastStack, and WestStack are
connected by edges in M . Thus m represents the number of vertices on the outer
face of M . Let n denote the cardinality of S. Recall that Euler’s relation relates the
cardinality of the sets of vertices, V , edges, E, and faces, F , in a planar graph, by the
formula: |V | − |E|+ |F |= 2.

Lemma 3.5. M is a triangulation with an m sided outer face.

Proof. Every time we encounter north(s) for an object in s we obtain currency for
two potential edges, that is, we either add one of two edges and push one of two
objects onto a stack. See lines 6–7 of Make-M. Stacked objects will either appear in
our count as an edge for the case where the object eventually is removed from the
stack or as a vertex of the outer face if the object remains on the stack at the end
of the construction. This gives us a total of 2n − m − 2 edges that are added when
processing the north points.

For each point south(s) we obtain currency for one edge, that is, we either add the
edge su, line 11 of Make-M, push an object onto a stack, line 12–13 of Make-M, or
add the edge s−s+, line 14. This applies for points south(s), for all s ∈ S except for
south(south(S)). Therefore, we can add an additional n− 1 edges to our count.

The total number of edges in M is 2n+ (n− 1)− (m+ 2) = 3n− 3−m. We know
that M is planar with an external face with m vertices, and thus using Euler’s relation
and our edge count we conclude that all faces of M except the outer face is a triangle.
Therefore, M is a planar triangulation with an m sided outer face.

If the number of vertices on the outer face of M is three or four, and we show that
M is an NST triangulation then we can use the results in [5] directly. Otherwise we
augment the graph M with four additional vertices to obtain the desired combinatorial
structure. Therefore, we Hrst show that M is an NST triangulation.

Lemma 3.6. M is an NST triangulation.

Proof. Let {a; b; c} be a 3-clique in M . Without loss of generality we assume that a is
above b and b is above c. Let �(abc) denote the triangle formed by centre(a); centre(b),
and centre(c). If {a; b; c} is a separating triangle then there exists an object d such
that d �∈ {a; b; c} and centre(d) is inside �(abc), and {a; b; c} are not the vertices of
the outer face of M .

Our analysis depends of the class of the edge ac.
Case 1: The edge ac is of class I. Since a sees c by a class I edge this implies that

NORTH(c) is above SOUTH(a). Since b is between a and c in the vertical ordering we
do not have a clear corridor, so neither ab nor bc can be in class II and we similarly
cannot have a clear half corridor for class III edges. Therefore both ab and bc must
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be in class I. If a sees c by a class I edge and a is above b and b is above c, then
both a and c must be to the same side of b. But this implies that b cannot see both a
and c with class I edges if centre(d) is in the interior of �(abc). Therefore, {a; b; c}
is not a separating triangle when ac is a class I edge.
Case 2: The edge ac is of class II. Since a is above b and b is above c, then ac

cannot be a class II edge, because the region SOUTH
−(a) ∩ NORTH

−(c) intersects with
b and thus is not contained in the complement of S. Thus {a; b; c} is not a separating
triangle when ac is a class II edge.
Case 3: The edge ac is of class III. It simpliHes the discussion, without losing

generality, by assuming that ac is derived from the EastStack stack. Therefore, since
a is above b and b is above c, then b must be to the left of both a and c because
of the clear half-corridor property. We Hrst rule out the possibility that ab or bc are
class III edges that are derived from the WestStack. Suppose, to the contrary, that ab
is a class III edge derived from the WestStack. This implies the existence of an object
in S, call it o, such that o intersects with SOUTH

−(a) ∩ NORTH
−(b), and WEST

−(o)
has a non-empty intersection with both a and b. This implies that o intersects with
EAST

−(a)∩SOUTH
−(a)∩NORTH

−(b) because the set is axis oriented. On the other hand
since ac is a class III edge the clear half corridor implies that no point of o can lie in
EAST

−(a) ∩ SOUTH
−(a) ∩ NORTH

−(b), thus realizing the desired contradiction.
Similarly bc cannot be a class III edge derived from the WestStack.
Now assume that centre(d) is interior to �(abc). Then as in case 1. above we see

that b cannot simultaneously see both a and c with class I edges. The clear corridor
property precludes the possibility that b sees a and c simultaneously with class II
edges. The clear half corridor property precludes b seeing a and c simultaneously with
class III edges that are derived from the EastStack. In fact it is easy to see that no
combination of class I, class II, or class III edges can be used so that b simultaneously
sees a and c when centre(d) is inside �(abc). Therefore, we have obtained the desired
contradiction.

Through a detailed case analysis we have established that no triangle in M is a
separating triangle.

Recall that we deHned a QNST as a triangulation with no separating triangles, and
four vertices on the boundary of the unbounded face. We now show how M can
be augmented with four additional vertices to obtain a QNST. We can describe the
outer face of M by four paths. Beginning at east(S) and proceeding in a counter
clockwise direction we have, P1 = [east(S); : : : ; north(S)]; P2 = [north(S); : : : ;west(S)],
P3 = [west(S); : : : ; south(S)], P4 = [south(S); : : : ; east(S)]. Observe that these paths are
overlapping, and all contain at least one vertex. Let R denote a graph consisting of
M and four additional vertices labeled r1; : : : ; r4, and the edges {piri: pi ∈ Pi; i =
1; : : : ; 4}∪{riri+1; i=1; : : : ; 3}∪{r4r1}. In our example in Fig. 6 we have P1 =[5; 1; 0],
P2 = [0; 3], P3 = [3; 6; 8; 9], and P4 = [9; 5].

Given an object s ∈ S we say that s is <rst quadrant maximal, if the region
NORTH

−(s)∩EAST
−(s) is in the complement of S. We can similarly deHne maximality
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with respect to the other quadrants. An important property of objects on Pi, is that
they are maximal, with respect to quadrant i, as we prove in the following lemma.

Lemma 3.7. Let S be a non-aligned axis-oriented set; and let s ∈ S be an element
of Pi; then s is maximal with respect to quadrant i.

Proof. For concreteness and ease of exposition, we argue the case for the path P1.
When P1 has one or two elements, then the lemma holds, because both NORTH(S) and
EAST(S) are Hrst quadrant maximal. For paths with at least three elements we show
that the existence of an object a ∈ P1 such that a is not Hrst quadrant maximal leads
to a contradiction. Consider such an a. Then there exists an object, b in P1, that is
right and above a. This implies that when traversing P1 between a and b we encounter
a consecutive triple s above r above t such that both s and t are to the right of r.
However this implies that there is a class III edge derived from the EastStack between
s and t, a contradiction. Therefore all elements in P1 are Hrst quadrant maximal, and
similarly elements in Pi are maximal with respect to quadrant i.

We can now prove that our Hnal triangulation is a QNST triangulation.

Lemma 3.8. R is a QNST triangulation.

Proof. The outer face of R is clearly a quadrangle, and R is a triangulation. We have
already shown that M is an NST triangulation. If we can show that there are no chords
on any of the paths Pi, then this implies that there are no separating triangles in R.
Consider two non-consecutive objects on Pi; i = 1; : : : ; 4, and assume that there is an
edge, e, between them in R. For concreteness suppose i = 1 thus the edges in P1 are
all from class III derived by the EastStack. The edge e obviously cannot be from class
II, and by an argument similar to the one given in case 3 of Lemma 3.6 it cannot be
a class III edge. So suppose e is a class I edge between objects s and t, and r is an
object in between s and t in P1, such that s is above r and r is above t. However, if
s sees t by a class I edge the axis-oriented property implies that both s and t are to
the left of r, contradicting the fact that t is Hrst quadrant maximal. Thus R is an NST
triangulation.

We have so far limited our attention to an axis-oriented set that is not axis-aligned.
Our main motivation for doing this was to simplify the exposition. It turns out that
we can still apply our results, even if the axis-oriented set does exhibit pairs of object
that are axis aligned. We can rotate our coordinate system by a small angle, so that no
two objects are axis aligned, no new class I visibility edges are added, and the same
relative ordering with respect to the compass directions is retained for object pairs.
This maintains the visibility required when assigning class III edges. It also ensures
that the objects are correctly ordered, precluding chords on the outer boundary paths
P1 : : : P4.
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Fig. 7. Lines of sight that realize the triangulation may cross.

There is actually no need to explicitly compute the small angle of rotation, because
we can simulate its eNect. Recall that in algorithm Make-M we sweep a horizontal
sweeping line across the plane from the top to the bottom of our set of objects. The
non-alignment assumptions imply that no two objects have the same NORTH supporting
line. In the case where we do encounter an axis alignment we can simulate the eNect
of sweeping a line that is slightly tilted upwards on the right. Thus for two objects
supported from above by the same horizontal supporting line, the one to the left is
encountered Hrst by the tilted supporting line. Similarly, when determining the relative
ordering in a vertical direction, say EAST, we can assume that the vertical axis is slightly
tilted as well, so that for two objects with the same vertical right support lines the
lower one is encountered Hrst. In this way we treat the objects as if the coordinate
system does not cause axis alignment.

We can now state our Hrst main result.

Theorem 3.9. Given an axis-oriented set; S, we can always obtain a Hamiltonian
path using lines of sight. Furthermore; using the lines of sight we can obtain a perfect
matching of the objects with non-crossing lines of sight.

Proof. We construct the NST triangulation M as above. If the outer face of M is of
cardinality four or less then M is Hamiltonian. Otherwise, we augment M to obtain the
graph R that is QNST. Since there is always a Hamiltonian cycle in R that uses three
edges on the outer face of R consecutively, we also have a Hamiltonian path through
the graph M . Observe that the lines of sight in the path may cross as shown by the
small example given in Fig. 7. However, since we can obtain a planar drawing of M ,
realizing graph edges by joining object centres, we see that any two lines of sight that
do cross must emanate from the same object. Therefore, we can use alternate edges in
a Hamiltonian path to obtain a crossing free matching.

4. Convex translates

In this section we show that by applying a suitable aOne transformation to a set
of translates of the same compact convex object in R2 we can use our methods to
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Fig. 8. The triangle E;W; p has greater area than triangle E;W; N .

obtain Hamiltonian paths and matchings in the visibility graph of the objects. It will be
convenient to retain our orthogonal axes inPuenced terminology. Thus, in the sequel we
assume that we have an arbitrary underlying coordinate system, with two non-collinear
axes. One of them will be called horizontal and the other vertical.

The following result was communicated to us by W. Kuperberg, who attributes the
proof to “folklore”. An alternate proof of this result can be found in [11].

Lemma 4.1. Let x be a compact convex subset of the plane, that is neither a triangle
nor a line segment. There exists four extreme points of x, N; E; S;W not all on the
same line, and a coordinate system where the line through N; S is vertical, and the
line through E;W is horizontal, such that N and S are contained in horizontal lines
of support, and E and W are contained in vertical lines of support.

Proof. Consider a largest area 4-gon inscribed in x, and label its vertices N; E; S;W
in the obvious way. We call the line through N; S vertical and the line through E;W
horizontal. We show that the points N; E; S;W are respectively consistent with the
designations north(x), east(x), south(x), west(x). We argue that N is contained in a
horizontal support line. The consistency of the designations for the other extreme points
can be shown in a similar way.

Let us assume to the contrary that the horizontal line passing through N is not a
support line for x, thus there is a point on the boundary of x, call it p, that is in the
half-plane NORTH−(x). See Fig. 8. However, we can then construct a triangle E;W; p
of greater area than the triangle E;W; N , thus contradicting the initial assumption that
N; E; S;W are the corners of a largest area 4-gon inscribed in x.

A line segment is axis oriented, if it is parallel to one of the coordinate axes. A
triangle is axis oriented if one coordinate axis is parallel to its base and the other axis
is parallel to any line intersecting the base and passing through the apex of the triangle.
As a consequence of the previous remark, and the previous lemma we conclude that
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there exists an aOne transformation to convert any compact convex object in R2 into an
axis-oriented object. Therefore, there is also a transformation to obtain an axis-oriented
set from a set of convex translates. We conclude with the second main result of our
paper.

Theorem 4.2. Given a set of translates of a compact convex object in R2, we can
always obtain a Hamiltonian path using lines of sight. Furthermore, using the lines
of sight we can obtain a perfect matching of the objects with non-crossing lines of
sight.

5. Discussion

We have shown that the visibility graph of a set of translates of a compact convex
object always admits a Hamiltonian path, and a perfect matching can be found by using
non-crossing lines of sights. Our notion of visibility is described by in O’Rourke’s book
[9] as clear visibility. In [9] the line of sight may have grazing with an object. This
condition is strictly weaker than clear visibility, so our results apply even if grazing
contact is permitted.

Our proof is constructive, and does not explicitly use the visibility graph. Consider
a set S of n objects. The graph that we construct has complexity in O(n), whereas
the visibility graph of S may be a complete graph, that is it may have ( n2 ) edges.
Furthermore, we can obtain a Hamiltonian path and perfect matching in o(n2) time.

We briePy sketch an approach that results in an algorithm with complexity O(nlog n+
k) for a set of n, k-gons. We use standard computational geometry techniques, as
described in [9] or [2].

The Hrst step in our algorithm Hnds a coordinate system so that the objects are axis
oriented. Given a convex polygon with k vertices the largest area inscribed 4-gon can
be found in O(k) time by using the method of rotating calipers see [9]. BriePy, this
technique simulates rotating the legs of calipers tangent to the boundary of the convex
polygon. In our case we use two sets of calipers. Once an initial positioning is found
we can proceed by rotating both calipers in the same direction. Since a convex k-gon
has O(k) antipodal pairs [9] (pairs of points admitting parallel lines of support) and
we can proceed from one conHguration of calipers to the next in constant time, an
O(k) time algorithm Hnds the largest inscribed 4-gon. See Fig. 9.

Subsequently we can apply our sweeping line algorithm. It is a routine matter to
show that the running time of our algorithm Make-M is in O(nlog n). We can then
augment the graph M , to get the QNST triangulation R, in O(n) time.

Given a QNST triangulation, a Hamiltonian path can be found in linear time as
described by Dillencourt [5] by using the algorithm of Asano et al. [1]. Obtaining a
perfect matching from the Hamiltonian path is a trivial matter. Thus we can complete
the whole process in O(nlog n+ k) time.
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Fig. 9. Two rotating calipers used to Hnd the largest area 4-gon. Observe that the direction of the line
through ac determines the pair bd.
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