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1. I r . . t r o d u c t i o n .  

G iven  a set  of  non - in t e r sec t ing  line segmen t s  in 
the plane,  we are requi red  to  connec t  the line seg- 
men t s  such t h a t  they  fo rm a s imple  c i rcui t  (a s imple  
polygon).  However ,  not  every  set  of segment s  can be 
so connec ted .  F igure  1 shows a set of s egmen t s  t h a t  
does not  a d m i t  a s imple  circui t .  

This  leads to the  cha l leng ing  p rob lem of de te r -  
min ing  when  a set  of  s egmen t s  admi t s  a s imple  cir- 
cuit ,  and if i t  does, t hen  find such a circuit .  I t  has 
been  shown [Rappapor t ]  t h a t  in general ,  to  d e t e r m i n e  
w h e t h e r  a set  of  s egmen t s  admi t s  a s imple  c i rcui t  is 
N P - c o m p l e t e .  In th is  pape r  an o p t i m a l  a lgo r i t hm is 
p resen ted  to  d e t e r m i n e  w h e t h e r  a s imple  c i rcui t  

exists, and del iver  a s imple  c i rcui t ,  on a set  of  l ine 
segments ,  where  each s e g m e n t  has  a t  leas t  one end- 

po in t  on the  convex  hul l  of  the  segmen t s  (a CH- 
connec t ed  set  of  segments ) .  F u r t h e r m o r e  this  tech-  
nique can be used to  d e t e r m i n e  a s imple  c i rcui t  of  
m i n i m u m  length ,  or  a s imple  c i rcui t  t h a t  bounds  the 
m i n i m u m  area,  wi th  no increase in c o m p u t a t i o n a l  

complex i ty .  

The  res t  of  the  pape r  is summar i zed .  In sect ion 
2 cf  this  paper ,  the p re l imina ry  def ini t ions  and nota-  
t ion are in t roduced .  In sect ion 3, the geomet r ic  pro- 
per t ies  of the set, of s egmen t s  are used to t r ans fo rm 
the segmen t s  in to  an associa ted  graph.  
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A H a m i l t o n i a n  c i rcu i t  in th is  graph  is !then used to 
de l iver  the connec t ions  of  s egmen t s  t h a t  form the 
bounda ry  of  a s imple  po lygon.  In sec t ion  4, a l inear  
a lgo r i t hm is i n t roduced  which  finds, if there  is one, a 
H a m i l t o n i a n  c i rcui t  in g raphs  of  the class ob ta ined  by 
the t r a n s f o r m a t i o n  discussed in sec t ion  3. Th is  algo- 
r i t h m  ac tua l ly  compu te s  the  m i n i m u m  weigh t  ma tch-  
ing on an ex t r eme ly  s t r u c t u r e d  b ipa r t i t e  graph.  F r o m  
this  the  resu l t  on m i n i m a l  s imple  c i rcui ts  follows 
i m m e d i a t e l y .  Sec t ion  5, re la tes  the  de ta i l s  of a neces- 
sary s tep in the  s e g m e n t  to  g raph  t r ans fo rma t ion .  
Th i s  invo lves  the  in te r sec t ion  of  line segmen t s  in the 
plane.  T h e  pape r  is s u m m a r i z e d  in sect ion 6, where  
the proof  of  o p t i m a l i t y  of  the  a lgo r i t hm is given.  

2. D e f i n i t i o n s  a n d  N o t a t i o n .  

A set  of  non - in t e r sec t i ng  line s egmen t s  S is 
r ep resen ted  as S --~ (s o,S 1 . . . . .  sn- l )  ( to be referred to 
f rom now on as segments) .  T h e  endpo in t s  of S will 

be r ep resen ted  by the  set  of  2n points ,  P ---- (P0,P~, 

. . . .  P 2n -1) '  

Define a simple c ircui t  as a sequence of points  in 
the  p lane  t h a t  lie in c lockwise o rde r  on the  boundary  
of  a s imple  closed curve.  A s imple  c i rcui t  can be 
r ep resen ted  by a set  of  segments ,  the  edges of  the 
s imple  circui t .  A s imple c ircui t  on a set  of  segments ,  
S ,  is a s imple  c i rcu i t  r ep resen tab le  by a superse t  of 

S .  

G i v e n  a set  of  non - in t e r sec t ing  s e g m e n t s  
r ep resen ted  by S i t  is s o m e t i m e s  possible to  find a 
s imple  circui t .  If this  c i rcu i t  exists we say t h a t  S ~ 
admits  a s imple  circui t .  Deno te  R a set  of  n non- 
in t e r sec t ing  segment s  whose  endpo in t s  are in P such 
t h a t  R (.J S represen ts  a s imple  c i rcui t  and R and S 
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are d is jo int  sets. W e  will refer  to R as the set of  
augmenting segments of S .  In F igure  2 a set  of seg- 
ments  is shown in solid lines, wi th  its cor responding  
set of a u g m e n t i n g  segmen t s  in broken  lines. 

The  convex  hull  C H I P )  of a set  of  points  P is 
the smal les t  convex  region enclosing P .  N o t e  t h a t  if 
S admi t s  a s imple  c i rcui t  this  c i rcui t  is enclosed by 
the convex  hull  of  the endpo in t s  of S ,  CHIP) .  If S 
contains  a s egmen t  s such t h a t  bo th  endpoin ts  of  s 
lie on C H I P )  and the in te r io r  of s lies in the in ter ior  
of CHIP) ,  then  denote  s a cutting segment. 

T h e o r e m  2,1 :  If S con ta ins  a cu t t ing  segment  then  
S does no t  a d m i t  a s imple  circui t .  

P r o o f :  Assume  S a d m i t s  a s imple  circui t  and con- 
tains a cu t t i ng  s egmen t  s .  Le t  p,. and p/ ,  in P be 
'points  on different  sides of  s .  Since every  s imple  cir- 
cui t  on S is enclosed by C H I P )  then  every  pa th  on 
the s imple c i rcui t  f rom p,. to Pi mus t  pass th rough  s .  
It  is well known t h a t  for every  pair  of points  x , y  on 
:a c i rcui t  there  exists two d is jo in t  pa ths  f rom x to y .  
Since every  pa th  f rom p,. to Pi mus t  pass th rough  s ,  
S canno t  a d m i t  a s imple  circui t .  | 

This  resul t  suggests  an easy way  to de t e rmine  
whe the r  a set  of  segments  may  no t  a d m i t  a s imple  
circuit .  G iven  S and P ,  we compu te  C H I P )  and 
then examine  segment s  of  S to see if  any are cu t t i ng  
segments .  The  convex hull  of  a set  of  points  can be 
compu ted  in O( [PI  log IP I  ) t ime,  [Graham],  [Tous- 
saint],  where  IP I represents  the  ca rd ina l i ty  of P .  

It should be noted ,  however ,  t h a t  even though  a 
set of segment s  does not  have  a cu t t i ng  segment ,  i t  
still  may  no t  a d m i t  a s imple  circuit .  (Figure  3) 

Fo r  the r e m a i n d e r  of  the  discussion we will  con- 
s t ra in  the d o m a i n  of the set  of  segments .  Define a set  
of  segment s  as CH-connected if for every  s egmen t  6 
E S ,  a t  least  one of  the endpoin t s  of s lies on 
CHIP).  We will also assume t h a t  the set  S in the 
ensuing discussion conta ins  no cu t t ing  segments ,  and 
I s l  > 4. 

3. G e o m e t r i c  R e s u l t s .  

The  approach  t h a t  will  be t aken  is to associate  
a CH-connec t ed  set  of  segment s  represen ted  by S to 
a graph G -~ i V , E ) .  If the endpoin ts  of  S ,  P 
{Po,Pl ..... P2n-l} and the ver t ices  of G ,  V ~--- 
{Vo,V ~ ..... v2n_l} then  p~. corresponds  to v~-. S imi lar ly  
a s egmen t  referred to as (pi ,Pi ) has its cor responding  
image,  the edge (vl ,v i ) .  Using the geomet r ic  proper-  
ties of S ,  we arr ive  at  the app rop r i a t e  set of  edges E 
so tha t  solving a comb ina to r i a l  p rob lem in G ,  leads 
to a solut ion to our  or iginal  problem.  

In the  search for a u g m e n t i n g  segmen t s  to form 
a s imple  c i rcui t  one m u s t  cons ider  l ikely candidates 
for be ing  a u g m e n t i n g  segments .  Clear ly  it  simplifies 
m a t t e r s  if the pool  of cand ida te s  is small .  

In i t ia l ly  there  are O(n  ~) cand ida tes  i.e. P X P 
such t h a t  (Pi,P] ) ~ S and Pi ~A p / .  However  the 
u p c o m i n g  key l e m m a  reduces  the n u m b e r  of candi-  
da tes  dras t ica l ly .  An  in tu i t i ve  descr ip t ion  will be 
given,  before s t a t i ng  the l e m m a  formal ly .  

Deno te  segments  of  S whose endpoin ts  are 
a d j a c e n t  on C H I P )  as neighbors. T h e  following 
l e m m a  proves  t h a t  all the  endpo in t s  of a u g m e n t i n g  
segmen t s  are endpo in t s  of ne ighbors  in S .  

L e m m a  3 .1 :  G iven  a C H - c o n n e c t e d  set  of segments  
S t h a t  admi t s  a s imple  c i rcui t  r epresen ted  by the 
sequence of  points  T = (to, t 1 ..... t2n_~). Let  B = 
(bo, b~ ..... b~, ) be the  sequence of points  represent ing  
C H I P ) .  Assume  w i t h o u t  loss of genera l i ty  tha t  
bo~-t o. F o r  every  such sequence T a s imple  circui t  
on S ,  the sequence B is a subsequence  of  T .  

P r o o f :  Assume b 1,b3,b2 is a subsequence  of T .  (See 
F igure  4) Th is  c rea tes  a po lygona l  chain f rom b l to 

b~ t h a t  separa tes  b2 f rom the r ema in ing  points.  By 
using a r g u m e n t s  s imi lar  to those  of  t heo rem 2.1 we 
see t h a t  this sequence  m u s t  lead to a non-s imple  cir- 
cui t ,  a con t rad ic t ion .  | 

T h e  pool  of  O(n)  cand ida te s  can be reduced 
fu r the r  by cons ider ing  s e g m e n t  in te rsec t ion  of candi-  
dates.  Clear ly  an a u g m e n t i n g  s egm en t  canno t  inter-  
sect  any s egm en t  in S .  By a naive  a lgor i thm it 
would  require  a t  mos t  O(n 2) t ime  to de t e rmine  which 
of  the cu r r en t  O(n  ) cand ida te s  in te rsec t  any of the n 
segment s  of  S .  H o w e v e r  using a v a r i a n t  of  Shamos  
and Hoey ' s  l ine sweep t echn ique  [Shamos and Hoey], 
and a careful  decompos i t i on  of  the segment s  involved  
this  can be done in O(n  log n )  t ime.  T o  avoid a 
l eng thy  digression f rom the  cu r ren t  discussion a 
de ta i led  descr ip t ion  of  this a lgo r i thm is pos tponed 
unt i l  sect ion 5. 

As was s t a t ed  ear l ier  i t  is desirable  to put  this 
p rob lem into  a pure ly  combina to r i a l  se t t ing.  By a.sso- 
c ia t ing  a graph to the or iginal  points  and segments .  
the goal will be to de t e rmine  the exis tence of a Ham-  
i l tonian c i rcui t  in the graph,  t h a t  corresponds  to a 
s imple  c i rcui t  in the under ly ing  segments .  A Hamil- 
tonian circuit is a s imple  closed pa th  th rough  all the 
nodes of  a graph.  Of  course the H a m i l t o n i a n  circui t  
in G requires the inclusion of  the edges tha t  
correspond to the segment, s S .  Le t  Es represent  the 
edges in G t h a t  cor respond to segment s  of  S .  
Deno te  an E~-required Hamiltonian circuit, H ,  a 
H a m i l t o n i a n  c i rcui t  of G such t h a t  H N E, = E , .  
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If the cu r r en t  pool  of  cand ida t e s  Is used as the  edge 
set  in G and an E e - requi red  H a m i l t o n i a n  c i rcui t  is 
found in G ,  then  we are not  ensured t h a t  the  resulv- 
lng c i rcui t  of segment s  is non- In te rsec t ing .  This  Is 
because  a m o n g  the  pool  of  cand ida te s  so far  
descr ibed,  one not ices  tha t ,  the re  may  be intersec-  
t ions be tween  pai rs  of  candida tes .  I t  is useful to dis- 
~': gulsh b e t w e e n  th ree  types  of  these in tersec t ions .  

Le t  a ,  b be two  cand ida tes .  

~_,se 1" All  four  endpo in t s  of cand ida t e s  a and b are 

endpo in t s  of  only two  of the segmen t s  of  S (See Fig-  
ure 5). In this  case we can  al low the  images  of bo th  
a and b to  appea r  in the  final g raph  G .  A n y  E e -  
requi red  H a m i l t o n i a n  c i rcui t  of  G canno t  con ta in  
bo th  a and b .  W e  wou ld  vis i t  bo th  endpo in t s  of the  
segmen t s  c o n n e c t e d  by a and b ,  before v i s i t ing  the 
-oct of the segmen t s  of  S ,  therefore ,  a and b c a n n o t  
%~es. r  t o g e t h e r  in a H a m i l t o n l a n  Circui t .  

Cc~se 2: The  four  endpo in t s  of  a and b lie on three  
different  segment s  of  S .  (See F igu re  6). The re fo re  

one of the  segmen t s  of  S has a cand ida te  a t  bo th  of 
its endpoin ts .  D e n o t e  the  s e g m e n t  t i nc iden t  to  bo th  
a and b wi th  pa the  endpo in t  of  t on a and Pb the  
endpo in t  of  t on b .  Deno te  the ne ighbors  of  t as t -  
and t+.  A t  least  one e n d p o i n t  of  t is on C H ( P ) ,  so 

one e n d p o l n t  of  a or  b m u s t  also be on C H ( P ) .  
W i t h o u t  loss of  genera l i ty  assume pa is on C H ( P  ), 
and  a ' s  o the r  endpo in t  is on t - .  Because  a and b 
in te rsec t  t hey  canno t  be edges of  C H ( P ) .  Obse rve  
t h a t  the cand ida te s  connec t ing  Pb wi th  each of the 
endpo in t s  of t + mus t  in te r sec t  a. The re fo re  Pb is iso- 
l a ted  f rom the  s e g m e n t  t + by a .  Th i s  impl ies  t h a t  a 
c a n n o t  be an a u g m e n t i n g  segment .  

It is c o n v e n i e n t  to  label  the segmen t s  in S so 
t h a t  st is a ne ighbor  of  s,.+~ for all i~---0 . . . . .  n - 1  
(addi t ion  modu lo  n ). L e t  c be a c a n d i d a t e  wi th  encN 
points  on the  segmen t s  st and 8t_~. Define c a block- 
in a candidate if e i the r  the segmen t s  st and st+~ are 
on oppos i te  sides of a chain  (st_~,c), or the segmen t s  
st_ ~ and st_ 2 are on oppos i te  sides of  a chain  (s t ,e ). 
The  c a n d i d a t e  a descr ibed  above  is a b locking  candi-  
date .  
L e m m a  3 .2 :  A b locking  cand ida t e  canno t  be an  aug- 
~-nenting segment .  

~ r o o f :  Th i s  follows i m m e d i a t e l y  f rom the p reced ing  
d~.scussion. 

F r o m  the  def ini t ion of  b locking  cand ida t e s  it  
should  be clear  t h a t  O(n  ) ope ra t ions  are sufficient  to  
d~te rmine  all b locking  candida tes .  

C a ~  3:  The  four  endpo in t s  of  a and b lie on four  

different  segment s  of  S .  Le t  a be a cand ida t e  wi th  
endpo in t s  on s¢ and st+~, and le t  b be a cand ida te  
wi th  endpo in t s  on 8 i and s]+~. Le t  h t denote  the 
convex  hull edge f rom s t to  st+ ~, and let h i denote  
the  convex  hul l  edge f rom s e g m e n t  8y to By+ 1 . 
The re fo re  the  quadr i l a t e ra l s  Q~ ~ (st,a ,st+~ ht ) and 
Qi '~  (sj.b ,sy+~,hy) in te rsec t .  (Obse rve  t h a t  if one 
of the endpo in t s  a or  b is on ht or  h i ,  t hen  we mus t  
consider  t r iangles  r a the r  t h a n  quadr i l a te ra l s ,  howeve r  
this  does no t  effect the  a rgumen t . )  T w o  in te r sec t ing  
polygons  in te r sec t  in a t  least  two  points .  T h e  inter-  
sect ion of a and b accoun t s  for one of  the intersec- 
t ions.  Since, no edge can  in te r sec t  a convex  hull  edge 
and none  of  the  segmen t s  of  S in tersec t ,  we must  
conc lude  t h a t  one of  the  cand ida t e s  in te rsec ts  a seg- 
m e n t  of  S .  Bu t  this t y p e  of in te r sec t ion  has been 
prev ious ly  d e t e r m i n e d  and the  offending cand ida te  
r emoved .  

i 
L e m m a  3 .3-  If two  cand ida t e s  a and b intersect ,  
and the four  endpo in t s  of  a and  b lie on four 
different  segment s  of  S ,  t hen  a or b m u s t  in tersec t  
one of  those four  segments .  

P r o o f :  Fol lows  i m m e d i a t e l y  f rom the  p reced ing  dis- 

cussion. | 

The construction of a graph with the property 

that the original segments admit a simple circuit if 

and only if the graph admits an Es-required Hamil- 

tonian, circuit can now be obtained. Let C represent 
the set of candidates, with endpolnts on neighbors, 
that do not intersect any segment in S, and are non- 

blocking, The edges E of G correspond to the line 

segmen t s  S ~J  C .  

L e m m a  3 .4 :  T h e  segmen t s  S a d m i t  a s imple  circui t  
if and only  if G ~-~ ( V , E )  has an E e - requ i red  Hami l -  
ton ian  circui t .  

P r o o f ' .  Suppose  S admi t s  a s imple  circui t .  I t  is 
requi red  to  show t h a t  the a u g m e n t i n g  segmen t s  have 
the i r  c o u n t e r p a r t s  in G .  I t  was shown t h a t  all aug- 

m e n t i n g  s egmen t s  were  of  the  type  used to  ob ta in  the 
set  C above.  E v e r y  s e g m e n t  in C has a c o u n t e r p a r t  
edge in E so G m u s t  h a v e  an E , - r e q u i r e d  Hamil -  
ton ian  circui t .  

Suppose  G admi t s  an E , - r e q u i r e d  H a m i l t o n i a n  
circui t .  Edges  in E are easi ly m a p p e d  back  to seg- 
ments .  T h e  resul t ing  c i rcu i t  (of line segments )  mus t  
be s imple  by the way  cand ida t e s  were  chosen.  III 

I t  is well  k n o w n  t h a t  in general ,  de t e rmin ing  
w h e t h e r  the re  is a H a m i l t o n i a n  c i rcui t  in a graph is 
N P - c o m p l e t e .  H o w e v e r  in the  nex t  sect ion a l inear  
t ime  a lgo r i t hm is p resen ted  to d e t e r m i n e  w h e t h e r  an 
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E, - r equ i r ed  H a m i l t o n i a n  ci rcui t  is p resen t  in G .  
F u r t h e r m o r e  the same a lgor i thm is used to de te rmine  
m i n i m u m  weight  E , - r e q u i r e d  H a m i l t o n i a n  circuits.  

4. F inding  Es -requ ired  H a m i l t o n i a n  c i r c u i t s .  

Let the graph G can be character ized as fol- 
lows: G -~- ( V , E )  where V ~ (Vo,V 1 ..... v2,_1) and  
E - ~ E .  ~J  E¢ where: 

E, = {(v~;,v~¢+,),  i ----0 ..... n - l }  

and  

_ i = o ..... 

L.J i = o . . . . .  n - l }  

(all index addi t ions  are modulo  2n ). 

Denote  G¢ as the the graph G ~-~ ( V , E  c). The  
Graphs  G and  G¢ have cyclic s t ruc tures .  I t  is more 
conven ien t  to des ignate  a ver tex  a s t a r t  ver tex and  a 
ver tex an end ver tex and  ' b r eak '  the cyclic s t ruc ture .  
Remove  from E¢ (if they  exist) the edges (Vo,V2), 
(Vo,Va) and  (Vl,V2,_l), ( V l,V 2,_2). Call the resu l t ing  
graph Go' -~- ( V , E c ' ) .  To find an E , - r e q u i r e d  
H a m i l t o n i a n  ci rcui t  in G ,  we will use the graphs  
G'¢, 

A matching in a graph is a set  of edges no two 
of which share a vertex.  A maximal matching is a 
ma tch ing  on the m a x i m u m  n u m b e r  of vert ices in the 
graph. A ma tch ing  is said to be camplcte if a maxi-  
mal  m a t c h i n g  in the graph con ta ins  all vert ices of the 
graph. 

The fol lowing theorem immed ia t e ly  leads to an  
a lgor i thm for f inding an E,-required H a m i l t o n i a n  cir- 
cui t  in G .  

T h e o r e m  4.1 :  Given  the graph G and  G¢' as 
described above.  If a max ima l  ma tch ing  in the graph 
Go '  is a complete  m a t c h i n g  then  there is an E , -  
required H a m i l t o n i a n  ci rcui t  in G .  

P r o o f :  Every  comple te  ma tch ing  in G¢ '  m u s t  
ma tch  v~ wi th  e i ther  v 2 or v 8. Choosing ei ther  of 
these edges in the m a t c h i n g  and  dele t ing edges on 
matched  vert ices we are left  wi th  a graph hav ing  the 
same s t ruc tu re  as our  original  graph. This  gives the 
complete  m a t c h i n g  M the proper ty  t h a t  every edge 
m E M connects  two edges E E , ,  and  there are no 
dis jo in t  cycles. The  edges E ,  U M comprise a Ham-  
i l ton ian  ci rcui t  in G .  | 

To de te rmine  whe ther  there is an E , - r e q u i r e d  
H a m i l t o n l a n  ci rcui t  in  G simply, compute  the 

ma x i ma l  m a t c h i n g  of G¢' . If the  m a t c h i n g  is com- 
plete  t hen  an E e- requi red  H a m i l t o n i a n  circui t  in G 
can  be easily cons t ruc ted .  If there  is no complete  
m a t c h i n g  then  reun i te  the edges removed from G¢. 
Now remove  from G c (if it  exists) the edges (vl,v2), 
(vpva)  and  (Vo,V~n_l), (Vo,V2n_~) to ob ta in  Go '  ' ----- 
( V , E c '  ' ). C o m p u t e  the max ima l  m a t c h i n g  in 
G¢ '  ' If there is a comple te  m a t c h i n g  then  there is 
an  Es - r equ i r ed  H a m i l t o n i a n  ci rcui t  in G .  Otherwise 
it  can be concluded t h a t  there  is no H a m i l t o n i a n  Cir- 
cui t  In G .  

A bipartite graph is a graph whose vert ices  V 
can be divided in to  d i s jo in t  subsets  W and U such 
t h a t  every edge in the graph has one e n d p o i n t  in W 
and  one e n d p o i n t  in U .  I t  is easy to see t h a t  Go '  
and  G c '  ' are b ipa r t i t e  graphs.  The  vert ices 

{Vo, Vl,V4,Vs, Vs, Vo } C W, and 
{v2,va, v,,v7,V,o,VH ... '"} __C U. I'n [Hopcroft and 
Karp]  an efficient a lgor i thm based on a ne twork  flow 
a lgor i thm is given to find maximal  ma tch ings  in 
b ipa r t i t e  graphs.  The  complexi ty  of this  a lgor i thm is 
o ( I  v I [El ). in the p rob lem considered here 
the edges and  the vert ices  are bo th  of card ina l i ty  
O ( n  ) so the r u n n i n g  t ime is O( n a/2 ). 

The  s t ruc tu re  of the graphs G¢ t and  G¢ t 
pe rmi t  a more efficient me thod  of de t e rmin ing  
whe ther  there is a comple te  ma tch ing .  This  algo- 
r i t hm will now be discussed. 

A weighted graph has a real va lue  w(e ) assigned 
to each edge e of the graph.  This  a lgor i thm com- 
putes  the m i n i m u m  weight  m a t c h i n g  in the weighted 
graph G, ----- ( V , E , ) .  V is defined as above and:  

E, = i = o . . . . .  2 n - l }  

LJ i = o  ..... n - l }  

U { ( "  21"t'1"{) 21' "t")' i = 0 ..... n - - l } .  

Assign weights  w ( c )  ~-~ 1 if ¢ q E ¢ '  and w(¢)  
---~ 2 if e ~ E¢* . The m i n i m u m  weight  complete  
m a t c h i n g  in G, is compu ted  as follows: 

i 

A L G O R I T H M  M A T C H  

. - -  w ( v , , % ) ;   [31 . - -  w C v l , v 3 ) ,  
f o r i  ~--- 2 t o  n-1 

d o  b e g i n  
w[2i] "-- min(w[2i-1]  + w(v~_~,v2i ), 

w[2i-2] + w(v2i_t,v21)); 
w [ 2 i + l ]  ~ min(w[2 i - l ]  + w(v2¢_2,v~i ), 

w[2i-2] + w(v2~_l,v~i)) 
end  ; 

[2 *-- min(w[2n-1]  + w(va,_2,v0),  
~ [2n -2 ]  + w(v~._ .Vo)) ;  
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The cost of the m i n i m u m  weight  m a t c h i n g  is 
kep t  in 12. If the cost is n t hen  a complete  m a t c h i n g  
exists in Gc '  , o therwise there  is no comple te  match-  
ing. To  prove the  a lgor i thm correct  and  show t h a t  
O(n  ) opera t ions  are used is s t ra igh t  forward. To  
ob t a in  in O ( n )  t ime,  the edges of the comple te  
ma tch ing  M = ( m l , m  2 ..... mn) ,  the following s imple 
procedure  can be used. 

A L G O R I T H M  O B T A I N  

k ~ - - 0 ;  
f o r  i *-- n d o w n t o  1 

i f  w[2i-2] = ~ - w(v2~_l,v k ) 
t h e n  

m i 4--- (v2~_l,v k); ~ ~-- ~ -  1; k ~-- 2 i - 2  
else 

rn~ ~ (v~_2 ,v  k); f~ ~-- f~ - 1; k *-- 2 i -1 ;  

Assume a comple te  m a t c h i n g  in G,  has been  
found.  A direct  consequence  of the previous  resul t  is 
t ha t  a s imple  c i rcui t  on S ,  t h a t  has m i n i m u m  perime-  
ter  can be de te rmined .  A weighted  graph G~ ~-~ 
( V , E  t ) is cons t ruc ted .  E l is defined as E ,  except  for 
the weight  ass ignments .  Let  the Euc l idean  l eng th  of 
a cand ida te  be the weight  given to the cor responding  
edge E E l ,  and,  E E c '  • For  any  edge E El ~ Ec I 
assign a weight  of co. F i n d i n g  a m i n i m u m  weight  
complete  ma tch ing ,  in GI reveals  a s imple c i rcui t  of 
m i n i m u m  per imeter .  

The  s imple c i rcui t  which encloses the m i n i m u m  
area  can  also be found  by us ing a weighted graph.  
The  weights  assigned to edges in G hinge on the 
obse rva t ion  t h a t  the a rea  of a s imple  polygon Q ,  is 
the area  of C H ( Q )  less the sum of the areas of the 
polygonal  regions t h a t  cons t i tu te  the difference 
be tween  C H ( Q )  and  Q .  Denote  the polygonal  
regions t h a t  cons t i tu t e  the  difference be tween  CH(Q ) 
and  Q as convex deficiency polygons of Q .  The  con- 
vex deficiency polygons of every s imple c i rcui t  on S ,  
consist  of two segments  s i , si+~ and  the a u g m e n t i n g  
segment  connec t ing  8; and  ss.+l. (If the a u g m e n t i n g  
segment  happens  to connec t  two convex hul l  ver t ices  
we can conven ien t ly  define this  as a zero area  convex 
deficiency polygon.)  Therefore  every cand ida te  
describes an un ique  convex deficiency polygon.  
Assign weights  to G ,  giving the weighted graph G a 
where edges in Ga corresponding  to cand ida tes  are 
given weights  equal to the nega t ion  of area  of the 
deficiency polygon descr ibed by t h a t  cand ida te .  For  
edges ~ E¢ ~ assign a weight  of 1. A comple te  
ma tch ing  in Ga wi th  m i n i m u m  weight ,  is a s imple 
circuit  t h a t  encloses the smal les t  area. 

5. F i n d i n g  I n t e r s e c t i o n s  o f  C a n d i d a t e s  a n d  

Segments. 

D e t e r m i n i n g  c a n d i d a t e - s e g m e n t  in te rsec t ions  is 
a necessary step to o b t a i n  the final set of candidates ,  
as described in sect ion 3. I t  was s ta ted  in sect ion 3. 
t h a t  this  could be computed  in O(n  log n )  t ime.  In 
this  sect ion the detai ls  of this a lgor i thm are 
described.  

One  possibi l i ty  to consider  is to compute  all 
s egmen t  intersect ions•  G i ve n  a set  of n line segments  
in the  p lane  the a lgor i thm of Ben t l ey  and O t t m a n n  
[Bentley and  O t t m a n n ]  can be used to repor t  all pair- 
wise in tersect ions ,  in O ( n  log n + k log n ) t ime,  
where k represents  the n u m b e r  of pairwise intersec- 
t ions  found.  U n f o r t u n a t e l y  the n u m b e r  of pairwise 
in tersect ions ,  ma y  be large. In fact  k may  be as 
large as O(n2) .  In  F igure  7 an  example  i l lus t ra t ing  
this  p h e n o m e n o n  is shown. Th i s  example  can be gen- 
eralized, showing t h a t  as m a n y  as O ( n  2) in tersec t ions  
m a y  occur.  

I t  is no t  necessary to compu te  all pairwise seg- 
m e n t  in te r sec t ions  for the p rob lem considered here. 
All  t h a t  is required is to find cand ida t e s  t h a t  are 
in te rsec ted  by segments .  Since there  are a l inear  
n u m b e r  of cand ida te s  the  o u t p u t  is a t  most  linear• 
Clear ly  we need no t  compute  all O ( n  2) palrwise inter-  
sections.  

Cons ider  two sets of d i s jo in t  l ine segments  A 
and  B .  I t  will be useful  to be able to repor t  in 
O ( n  log n )  t ime  all segments  of A t h a t  are inter-  
sected by any  segmen t  of B .  

A n  a lgor i thm used to accompl ish  this, is based 
on the l ine sweep technique  of Shamos  and Hoey 
[Shamos and  Hoey]. The  a lgor i thm scans  a ver t ica l  
l ine from left to r ight  while m a i n t a i n i n g  a ba lanced  
tree t h a t  represents  the order  in the  y d i rec t ion of the 
segments  in tersec ted  by the s c a n n i n g  line. Denote  
this  as the y-order  of the segments .  The  ba lanced  
tree allows inser t  and  delete opera t ions  on the y-order  
in O(log n ) t ime.  In te r sec t ing  l ine segments  will b'e 
ad j acen t  in this ordering• The  y-order  changes when;  
the left  e n d p o i n t  of a segment  is encoun te red ,  and  the 
s egmen t  is inser ted  in to  the y-order ;  the r ight  end- 
po i n t  is encoun te red ,  and the s e g m e n t  is deleted from 
the  y-order;  or two segments  cross thus  i n t e r chang ing  
the i r  re la t ive  posi t ion in the y-order .  In the problem 
of our  concern,  any  t ime an in te r sec t ion  is found once 
of the  in te rsec ted  edges can be dispensed with.  go 
the case of segments  chang ing  the i r  re la t ive  posi t ion 
in the y-order  does no t  occur.  A pseudo code algq- 
r i t h m  follows: 

A L G O R I T H M  S E G M E N T  I N T E R S E C T I O N  

step 1: 
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step 2: 

t r averse  the endpo in t s  of  A and B f rom lef t  
to r ight ;  
f o r  each endpo in t  d o  

case left  endpo in t  of  s e g m e n t  s : 
insert  s in to  y-order ;  
Check  if s egmen t s  above  or  below in y- 
order  in te rsec t  s ; 
i f  in te r sec t ion  found t h e n  b e g i n  

r epor t  in tersec t ion;  
i f  s E B then  s ~-- edge E A t h a t  was 
in te rsec ted ;  g o t o  s tep 2 

e n d ;  
c a s e  r ight  endpo in t  of s egmen t  s : 

g o t o  s tep 2; 

r e p e a t  
r e m o v e  s f rom y-order ;  tes t  s egment s  above  
and below it  for  in tersec t ion;  
i f  in te r sec t ion  found t h e n  repor t  in tersec-  
t ion;  

8 *-- edge E A t h a t  was in te rsec ted ;  
u n t i l  no in te r sec t ion  found;  
g o t o  s tep 1; 

The  p roof  of  correc tness  and complex i ty  of  
O(n  log n )  is a s t r a igh t  forward  extens ion  of  the 
resul t  of  Shamos  and Hoey.  N o w  i t  will be shown 
how this a lgo r i thm can be appl ied  to the  cand ida te -  
segment  in te r sec t ion  problem.  

Reca l l  there  are segmen t s  S ------ (So,S 1 . . . . .  s , _ l ) ,  
with  endpoin t s  in P - ~  ( P o , P l  . . . . .  P2,-1),  where  each 
segmen t  E S has a t  least  one endpo in t  on C H ( P ) .  
As before assume t h a t  segment s  8e and 8~+~ , i ~--~ 0, 
.... n - l ,  ( addi t ion  modulo  n) are ne ighbors  on 
C H ( P ) .  Deno te  the endpo in t s  of each s egmen t  8s" by 
st -~- (sih,se ~) where  s~h denotes  an endpo in t  of  S on 

C H ( P ) .  T h e  cand ida tes  considered for in te r sec t ion  
can now be expressed as C 

Co U c, U C2 U C . ,  where  Co = (sih,ss'+,j,), 
C~ = (Sik,8~+~k), 0 2  = (Slk,8;+U), 0 8  = (%,8;+U),  
i ~ 0  . . . . .  n - 1 .  

Cand ida t e s  f rom C o do no t  have  to be tes ted  
for in tersec t ion ,  since they  are on the  convex  hull.  
Hand l ing  cand ida tes  f rom the o the r  classes requires  
an e x a m i n a t i o n  of different  cases of  cand ida te  inter-  
sections.  The  t e rmino logy  of sect ion three  will be 
used to d is t inguish  cand ida t e  in tersect ions .  I t  is easy 
to see t h a t  cand ida te s  f rom wi th in  the same class C i ,  
i~---1,3 canno t  in te r sec t  in a case 1 in tersec t ion .  
Blocking  candida tes ,  those cand ida te s  which  in te rsec t  
in a case 2 in te rsec t ion  can be p r e d e t e r m i n e d  and 
e l imina ted  using the  m e t h o d  sugges ted  in sect ion 3. 
Thus  af ter  all b locking  cand ida te s  have  been r e m o v e d  
the only way  two  cand ida te s  f rom wi th in  the same 
class C,. can in te r sec t  is in a case 3 in tersec t ion .  

Reca l l  in l e m m a  3.3 i t  was shown t h a t  two cand ida tes  
i nvo lved  in a case 3 in te r sec t ion  necessar i ly  in tersec t  
a s e g m e n t  E S .  F u r t h e r m o r e  the  s e g m e n t  E S is one 
of  four  s egmen t s  n a m e l y  the  s egmen t s  connec t ed  by 
the in te r sec t ing  cand ida tes .  The re fo re  the decomposi -  
t ion of  C in to  the  classes C~, C 2 and Cs  can be used 
to d e t e r m i n e  c a n d i d a t e - s e g m e n t  in tersec t ions .  We 
can use a s l ight ly  modif ied A L G O R I T H M  S E G M E N T  
I N T E R S E C T I O N .  W i t h  an i npu t  of cand ida tes  in 
C i i ~-  1,3, and S any  in te r sec t ion  found is e i ther  a 
c a n d i d a t e - s e g m e n t  in te r sec t ion  which  can easily be 
handled ,  or  a c a n d i d a t e - c a n d i d a t e  in te r sec t ion  of case 
3. W e  are assured one of  these cand ida t e s  also inter-  
sects  a s egm en t  E S ,  and in c o n s t a n t  t ime  we can 
d e t e r m i n e  this  cand ida te .  A n y  c a n d i d a t e - c a n d i d a t e  

in te r sec t ion  we m a y  e n c o u n t e r  is also a candida te -  
s egm en t  in te rsec t ion  and can be easi ly handled  as 
such. 

There fo re  we can conc lude  t h a t  all in tersec t ions  
of  cand ida tes  and segmen t s  can be de t e rm ined  in 
O(n  log n )  t ime.  

An  a l t e rna t e  m e t h o d  to  c o m p u t e  candida te-  
s e g m e n t  in te rsec t ions  has been proposed  by Suri  
[Suri]. By  using a c lever  o b s e r v a t i o n  and  the  t r iangu-  
la t ion  a lgo r i t hm of T a r j a n  and  Van  W y k ,  Suri  can 
d e t e r m i n e  all c a n d i d a t e - s e g m e n t  in te rsec t ions  in O(n) 
t ime.  

In the  nex t  sect ion the  resul ts  of  this  paper  are 
summar i zed .  

6. S u m m a r y .  

The  ma in  resu l t  of  this  pape r  is: G iven  a set  of 
CH -connec t ed  segmen t s  S an O(n  log n ) a lgor i thm 
is p resen ted  t h a t  r e tu rns  a s imple  c i rcui t  on the seg- 
ments ,  if  such a s imple  c i rcui t  is a d m i t t e d  by S .  

A L G O R I T H M  S I M P L E  C I R C U I T  

I n p u t  : A set  of s egmen t s  S wi th  endpoin t s  P .  

O u t p u t :  A set  of a u g m e n t i n g  segmen t s  R ,  where  T 
R L j s  represen ts  a s imple  circui t .  If there  is no 

s imple  c i rcui t  on S then  repor t  this. 

s tep  1: 
C o m p u t e  the  cor respond ing  graph  G and get  
G '  s s u b g r a p h s  G¢ , G c~ and Gel  t ; 

s t e p  2:  

C o m p u t e  a m a x i m a l  m a t c h i n g  M in G c ~ ; 
i f  M is no t  a comple t e  m a t c h i n g  t h e n  

C o m p u t e  a m a x i m a l  m a t c h i n g  M in C, c ~ ~ ; 
i f  M is a comple t e  m a t c h i n g  t h e n  

E0 LJ M is a H a m i l t o n i a n  c i rcui t  

in G ,  and R cor responds  to  the  edges M in G ; 
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o t h e r w i s e  repor t  no s imple  circuit;  

T h e o r e m  8.1" G iven  a set  S ,  of n CH-connec ted  
segments  in the p lane  i t  can be de te rmined  whe the r  
S admi t s  a s imple  circui t ,  in O(n  log n ) operat ions ,  
and  the c i rcui t  will be del ivered in the  same t ime 
bound .  

The  resul ts  of the  previous  sect ions lead up to 
the proof of this  theorem.  I t  will now be shown tha t :  

T h e o r e m  6.2:  O(n  log n )  is necessary to del iver  a 
s imple c i rcui t  on a CH-connec t ed  set  of segments .  

P r o o f :  The  p rob lem will be reduced to sor t ing  real 
number s .  G iven  a set  of n d i s t inc t  reals, r~, i~O ,  
.... n - 1 .  We  can de te rmine  the m i n i m u m  and  max-  
i m u m  values ,  deno ted  by r t and  r r respect ively,  in 
O ( n )  t ime.  C o n s t r u c t  n ver t ica l  l ine segments  8~, 
i = 0  . . . . .  n - l ,  where st has endpo in t s  (r~,0), (r; ,1), 
except where i = I , r  the endpo in t s  are ( r  t ,0 ) , ( r  t ,2)  
and  (r r ,0),(r r ,2). By inspec t ion  one sees t h a t  these 
segments  are CH-connec ted  and  they a d m i t  a s imple 
circuit .  T rave r s ing  the segments  in  the order  d ic ta t ed  
by the a u g m e n t i n g  segments ,  a cyclic p e r m u t a t i o n  of 
the real n u m b e r s  in sor ted order,  is ob ta ined .  I t  is 
well known  t h a t  the lower b o u n d  for sor t ing  is 
O(n  log n ) .  Therefore  O(n  log n )  is necessary to 
del iver  a s imple  c i rcui t  on  a CH-connec ted  set  of seg- 
ments .  | 

T h e o r e m  6.3 A L G O R I T H M  S I M P L E  C I R C U I T  is 
op t imal .  

P r o o f -  Fol lows i m m e d i a t e l y  from theorems  6.1 a n d  
s . 2 .  II 
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