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Abstract. Let s denote a compact convex object in IR2. The f-width

of s is the perpendicular distance between two distinct parallel lines of
support of s with direction f . A set of disjoint convex compact objects
in IR2 is of equal f -width if there exists a direction f such that every
pair of objects have equal f -width. A visibility matching, for a set of
equal f -width objects is a matching using non-crossing lines of site in
the visibility graph of the set. In this note we establish tight bounds
on the size of a maximal visibility matching for a set of f -equal width
objects by showing that
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1 Introduction

Let S denote a set of non-intersecting compact convex objects in IR2. We say that
two objects a and b from the set S see each other if there exists a straight line
segment l with one point in a and one point in b such that l lies in the complement
of S - {a, b}. We call such a line segment a line of sight. The visibility graph of S,
denoted by Vis(S), associates a vertex to each object of S, and an edge between
two vertices if and only if the associated objects see each other.

The combinatorial structure of the visibility graph for sets in IR2 has been
studied extensively. Some results on the combinatorial structure of the visibility
graph of line segments can be found in [1, 2, 4, 6, 8].

In [4] the notion of set of f -equal width objects is introduced. Let s denote a
compact object in IR2. The f -width of s is the perpendicular distance between
two distinct parallel lines of support of s with direction f . A set of compact
objects in IR2 is of f -equal width if there exists a direction f such that every pair
of objects have f -equal width. A visibility matching, for a set of f -equal width
objects is a matching using non-crossing lines of sight in the visibility graph of
the set. Hosono [3] has shown that size of a maximal visibility matching of 2n
f -equal width objects h(n) satisfies the inequalities

⌊

2n
3

⌋

≤ h(n) ≤
⌊

4n
5

⌋

. In this
note we establish tight bounds on the size of a maximal visibility matching for
a set of f -equal width objects by showing that

⌊

2n
3

⌋

≤ h(n) ≤ 2n
3

.
Some related results regarding the visibility graph of disjoint convex objects

appear in a paper by Hosono, Meijer, and Rappaport [5] where it is shown that a
set of translates of disjoint convex bodies admit a Hamilton path. In [7] it shown
that the visibility graph of a set of disjoint congruent discs is Hamiltonian.
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Fig. 1. This example leads to a maximal matching of at most 2n

3
.

2 Lower Bound

Throughout we assume that S is a set of f -equal width objects and f is hori-
zontal.

Let Γ denote an arbitrary compact subset of IR2. We say that a line l supports

Γ if l ∩ Γ 6= ∅, and a closed halfplane bounded by l contains Γ . If a point γ ∈ Γ
is contained in l then we say that γ is extreme.

For an element s ∈ S, let North(s) be used to denote a horizontal line of
support passing through an extreme point in s with maximum y coordinate,
and let South(s) be used to denote a horizontal line of support passing through
an extreme point in s with minimum y coordinate. Let s, t ∈ S, then s < t
if North(s) is above North(t), or when s and t are supported by the same
horizontal line, then s is to the left of t. We use <min (S) to denote the least
element of S using the < ordering.

Consider a set S of f -equal width objects. We can partition the set S based
on the sweep of a horizontal line . Let S0 denote the subset of S intersected
South(<min (S)). Let Σi = S − S0 ∪ . . . ∪ Si−1. We give a recursive definition
for Si the subset of S intersected by South(<min (Σi)).

Observe that if the cardinality of the smallest Si is 2 or more then we obtain
our lower bound by simply matching objects within the same subset of our
partition. It remains to settle the issue when there are subsets of cardinality 1.

Let Sj−1, j ≤ n− 1 be a subset of cardinality 1, whose only element is called
s. If Sj is of cardinality 1 then there is a line of sight between the element in Sj

and s and they can be matched. Furthermore, if the cardinality of Sj is 2 or 4 or
more then the matched objects in Sj overcome the unmatched s and the bound
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is achieved. Thus consider the case where Sj is of cardinality 3, and let a left
to right labelling of the objects of Sj be a, b, c. If s sees a or c we match all of
the objects in the two sets. For example s sees a and since there is a horizontal
line intersecting a, b, c and no other element of Σj then b must see c. Suppose on
the other hand that s does not see either a or c. There is a horizontal line that
intersects s and no other elements of Σj−1 so s must see at least one object in
Sj namely b. However, this implies that b is higher than both a or c (otherwise s
could see a or c) so there is a horizontal line of sight between a and c. Therefore
we match all of the objects in the union of Sj−1 and Sj . Finally we have the
case where Sn−1 is of cardinality 1. In this event the best lower bound we can
guarantee is 2n/3 − 1.

3 Upper Bound

We give a construction that achieves the stated upper bound. Consider 3N f -
equal width objects, as shown in Figure 1. The objects are a collection of 2N
vertical unit length line segments called bars and N gems. Each gem is built
upon a skeleton made up of a unit length vertical line segment and a horizontal
line segment. See Figure 2.

Let n = N − 1 We can number the gems g0, . . . , gn from top to bottom. The
horizontal segment of gi is located a distance of i/n from the top of the vertical
segment. Let c be a positive constant. Each horizontal segment of the gems
skeleton is of length 2cn and is bisected by the vertical. The gems are placed one
below the other, such that gi is slightly to the right of gi−1, and pushed up so
that the gems are almost touching. That is there exists small positive values ε
and ε0, ε1, . . . , εn so that the top of gi is positioned at coordinate (iε,−i+εi). We
put a bar above the top gem and a bar below the bottom gem, and respectively
call them top and bot. We can now fit the remaining 2n bars between the gems
on the left and on the right. We refer to these bars as l1 . . . ln and r1 . . . rn. There
exists a positive value δ such that li can be placed directly above the left end
of gi so that the vertical gap between the segment and the boundaries of gi−1

and gi is at least δ. On the right we place ri directly below the right extreme of
gi−1 again maintaining a gap of at least δ between the bar and its neighbouring
gems. We prove that this construction is possible without overlapping any of the
objects.

Fig. 2. The anatomy of a gem with its skeleton in bold lines.
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Lemma 1. The vertical distance between the left extreme of gi and the boundary

of gi−1 is at least 1 + 2δ

Proof: Consider the distance between the two consecutive horizontal seg-
ments, say between gi−1 and gi. This distance is at least 1 + 1/n − εi. Using
similar triangles observe that the vertical distance of the boundary of gi−1 from
the horizontal line segment is at most

ε(1 − i
n
)

cn
≤

ε

cn
.

Also observe that
εi <

ε

cn
, i = 0, . . . n.

Therefore the vertical distance between the boundary of gi−1 and the left extreme
of gi is at least 1 + 1

n
− 2ε

cn
. If we set c to 4ε we have the desired result, then δ

becomes 1/4n. 2

We claim that the visibility graph of such a set of objects is isomorphic to
a graph G with vertex set {g0, g1, . . . , gn, l1, l2, . . . , ln, r1, r2, . . . , rn, top, bot, },
and edges {(li, gi), (li, gi−1), (ri, gi), (ri, gi−1), (gi, gi−1), (top, g0), (bot, gn)}, for
i = 1 . . . n. See Figure 3.

Fig. 3. The visibility graph for the objects.

Theorem 1. Vis(S) is isomorphic to G.

Proof: The inclusion of the prescribed edges is not in question and can
easily be verified. We show that no other edges exist in the visibility graph. It is
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clear that top only sees g0 and bot only sees gn. Observe that the right and left
extremes of the gems are on a straight line (they could also be put on the arc of
a parabola, to avoid using degeneracies in our argument) it is clear the gi sees
gi−1 and gi+1 and no other gems. Similarly the bars ri see no other rj and no lj ,
for i 6= j. Furthermore we claim that li cannot see ri. The gap between gi and
gi+1 can be made as small as one wishes. Thus the only lines of sight that leak
through the space between gi and gi+1 are arbitrarily close to the boundaries of
the respective gems. To be specific, the distance between gems effects the angle
between the sight leak and the boundary of gi. Thus we can make this angle as
small as we like. On the other hand we also have control over the size of δ which
is guaranteed to be some positive value. See Figure 4.

Fig. 4. Detail of a pair of gems and the amount of sight leak between them.

Since the bars are of distance at least δ from the gems there is no line of sight
between any ri and li. Thus we have shown that Vis(S) is isomorphic to G. 2

It is now a routine matter to verify that a maximal matching in the derived
visibility graph saturates 2N of the 3N objects.
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