ON COMPUTING SIMPLE CIRCUITS
ON A SET OF LINE SEGMENTS

David Rappaport t
Hiroshi Imas §
Godfried T. Toussaint t

t School of Computer Science
McGill University
805 Sherbrooke St. W.
Montreal, Canada H3A 2K6

} Department of Mathematical Engineering
and Instrumentation Physics
University of Tokyo
Bunkyo-Ku, Tokyo, Japan

1. Introduction.

Given a set of non-intersecting line segments in
the plane, we are required to connect the line seg-
ments such that they form a simple circuit (a simple
polygon). However, not every set of segments can be
so connected. Figure 1 shows a set of segments that
does not admit a simple circuit.

This leads to the challenging problem of deter-
mining when a set of segments admits a simple cir-
cuit, and if it does, then find such a circuit. It has
been shown [Rappaport] that in general, to determine
whether a set of segments admits a simple circuit is
NP-complete. In this paper an optimal algorithm is
presented to determine whether a simple circuit
exists, and deliver a simple circuit, on a set of line
segments, where each segment has at least one end-
point on the convex hull of the segments (a CH-
connected set of segments). Furthermore this tech-
nique can be used to determine a simple circuit of
minimum length, or a simple circuit that bounds the
minimum area, with no increase in computational
complexity.

The rest of the paper is summarized. In section
2 cf this paper, the preliminary definitions and nota-
tion are introduced. In section 3, the geometric pro-
perties of the set of segments are used to transform
the segments into an associated graph.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the tide of the
3 hlication and its date appear, and notice is given that copying is by
sermsior of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-194-6/86/0600/0052 3$00.75 ,

A Hamiltonian circuit in this graph is lthen used to
deliver the connections of segments that form the
boundary of a simple polygon. In section 4, a linear
algorithm is introduced which finds, if there is one, a
Hamiltonian circuit in graphs of the class obtained by
the transformation discussed in section 3. This algo-
rithm actually computes the minimum weight match-
ing on an extremely structured bipartite graph. From
this the result on minimal simple circuits follows
immediately. Section 5, relates the details of a neces-
sary step in the segment to graph transformation.
This involves the intersection of line segments in the
plane. The paper is summarized in section 6, where
the proof of optimality of the algorithm is given.

2. Definitions and Notation.

A set of non-intersecting line segments S is
represented as § = (54,84, ---» 8,-1) (to be referred to
from now on as segments). The endpoints of S will
be represented by the set of 2n points, P = (po.p,.
veor Pan-1)-

Define a stmple circuit as a sequence of points in
the plane that lie in clockwise order on the boundary
of a simple closed curve. A simple circuit can be
represented by a set of segments, the edges of the
simple circuit. A simple circuit on a set of segments,
S, is a simple circuit representable by a superset of

S.

Given a set of non-intersecting segments
represented by S it is sometimes possible to find a:
simple circuit. If this circuit exists we say that S’
admits a simple circuit. Denote B a set of n non-
intersecting segments whose endpoints are in P such
that R U S represents a simple circuit and R and S

are disjoint sets. We will refer to R as the set of
augmenting segments of S. In Figure 2 a set of seg-
ments is shown in solid lines, with its corresponding
set of augmenting segments in broken lines.

The convex hull CH(P) of a set of points P is
the smallest convex region enclosing P. Note that if
S admits a simple circuit this circuit is enclosed by
the convex hull of the endpoints of §, CH(P). If S
contains a segment 8 such that both endpoints of s
lie on CH(P) and the interior of s lies in the interior
of CH(P), then denote s a cutling segment.

Theorem 2.1: If § contains a cutting segment then
S does not admit a simple circuit.

Proof: Assume 5 admits a simple circuit and con-
tains a cutting segment s. Let p; and p;, in P be
‘points on different sides of s. Since every simple cir-
cuit on S is enclosed by CH(P) then every path on
the simple circuit from p; to p; must pass through s .
It is well known that for every pair of points =,y on
‘a circuit there exists two disjoint paths from z to 3.
Since every path from p; to p; must pass through s,
S cannot admit a simple circuit. Il

This result suggests an easy way to determine
whether a set of segments may not admit a simple
circuit. Given S and P, we compute CH(P) and
then examine segments of S to see if any are cutting
segments. The convex hull of a set of points can be
computed in O(|P | log |P|) time, {Graham], [Tous-
saint}, where [P | represents the cardinality of P .

It should be noted, however, that even though a
set of segments does not have a cutting segment, it
still may not admit a simple circuit. (Figure 3)

For the remainder of the discussion we will con-
strain the domain of the set of segments. Define a set
of segments as CH-connected if for every segment s
€ S, at least one of the endpoints of s lies on
CH(P). We will also assume that the set S in the
ensuing discussion contains no cutting segments, and
S| > 4.

3. Geometric Results.

The approach that will be taken is to associate
a CH-connected set of segments represented by S to
a graph ¢ = (V ,E). If the endpoints of S, P =
{pop1....P2n_y} and the vertices of G, V
{vo.,v1,....,¥20_,} then p; corresponds to v;. Similarly
a segment referred to as (p;,p;) has its corresponding
image, the edge (v; ,v,-). Using the geometric proper-
ties of S, we arrive at the appropriate set of edges F
so that solving a combinatorial problem in G, leads
to a solution to our original problem.

53

In the search for augmenting segments to form
a simple circuit one must consider likely candidates
for being augmenting segments. Clearly it simplifies
matters if the pool of candidates is small.

Initially there are O(n2) candidates i.e. P X P
such that (p; p;) € S and p; # p;. However the
upcoming key lemma reduces the number of candi-
dates drastically. An intuitive description will be
given, before stating the lemma formally.

Denote segments of S whose endpoints are
adjacent on CH(P) as netghbors. The following
lemma proves that all the endpoints of augmenting
segments are endpoints of neighbors in S.

Lemma 3.1: Given a CH-connected set of segments
S that admits a simple circuit represented by the
sequence of points T = (tqot,,.-.,t05_,). Let B =
(bob,.....b,;) be the sequence of points representing
CH(P). Assume without loss of generality that
bozto. For every such sequence T a simple circuit
on 5, the sequence B is a subsequence of T .

Proof: Assume b ,b,,b, is a subsequence of T. (See
Figure 4) This creates a polygonal chain from b, to
b, that separates b, from the remaining points. By
using arguments similar to those of theorem 2.1 we
see that this sequence must lead to a non-simple cir-
cuit, a contradiction. i

The pool of O(n) candidates can be reduced
further by considering segment intersection of candi-
dates. Clearly an augmenting segment cannot inter-
sect any segment in S. By a naive algorithm it
would require at most O(n?) time to determine which
of the current O(n) candidates intersect any of the n
segments of S. However using a variant of Shamos
and Hoey’s line sweep technique [Shamos and Hoeyl],
and a careful decomposition of the segments involved
this can be done in O(n log n) time. To avoid a
lengthy digression from the current discussion a
detailed description of this algorithm is postponed
until section 5.

As was stated earlier it is desirable to put this
problem into a purely combinatorial setting. By asso-
ciating a graph to the original points and segments,
the goal will be to determine the existence of a Ham-
iltonian circuit in the graph, that corresponds to a
simple circuit in the underlying segments. A Hamil-
tonian circuit is a simple closed path through all the
nodes of a graph. Of course the Hamiltonian circuit
in G requires the inclusion of the edges that
correspond to the segments S. Let F, represent the
edges in G that correspond to segments of S.
Denote an FE, -required Hamiltonian circuit, H, a
Hamiltonian circuit of G such that H (M E, = E, .

If the current pool of candidates is used as the edge
set in G and an FE,-required Hamiltonian circuit is
found in G, then we are not ensured that the result-
ing circuit of segments is non-intersecting. This is
because among the pool of candidates so far
described, one notices that, there may be intersec-
sions between pairs of candidates. It is useful to dis-
s guish between three types of these intersections.

Let a, b be two candidates.

Tiage 1: All four endpoints of candidates ¢ and b are
endpoints of only two of the segments of S (See Fig-
ure 5). In this case we can allow the images of both
a and b to appear in the final graph G. Any E,-
required Hamiltonian circuit of G cannot contain
both ¢ and b. We would visit both endpoints of the
segments connected by ¢ and b, before visiting the
‘gt of the segments of S, therefore, ¢ and b cannot
apmear together in a Hamiltonian Circuit.

Cuse 2: The four endpoints of ¢ and b lie on three
different segments of S. (See Figure 6). Therefore
one of the segments of S has a candidate at both of
its endpoints. Denote the segment ¢ incident to both
a and b with p, the endpoint of ¢ on ¢ and p, the
endpoint of ¢ on b. Denote the neighbors of ¢ as ¢~
and t*. At least one endpoint of ¢ is on CH(P), so
one endpoint of ¢ or b must also be on CH(P).
Without loss of generality assume p, is on CH(P),
and a’s other endpoint is on ¢t~. Because a and b
intersect they cannot be edges of CH(P). Observe
that the candidates connecting p, with each of the
endpoints of ¢t must intersect a. Therefore p, is iso-
lated from the segment t* by a. This implies that a
cannot be an augmenting segment.

It is convenient to label the segments in S so
that s; is a neighbor of s;,, for all 1==0, ..., n-1
{addition modulo n). Let ¢ be a candidate with end-
points on the segments s; and 8;_,. Deflne ¢ a block-
ing candidate if either the segments s; and s;,, are
on opposite sides of a chain (s;_,,¢), or the segments
s;.; and s;_, are on opposite sides of a chain (s;,c).
The candidate a described above is a blocking candi-
date.
Lemma 3.2: A blocking candidate cannot be an aug-
wmenting segment.

Proof: This follows immediately from the preceding
discussion. &

From the definition of blocking candidates it
should be clear that O(n) operations are sufficient to
datermine all blocking candidates.

Case 3: The four endpoints of ¢ and b lie on four

54

different segments of S. Let a be a candidate with
endpoints on 8; and s;,,, and let b be a candidate
with endpoints on s; and s;,,. Let h; denote the
convex hull edge from s; to s;,,, and let k; denote
the convex hull edge from segment 8; to §;,,.
Therefore the quadrilaterals Q; = (s; @ ,8;4,,h;) and
Q; == (s;,b,8;, };) intersect. (Observe that if one
of the endpoints ¢ or b is on h; or h;, then we must
consider triangles rather than quadrilaterals, however
this does not effect the argument.) Two intersecting
polygons intersect in at least two points. The inter-
section of @ and b accounts for one of the intersec-
tions. Since, no edge can intersect a convex hull edge
and none of the segments of S intersect, we must
conclude that one of the candidates intersects a seg-
ment of §. But this type of intersection has been
previously determined and the offending candidate
removed. s
Lemma 3.3: If two candidates a¢ and b interseét,
and the four endpoints of ¢ and b lie on four
different segments of S, then a or b must interse‘ct
one of those four segments.

Proof: Follows immediately from the preceding dis-
cussion. Wl

The construction of a graph with the property
that the original segments admit a simple circuit if
and only if the graph admits an FE,-required Hamil-
tonian, circuit can now be obtained. Let C represent
the set of candidates, with endpoints on neighbors,
that do not intersect any segment in S, and are non-
blocking. The edges £ of G correspond to the line
segments S U C.

Lemma 3.4: The segments S admit a simple circuit
if and only if G == (V,E) has an E, -required Hamil-
tonian circuit.

Proof: Suppose § admits a simple circult. It is
required to show that the augmenting segments have
their counterparts in G . It was shown that all aug-
menting segments were of the type used to obtain the
set C above. Every segment in C has a counterpart
edge in £ so G must have an E,-required Hamil-
tonian circuit.

Suppose G admits an FE,-required Hamiltonian
circuit. Edges in E are easily mapped back to seg-
ments. The resulting circuit (of line segments) must
be simple by the way candidates were chosen. il

It is well known that in general, determining
whether there is a Hamiltonian circuit in a graph is
NP-complete. However in the next section a linear
time algorithm is presented to determine whether an

E, -required Hamiltonian circuit is present in G.
Furthermore the same algorithm is used to determine
minimum weight F, -required Hamiltonian circuits.

4. Finding FE, -required Hamiltonian circuits.

Let the graph G can be characterized as fol-
lows: G = (V,E) where V = (v,,v,,...,v0,_,) and
= E, |J E. where:

E, = {(v.z,-,'vg‘-ﬂ), i =0,..,n -—].}
and

E, C {(% 942, { =0,....2n-1}
U {(v2|':'02|'+3), 1 = 0,...,n-—1}

U {(va41¥2i49), § = 0,...,n -1}
(all index additions are modulo 2n).

Denote G, as the the graph G == (V,E_). The
Graphs G and G, have cyclic structures. It is more
convenient to designate a vertex a start vertex and a
vertex an end vertex and ‘break’ the cyclic structure.
Remove from E, (if they exist) the edges (v,,v,),
(vo,v3) and (v,¥9n,), (V1,V00-9). Call the resulting
graph G.,! = (V,E,'). To find an FE,-required
Hamiltonian circuit in G, we will use the graphs
G,'.

A matching in a graph is a set of edges no two
of which share a vertex. A maximal matching is a
matching on the maximum number of vertices in the
graph. A matching is said to be complete if a maxi-
mal matching in the graph contains all vertices of the
graph.

The following theorem immediately leads to an
algorithm for finding an E, -required Hamiltonian cir-
cuit in G

Theorem 4.1: Given the graph G and G,' as
described above. If a maximal matching in the graph
G.' is a complete matching then there is an E,-
required Hamiltonian circuit in G .

Proof: Every complete matching in G, must
match v, with either v, or vz Choosing either of
these edges in the matching and deleting edges on
matched vertices we are left with a graph having the
same structure as our original graph. This gives the
complete matching M the property that every edge
m € M connects two edges € E,, and there are no
disjoint cycles. The edges E, U M comprise a Ham-
iltonian circuit in G . N

To determine whether there is an FE,-required
Hamiltonian circuit in G simply- compute the

55

maximal matching of G,' . If the matching is com-
plete then an FE,-required Hamiltonian circuit in G
can be easily constructed. If there is no complete
matching then reunite the edges removed from G, .
Now remove from G, (if it exists) the edges (v,,v,),
(v1,v3) and (vo,v20.1), (V0,V3n-2) to Obtain G.' '
(V,E,’ '). Compute the maximal matching in
G.' ' . If there is a complete matching then there is
an FE, -required Hamiltonian circuit in G . Otherwise
it can be concluded that there is no Hamiltonian Cir-
cuitin G .

A bipartite graph is a graph whose vertices V
can be divided into disjoint subsets W and U such
that every edge in the graph has one endpoint in W
and one endpoint in U. It is easy to see that G’
and G,'' are bipartite graphs. The vertices
{vov1,v4,v6vev, } - w, and
{vavsvev7.v,10; ... } © U. In [Hopcroft and
Karp] an efficient algorithm based on a network flow
algorithm is given to find maximal matchings in
bipartite graphs. The complexity of this algorithm is
O(| V|2 |E|). In the problem considered here
the edges and the vertices are both of cardinality
O(n) so the running time is O(n%/2).

The structure of the graphs G.' and G.''
permit a more efficient method of determining
whether there is a complete matching. This algo-
rithm will now be discussed.

A weighted graph has a real value w{e) assigned
to each edge e of the graph. This algorithm com-
putes the minimum weight matching in the weighted
graph G, = (V,E,). V is defined as above and:

E. = {(v;,v;10), § =0,...,2n-1}
U {(vgi,v543), ¢ =0,...,n-1}

U {(in+l»vzi+2), i = 0,...,72—1}.

Assign weights w(e) == 1if ¢ € E,’ and w(e)
= 2if ¢ € E,' . The minimum weight complete
matching in G, is computed as follows:

’

ALGORITHM MATCH

wl2] = w(v,,v,); W[3] — W(vy,v3);
for i «— 2 to n-1
do begin
w(21] «— min{w[27-1] + W(V g 2,V4),
wl27-2] + W(vgi_y,v))
w[2t +1] + min(w[27-1] + W(v4;_5,V2;),
w(2¢-2] + W(vgi_1,v2))
end ;
Q — min(w([2n -1] + W(v,, 5, ¥,),
w(2n-2] + W(v,,.1,00));

The cost of the minimum weight matching is
kept in 2. If the cost is n then a complete matching
exists in G, ' , otherwise there is no complete match-
ing. To prove the algorithm correct and show that
O(n) operations are used is straight forward. To
obtain in O(n) time, the edges of the complete
matching M = (m,m,,...,m,), the following simple
procedure can be used.

ALGORITHM OBTAIN

k «— 0;
for i «— n downto 1
if w(2t-2] = Q- w(vy_,,v)
then
m; «— (Vg 1,0) Q—0-1;k « 2¢-2
else
my — (Voi 00); @ — Q-1 k « 2i-1;

Assume a complete matching in G, has been
found. A direct consequence of the previous result is
that a simple circuit on S, that has minimum perime-
ter can be determined. A weighted graph G
(V,E,) is constructed. FE, is defined as E. except for
the weight assignments. Let the Euclidean length of
a candidate be the weight given to the corresponding
edge € F;, and, € E,' . For any edge € E; € E,'
assign a weight of co. Finding a minimum weight
complete matching, in G; reveals a simple circuit of
minimum perimeter.

The simple circuit which encloses the minimum
area can also be found by using a weighted graph.
The weights assigned to edges in G hinge on the
observation that the area of a simple polygon @, is
the area of CH(@) less the sum of the areas of the
polygonal regions that constitute the difference
between CH(®) and @ . Denote the polygonal
regions that constitute the difference between CH(Q)
and @ as conver defictency polygons of . The con-
vex deflciency polygons of every simple circuit on S,
consist of two segments s;, 8; 4, and the augmenting
segment connecting s; and §;,,. (If the augmenting
segment happens to connect two convex hull vertices
we can conveniently define this as a zero area convex
deficiency polygon.) Therefore every candidate
describes an unique convex deficiency polygon.
Assign weights to G, giving the weighted graph G,
where edges in G, corresponding to candidates are
given weights equal to the negation of area of the
deficiency polygon described by that candidate. For
edges € FE,' assign a weight of 1. A complete
matching in G, with minimum weight, is a simple
circuit that encloses the smallest area.

5. Finding Intersections of Candidates and

56

Segments.

Determining candidate-segment intersections is
3 necessary step to obtain the final set of candidates,
as described in section 3. It was stated in section 3.
that this could be computed in O(n log n) time. In
this section the details of this algorithm are
described.

One possibility to consider is to compute all
segment intersections. Given a set of n line segments
in the plane the algorithm of Bentley and Ott.manvn
[Bentley and Ottmann] can be used to report all pair-
wise intersections, in O(n logn + k log n) time,
where k represents the number of pairwise interse¢-
tions found. Unfortunately the number of pairwise
intersections, may be large. In fact ¥ may be as
large as O(n%). In Figure 7 an example illustrating
this phenomenon is shown. This example can be gen-
eralized, showing that as many as O(n2) intersections
may occur.

1

It is not necessary to compute all pairwise seg-
ment intersections for the problem considered here.
All that is required is to find candidates that are
intersected by segments. Since there are a linear
number of candidates the output is at most linear.
Clearly we need not compute all O(n?) pairwise inter-
sections.

Consider two sets of disjoint line segments A
and B. It will be useful to be able to report in
O(n log n) time all segments of A that are inter-
sected by any segment of B .

An algorithm used to accomplish this, is based
on the line sweep technique of Shamos and Hoey
[Shamos and Hoey]. The algorithm scans a vertical
line from left to right while maintaining a balanced
tree that represents the order in the y direction of the
segments intersected by the scanning line. Denote
this as the y-order of the segments. The balanced
tree allows insert and delete operations on the y-order
in O(log n) time. Intersecting line segments will be
adjacent in this ordering. The y-order changes when;
the left endpoint of a segment is encountered, and the
segment is inserted into the y-order; the right end-
point is encountered, and the segment is deleted from
the y-order; or two segments cross thus interchangin’g
their relative position in the y-order. In the problem
of our concern, any time an intersection is found on'e
of the intersected edges can be dispensed with. So
the case of segments changing their relative position
in the y-order does not occur. A pseudo code algg-
rithm follows: :

ALGORITHM SEGMENT INTERSECTION

step 1:

traverse the endpoints of A and B from left
to right;
for each endpoint do
case left endpoint of segment s :
insert s into y-order;
Check if segments above or below in y-
order intersect s ;
if intersection found then begin
report intersection;
if s € B then s « edge € A that was
intersected; goto step 2
end;
case right endpoint of segment s :
goto step 2;
step 2:
repeat
remove s from y-order; test segments above
and below it for intersection;
if intersection found then report intersec-
tion;
s +«— edge € A that was intersected;
until no intersection found;
goto step 1;

The proof of correctness and complexity of
O(n log n) is a straight forward extension of the
result of Shamos and Hoey. Now it will be shown
how this algorithm can be applied to the candidate-
segment intersection problem.

Recall there are segments S = (84,8;,...,8, 1),
with endpoints in P = (po,p,,...,P 2n_1), Where each
segment € S has at least one endpoint on CH(P).
As before assume that segments s; and 8;,, , ¢ = O,
..., n-1, (addition modulo n) are neighbors on
CH(P). Denote the endpoints of each segment s; by
8 = (s,-h,s.-k) where 8; denotes an endpoint of S on

CH(P). The candidates considered for intersection
can now be expressed as C =
ColUJ C: U €2y Css where Co= (8,8 +1,)»
C,= (si,,:siﬂ,,): Cp= (83, /8i 41,), Ca= (80,80 41,),
{t =0, .. n-1.

Candidates from C, do not have to be tested
for intersection, since they are on the convex hull.
Handling candidates from the other classes requires
an examination of different cases of candidate inter-
sections. The terminology of section three will be
used to distinguish candidate intersections. It is easy
to see that candidates from within the same class C;,
1 ==1,3 cannot intersect in a case 1 intersection.
Blocking candidates, those candidates which intersect
in a case 2 intersection can be predetermined and
eliminated using the method suggested in section 3.
Thus after all blocking candidates have been removed
the only way two candidates from within the same
class C; can intersect is in a case 3 intersection.

57

Recall in lemma 8.3 it was shown that two candidates
involved in a case 3 intersection necessarily intersect
a segment € S. Furthermore the segment € S is one
of four segments namely the segments connected by
the intersecting candidates. Therefore the decomposi-
tion of C into the classes C,, C, and Cj can be used
to determine candidate-segment intersections. We
can use a slightly modifiled ALGORITHM SEGMENT
INTERSECTION. With an input of candidates in
C; + = 1,38, and S any intersection found is either a
candidate-segment intersection which can easily be
handled, or a candidate-candidate intersection of case
3. We are assured one of these candidates also inter-
sects a segment € S, and in constant time we can
determine this candidate. Any candidate-candidate
intersection we may encounter is also a candidate-
segment intersection and can be easily handled as
such.

Therefore we can conclude that all intersections
of candidates and segments can be determined in
O(n log n) time.

An alternate method to compute candidate-
segment intersections has been proposed by Suri
(Suri]. By using a clever observation and the triangu-
lation algorithm of Tarjan and Van Wyk, Suri can
determine all candidate-segment intersections in O(n)
time,

In the next section the results of this paper are
summarized.

6. Summary.

The main result of this paper is: Given a set of
CH-connected segments S an O(n log n) algorithm
is presented that returns a simple circuit on the seg-
ments, if such a simple circuit is admitted by S .

ALGORITHM SIMPLE CIRCUIT
Input : A set of segments S with endpoints P .

Output: A set of augmenting segments R, where T
= R US represents a simple circuit. If there is no
simple circuit on S then report this.

step 1:
Compute the corresponding graph G and get
G' ssubgraphs G, , G,' and G,' ' ;
step 2:
Compute a maximal matching M in G, ' ;
if M is not a complete matching then
Compute a maximal matching M in G,' ' ;
if M is a complete matching then
E, | J M is a Hamiltonian circuit

in G, and R corresponds to the edges M in G ;

otherwise report no simple circuit;

Theorem 68.1: Given a set S, of n CH-connected
segments in the plane it can be determined whether
S admits a simple circuit, in O(n log n) operations,
and the circuit will be delivered in the same time
bound.

The results of the previous sections lead up to
the proof of this theorem. It will now be shown that:

Theorem 68.2: O(n log n) is necessary to deliver a
simple circuit on a CH-connected set of segments.

Proof: The problem will be reduced to sorting real
numbers. Given a set of n distinct reals, r;, ¢=0,
..., n-1. We can determine the minimum and max-
imum values, denoted by r and r, respectively, in
O(n) time. Construct n vertical line segments s;,
=0, ..., n—-1, where s; has endpoints (r;,0), (r;,1),
except where ¢+ = [,r the endpoints are (r;,0),(r;,2)
and (r,.0),(r,,2). By inspection one sees that these
segments are CH-connected and they admit a simple
circuit. Traversing the segments in the order dictated
by the augmenting segments, a cyclic permutation of
the real numbers in sorted order, is obtained. It is
well known that the lower bound for sorting is
O(n log n). Therefore O(n log n) is necessary to
deliver a simple circuit on a CH-connected set of seg-
ments. B

Theorem 6.3 ALGORITHM SIMPLE CIRCUIT is
optimal.

Proof: Follows immediately from theorems 6.1 and’

6.2. 1

Acknowledgements

We are indebted to the attendants of a seminar
in Computational Geometry, held at McGill in the
fall of 1984, where this problem was originally dis-
cussed. In particular we thank Minou Mansouri who
first showed the example in Figure 3, and Hossam
ElGindy who inspired the concept of blocking seg-
ments. Finally a discussion between the first author
and Ryan Hayward led to ALGORITHM MATCH.

References

[Bentley and Ottmann] Bentley, J. L., and T. A.
Ottmann,‘“Algorithms for Reporting and Counting
Geometric Intersections”, I[EEFE Transactions on
Computers, vol. ¢-28 No. 9, (1979), 643-647.

[Graham] Graham, R. L., ““An Efficient Algorithm for
Determining the Convex Hull of a Finite Planar Set’’,

Information Processing Letters, vol. 1, (1972), 132-
133.

[Hopceroft and Karp] Hoperoft, J. E., and R. M. Karp,
“An n%2 Algorithm for Maximum Matchings in
Bipartite Graphs”, SIAM Journal on Computing, vol.
2 (1973), 225 - 231.

[Rappaport] Rappaport, David, “Computing Simple
Circuits on a Set of Line Segments is NP-Complete”’
Technical Report No. SOCS-86.6 McGill University
1986.

[Shamos and Hoey] Shamos, M. I. and D. Hoey,
*“Geometric Intersection Problems’, Proceedings of
the 17th FOCS, Oct. 1976, 208 - 215.

[Toussaint] Toussaint, G. T., “A Historical Note on
Convex Hull Finding Algorithms’’, Technical Report
No. SOCS-83.14 McGill University (1983).

[Suri] Suri, Subhash, Personal communication.

58

Figure 1.

Figure 3.

Figure 5.

'

7/
s/
| 7
4
' / ///
l

I

y

!

Figure 2.

by

[N

Figure 4.
Pa
N tr
¢ AN
N S
pb ‘\
a
\
N\
,,E'/’/
Figure 6.

59

Figure 7.

60

