An Algorithm for Computing Simple k-Factors

Henk Meijer Yurai Nunez-Rodriguez David Rappaport *
Roosevelt Academy Queen’s University Queen’s University
Middelburg, The Netherlands Kingston, ON Canada Kingston, ON Canada
h.meijer@Qroac.nl yurai@cs.queensu.ca daver@cs.queensu.ca
Abstract

A k-factor of graph G is defined as a k-regular spanning subgraph of G. For instance, a 2-factor of G
is a set of cycles that span (. 2-factors have multiple applications in Graph Theory, Computer Graphics,
and Computational Geometry [5, 4, 6, 11]. We define a simple 2-factor as a 2-factor without degenerate
cycles. In general, simple k-factors are defined as k-regular spanning subgraphs where no edge is used
more than once. We propose a new algorithm for computing simple k-factors for all values of k > 2.

1 Introduction

In his book “Algorithmic Graph Theory”, Gibbons [5] defines a k-factor of a graph G = (V, E) as a k-regular
spanning subgraph of G. According to his definition, a 1-factor is a perfect matching and a 2-factor is a
set of disjoint cycles that span G. He also proposes an algorithm to find a 2-factor based on an algorithm
that finds a perfect matching of a bipartite graph. The algorithm produces a set of cycles that span the
original graph; however, cycles may be degenerate, that is, cycles may include the same edge twice. For
example, consider V' = {v1,va,v3,v4}, E = {(v1,v2), (v2,v3), (v3,v4), (v4,v1)}, a 2-factor of G is defined by
F = {c1,c2}, where ¢; = v1,v2,v1 and ¢ca = v3, v4,v3 (see Figure 1). In this example one edge is repeated
twice in each cycle. This contradicts the original definition since a subgraph of a simple graph cannot be a
multigraph. For the case of k > 2, one can also refer to a k-factor, as degenerate if it uses one edge multiple

times.
Vi Vi vy vy
Vi ve v C\DVQ

Figure 1: Left: Input graph. Middle: Auxiliary bipartite graph where the perfect matching is computed.
Right: Resulting 2-factor. Degenerate cycles are marked with double lines.

Definition 1 Consider G = (V, E). A simple k-factor of G is a k-factor that is not degenerate.

Notice that, according to the previous definition, both G and a k-factor of G, F, may include multiple
edges (connecting the same pair of vertices) as long as F' is a subgraph of G. Thus, no edge can be included
more than once in F'.

Simple k-factors, as opposed to general k-factors, do not only provide a more suitable definition in some
cases; they are also more suitable for applications. In Computer Graphics, 2-factors are used in algorithms
for fast rendering of 3D scenes. A 2-factor of the dual graph of a triangulated scene defines a linear order
of the triangles involved. This allows for efficient stripification and compression of large sets of triangles as
required for fast rendering [6]. Similarly, 2-factors can be used for stripification of large sets of quadrilaterals
and tetrahedra [4]. In all these cases, it is desirable to obtain a small number of long cycles and, preferably, a

*Supported by an NSERC of Canada Discovery Grant

Hamiltonian cycle. In this regard, degenerate cycles exhibit the worst case thus demonstrating the preference
for simple 2-factors.

The idea of computing 2-factors for obtaining subgraphs as close as possible to Hamiltonian cycles has
also been used on solid grid graphs [11]. Umans and Lenhart present an algorithm that by merging cycles
of a 2-factor produces a Hamiltonian cycle, provided that the graph is Hamiltonian. Some of the elements
used for their proofs are better defined if only simple cycles are considered. In fact, Umans [12] devised two
different algorithms for computing simple 2-factors. These algorithms will be reviewed in Section 3.

In the next section we give an overview of the 1-factor problem (i.e. perfect matching problem) as it is
fundamental for most 2-factor algorithms. In section 3 we review previous methods for computing 2-factors
and simple 2-factors. Our approach to compute simple 2-factors is presented in Section 4. We also present a
more general method to compute simple k-factors. At the end of Section 4 we provide a comparative analysis
of our algorithm with respect to previous approaches for the simple 2-factor problem.

2 Preliminaries

The 2-factor algorithm presented by Gibbons [5] and other algorithms that produce simple 2-factors have
one thing in common: they rely on maximum matching algorithms.

Consider the graph G = (V, E), |[V| = n, |E| = m. Maximum matchings can be computed in general
graphs using the O(n'/?m) algorithm of Micali and Vazirani [7, 8] which is the most efficient algorithm
known for this purpose. Certain special types of graphs allow for more efficient algorithms. Biedl et al. [2]
presented an algorithm for perfect matching in 3-regular bridgeless graphs that runs in O(n(logn)*) and
O(n) if the graph is also planar. The former can be improved to O(n log® nlog log n) using Thorup’s data
structure [10]. The existence of a perfect matching in this case is guaranteed by Petersen’s Theorem (see

[2])-

3 Previous work

To our knowledge, there are no published efficient algorithms for finding simple k-factors in general graphs.
In their surveys, Akiyama and Kano [1], and more recently, Plummer [9], include multiple results describing
classes of graphs for which k-factors exist. In some cases an algorithm that computes such a k-factor is also
given. One such algorithm is due to Petersen. Petersen’s result establishes the existence of simple 2k-factors
in 2m-regular graphs, m > k, and his proof leads to the construction of a simple 2k-factor.

Gopi and Eppstein [6] propose an algorithm to compute simple 2-factors of 3-regular graphs. Their
algorithm computes a perfect matching of the input graph using the algorithm of Biedl et al., as mentioned
above. The edges that are not in the computed matching define a simple 2-factor.

Diaz-Gutierrez and Gopi [4] present two different methods to compute simple 2-factors of graphs of
maximum degree 4. The two pass graph matching method consists of computing a perfect matching on the
input graph, removing the edges in the matching from the input graph, and computing a new matching on
the remaining subgraph. The simple 2-factor is defined by the edges in the union of both perfect matchings.
The authors acknowledge that their algorithm does not work on graphs with an odd number of vertices even
when these are 4-regular. In fact, there are graphs with an even number of vertices where this algorithm
also fails (see Figure 2). This suggests that algorithms for computing 2-factors need to compute all edges at
once, as opposed to using multiple phases.

m o0 0—o O—0—0
Figure 2: Example graph with an even number of vertices where the two pass matching method fails. Left:

Input graph. Middle: Perfect matching obtained after the first pass. Right: Maximum matching (thick
lines) obtained after removing the edges in the first pass matching from the input graph.

The second method by Diaz-Gutierrez and Gopi is called the template substitution algorithm. In this
method, vertices of degree 4 are replaced by templates, as shown in Figure 3, to obtain an inflated graph. A

perfect matching of the inflated graph can be translated into a simple 2-factor of the input graph given that
exactly two outside vertices of a template connect to vertices of other templates. The authors claim that
their templates can also replace vertices of degree less than 4; however, no details are provided.

I:“>

Figure 3: Template substitution as in the algorithm by Diaz-Gutierrez and Gopi [4].

As mentioned earlier, Umans [12] presented the first two known algorithms for computing simple 2-factors
of a general graph. The first algorithm is based on linear programming and, although simple to describe (as
a set of linear equations), it is affected by the underlying complexity of linear programming (see Chvétal’s
book [3] for more details on the complexity of linear programming). The second approach consists of a
set of transformations that produce a graph similar to the one obtained through the template substitution
algorithm (see Figure 4 for an example). Thus, a 2-factor of the original graph is found via a perfect matching
of the transformed graph.

Figure 4: Transformation of a degree 4 vertex of the input graph according to Umans’ algorithm [12].

4 An algorithm for general simple k-factors

In this section we present a new algorithm to compute simple 2-factors on general graphs. Our technique
also relies on matching algorithms. We use a set of gadgets that resemble the templates by Diaz-Gutierrez
and Gopi and the transformations by Umans, but generalize to vertices of any degree and to k-factors for
any possible k value.

The set of gadgets is defined as {I'22,T'2.3,...,'33,'34,...,044,T45,...} as shown in Figure 5. These
gadgets consist of outer vertices, inner vertices, core vertices, outer edges, inner edges, and core edges. A
gadget I'y, 4, 2 < k < d, has d outer vertices, d inner vertices, and k core vertices. Core edges connect core
vertices to inner vertices, inner edges connect inner vertices to outer vertices, and outer edges connect outer
vertices of different gadget instances. Each inner vertex is adjacent to exactly one outer vertex, while each
core vertex is adjacent to all inner vertices. Vertices within the same class are not adjacent to one another.
In our algorithm (see Algorithm 1 below), a vertex v of degree d of the input graph G is replaced by a
copy of the I'y 4 gadget, v'. The d outer edges of v' are connected to other outer vertices of the gadgets
corresponding to the d neighbours of v. As a result, a new graph G’ is obtained. We adopt the terminology
of Diaz-Gutierrez and Gopi and call G’ the inflated graph of G. Obviously, a simple k-factor cannot be found
in graphs with minimum degree less than k. Thus, we assume that all vertices of G have degree k or more.

Algorithm 1 Computation of simple k-factors

Input: A general graph G

Output: A simple k-factor I, if one exists, or NULL otherwise
1. If G has a vertex of degree less than k, stop and return NULL
2. Build the inflated graph G’ from G by the process described above
3. Compute a maximum matching M of G’

4. If M is not a perfect matching, stop and return NULL

dinner vertices

k inner and outer vertices
e® e

o\

k core vertices

Iy k

k core vertices

Txa

Figure 5: Gadgets used in Algorithm 1 to compute a simple k-factor. Instances of gadget I'y 4 replace degree
d nodes of the input graph. Outer vertices are represented by larger circles, inner vertices by smaller circles,
and core vertices by shaded circles.

5. Initially define F' as a graph that contains all the vertices of G and no edges
6. Add all the edges of G that correspond to the outer edges of M to F
7. return F

We provide the following lemma in order to prove that our algorithm correctly computes a simple k-factor
of the input graph.

Lemma 1 Let G be a graph with minimum degree at least k. G has a simple k-factor if and only if the
corresponding inflated graph G' has a perfect matching.

Proof. = Let F be a simple k-factor of G. Also let v be a vertex of G of degree d and let v C G’ be
the copy of T'y 4 that replaces v. Notice that the degree of v in F is k. A perfect matching of G’ can be
constructed such that the k outer edges of v/ that correspond to the k matched edges incident to v in F
are part of the matching. This leaves d — k outer vertices and d inner vertices of G’ unmatched. The d — k
unmatched outer vertices are then matched to their corresponding inner vertices. Finally, the £ unmatched
inner vertices are matched to the k core vertices.

<= We prove that in a perfect matching M of G’ each instance of a gadget I'y 4, 2 < k < d, has k
outer edges in the matching and, therefore, the corresponding edges in G define a simple k-factor. Recall
that the gadgets I'y, q, contain k core vertices. The core vertices must be matched in M to k inner vertices.
Therefore, the remaining d — k inner vertices must be matched to d — k outer vertices, leaving exactly k
outer vertices unmatched within v’. These are then matched to other k vertices of other gadget instances
through k distinct outer edges. O

The correctness of Algorithm 1 follows from Lemma 1. We state this explicitly in the following theorem.

Theorem 2 Let G be a general graph Algorithm 1 correctly computes a simple k-factor whenever the input
graph has one.

4.1 Analysis of the algorithm

The overall performance of our algorithm is based on the performance of the maximum matching algorithm
of choice. In general, we use the algorithm by Micali and Vazirani [7, 8]. Let G = (V, E) be the input graph,
with |V] =n, and G’ = (V’, E’) be the inflated graph obtained from G. Notice that the computation of the
maximum matching is the most expensive step of the algorithm. The remaining steps take at most linear
time in the number of vertices or edges of the inflated graph. Thus the overall performance of our algorithm
is O(|V'|'/2|E'|). In the following we analyze how |V’| and |E’| relate to n in order to express the complexity
of the algorithm as a function of the input size.

Since the k-factor problem is easy to solve on complete graphs, we base our analysis on near-complete
graphs. We define a near-complete graphs to be a graph that is not complete but still has O(n?) edges and
the degree of every vertex is O(n). According to our algorithm, after substituting by I' gadgets, |V’| and
|E'| are O(n?) and O(n2k) respectively. This leads to an overall O(nk) time complexity.

For graphs with vertex degree bounded by a constant D, the set of I' gadgets leads to an algorithm that
is as efficient as Micali and Vazirani’s for maximum matching. In this case, the time complexity follows from
[V/| = O((D + k)n) = O(n) and |E’| = O(Dkn + Dn) = O(n), resulting in O(n'®) overall.

When computing simple 2-factors of 3-regular graphs our algorithm produces an inflated graph with
vertices of degree 2 and 3. Therefore, Petersen’s Theorem (see [2]) does not apply and our algorithm is less
efficient than Gopi and Eppstein’s algorithm [6]: theirs is O(n log® nloglog n) while ours is O(n!%).

4.2 Gadgets for large k-values

Obviously, the larger the value of k, the more complex the gadgets and therefore the slower the computation
of k-factors. However, for large values of k (k > d/2), a more suitable set of gadgets exists. We define gadget
Iy _j.q as a copy of I'y_j 4 that does not contain inner vertices or edges (See Figure 6). In the set of I';_; ,
gadgets, core edges directly connect core vertices to outer vertices.

T /C]io\ f o .
douter vertices ~ ° d?2 core vertices
I3 I'54

424

k outer vertices d outer vertices

PRI

N

k+1 outer vertices

"

® o0 @

e ® e
® o0
e ® .

* o 0 o\°
1 core vertex

Iox 11 ka1

Figure 6: Alternate set of gadgets used in the k-factor version of Algorithm 1 for large values of k. Only
outer and core vertices are needed. Core vertices appear as shaded circles.

In order to establish that Algorithm 1 also computes a simple k-factor using the I'/, k,q adgets, we prove
the following lemma.

Lemma 3 Let G be a graph with minimum degree at least k. G has a simple k-factor if and only if the
inflated graph G' obtained by using the F&_kyd gadgets has a perfect matching.

Proof. = Let F be a simple k-factor of G. Also, let v be a vertex of G of degree d and let v/ C G’ be
the copy of F&_kvd that replaces v. Notice that the degree of v in F is k. A perfect matching of G’ can be

constructed such that the k outer edges of v’ that correspond to the k& matched edges incident to v in F are
part of the matching. This leaves d — k outer vertices and d — k core vertices of G’ unmatched. These are
then pairwise matched.

<= We prove that in a perfect matching M of G’ each instance of a gadget F’d_kyd, 2 < k<d, has k
outer edges in the matching and, therefore, the corresponding edges in G define a simple k-factor. Recall
that the gadgets I',_ k.- contain d — k core vertices. The core vertices must be matched in M to d — k outer
vertices. Therefore, the remaining k outer vertices must be matched to other k vertices of other gadget
instances through k distinct outer edges. (Il

The advantage of the I gadgets becomes more evident in dense graphs, where vertices have high degrees,
and large k-values. We follow with a similar analysis as presented for the I set of gadgets (see Section 4.1).
Let G = (V,E) be the input graph, with |V| = n, and G’ = (V',E’) be the inflated graph obtained
from G by using the I gadgets. Assume G is near-complete but d(v) — k is bounded by a constant C
for any vertex v, where d(v) denotes the degree of vertex v. Then |V'| = O(Cn + n?) = O(n?) and
|E'| = O(Cn? +n?) = O(n?). This results in O(n?®) running time, which is a considerable improvement over
the O(nk) bound for the general case.

Note that for Algorithm 1 gadgets of the I' and I sets may be combined. Therefore, the best performance
is obtained if the gadget that substitutes a vertex v of degree d of the input graph G is I', 4 for k < d/2, or
[y q otherwise.

5 Conclusions

In many applications simple k-factors are more useful than k-factors. To our knowledge, efficient algorithms
that compute simple k-factors existed only for special types of graphs, such as simple 2-factors of general
graphs, simple 2-factors of 3-regular graphs (more efficiently), or 2k-factors of regular 2m graphs, k < m.
We present a new algorithm for computing a simple k-factor of a graph that fits any value of £ > 2. Our
algorithm, in addition to being simple to implement, is asymptotically as optimal as the available algorithms
for maximum matching for the case of bounded degree graphs.

References

[1] J. Akiyama and M. Kano. Book of Factors and Factorizations of Graphs. June, 2007. Online version:
http://gorogoro.cis.ibaraki.ac.jp/web/papers/FactorGraphVer1A4.pdf

[2] T. C. Biedl, P. Bose, E. D. Demaine, and A. Lubiw. Efficient algorithms for Petersen’s matching theorem.
Journal of Algorithms, 38(1):110-134, 2001.

[3] V. Chvatal. Linear Programming. W. H. Freeman, San Francisco CA, 1983.

P. Diaz-Gutierrez and M. Gopi. Quadrilateral and tetrahedral mesh stripification using 2-factor partitioning of
the dual graph. The Visual Computer, 21(8-10):689-697, 2005.

A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

[6] M. Gopi and D. Eppstein. Single-strip triangulation of manifolds with arbitrary topology. Computer Graphics
Forum (EUROGRAPHICS), 23(3):371-379, 2004.

[7] S. Micali and V. V. Vazirani. An O(,/|V||E|) algorithm for finding maximum matching in general graphs. Proc.
21st Annual Symp. on Foundations of Computer Science (FOCS '80), 17-27, 1980.

[8] P. A. Peterson and M. C. Loui 2. The General Maximum Matching Algorithm of Micali and Vazirani. Algorith-
mica, 3(1):511-533, 1988.
[9] M. D. Plummer. Graph factors and factorization: 1985-2003: A survey. Discrete Mathematics, 307:791-821,
2007.
[10] M. Thorup. Near-optimal fully-dynamic graph connectivity Proc. 32nd Annual ACM Symp. on Theory of
Computing, 343-350, 2000.
[11] C. Umans and W. Lenhart. Hamiltonian cycles in solid grid graphs. Proc. 38th Annual Symp. on Foundations
of Computer Science (FOCS ’97), 496-505, 1997.

[12] C. Umans. An algorithm for finding Hamiltonian cycles in grid graphs without holes. Honors thesis, Williams
College, 1996.

=

=

