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Abstract

We give a systematic study of Hamiltonicity of grids—the graphs induced by finite subsets of

vertices of the tilings of the plane with congruent regular convex polygons (triangles, squares, or

hexagons). Summarizing and extending existing classification of the usual, “square”, grids, we

give a comprehensive taxonomy of the grid graphs. For many classes of grid graphs we resolve

the computational complexity of the Hamiltonian cycle problem. For graphs for which there

exists a polynomial-time algorithm we give efficient algorithms to find a Hamiltonian cycle.

We also establish, for any g ≥ 6, a one-to-one correspondence between Hamiltonian cycles

in planar bipartite maximum-degree-3 graphs and Hamiltonian cycles in the class Cg of girth-

g planar maximum-degree-3 graphs. As applications of the correspondence, we show that for

graphs in Cg the Hamiltonian cycle problem is NP-complete and that for any N ≥ 5 there

exist graphs in Cg that have exactly N Hamiltonian cycles. We also prove that for the graphs

in Cg, a Chinese Postman tour gives a (1 + 8

g
)-approximation to TSP, improving thereby the

Christofides ratio when g > 16. We show further that, on any graph, the tour obtained by

Christofides’ algorithm is not longer than a Chinese Postman tour.
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1 Introduction

Grid computations are at the core of a large variety of algorithms in computer graphics, numerical

analysis, computational geometry, robotics, and other fields. The main role played by grids in

computer science is to approximate a continuous domain with a discrete point set and/or a graph.

Grids are also of theoretical importance, because many results in combinatorics, design and analysis

of algorithms, graph theory, and other disciplines use grids as “testbeds”. One particular example of

such usage is the Hamiltonian Cycle Problem (HCP). The computational complexity of the problem

for general graphs was established in the seminal paper of Karp [29]. The NP-completeness of HCP

in grid graphs was proved a decade later [27, 28, 34]. Hamiltonicity of grid graphs has been the

subject of extensive research [2, 4, 27,28,34,41], including several theses [9, 10, 15,17,42].

Usually, the term grid graph refers to the square grid — the grid defined by a subset of the

integer lattice (the vertices of the tiling of the plane with unit squares). Triangular’grids are defined

by a subset of vertices of the tiling with equilateral triangles; they are a special class of (triangular)

“mesh”, a structure commonly used in applications (e.g., graphics). Finally, hexagonal grids arise

from tilings of regular hexagons. Triangular grids and hexagonal grids have received far less study

than square grids. In this paper we study all three classes of grid graphs. Table 1 summarizes our

results, as well as some prior results, on the HCP in grid graphs. The exact definitions of “thin”,

“superthin”, “polygonal’, and “solid” are given in Section 2 below.

1.1 Hamiltonicity and Girth

The girth of a graph is the length of the shortest cycle in it. As with other NP-complete problems,

a lot of effort has been devoted to establishing “simplest” classes of graphs for which the HCP

remains NP-hard. The classical result in this direction is the hardness of the problem in planar

cubic graphs [20] (a graph is cubic if every vertex has degree exactly 3). Another important step,

also taken in [20], is establishing that the HCP in planar cubic graphs remains hard even if restricted

to graphs of girth as high as 5. In this paper we extend this result by showing that the problem

remains hard in planar graphs of arbitrary girth g ≥ 6. Since the maximum possible girth of a

planar cubic graph is 5, instead of considering cubic graphs, we restrict our attention to planar

graphs of maximum degree 3 (having all vertices with degrees ≤ 3).

Existence of multiple Hamiltonian cycles has been the subject of extensive research too, see [24,

Chapter 4] for a survey. Sufficient conditions on the degrees of the vertices of a graph are known,

under which the graph, if Hamiltonian at all, contains more than one Hamiltonian cycle: any vertex

has odd degree [39], any vertex has the same degree r > 48 [21], maximum degree is bounded from

below [25], the degree of any vertex in a part of a bipartite graph is at least 3 [40] (and, in

general, the number of Hamiltonian cycles is at least exponential in the maximum degree [40]).

Thomassen [40] also considered bipartite graphs of large girth, and, as a counterpart to the above

results, showed that in a Hamiltonian cubic graph (or when one of the two parts has each vertex

of degree 4) the number of Hamiltonian cycles increases (at least) exponentially as a function of

girth. All of these conditions bound the minimum/maximum degree of the graph vertices from

below and do not restrict the graph to be planar. Also, the number of the Hamiltonian cycles is
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Grid Triangular Square Hexagonal

General NPC, Thm. 3.1 NPC [11, 34] NPC, Thm. 5.4

Degree- deg≤ 4: deg≤ 3: deg≤ 2:

bounded NPC, Thm. 3.3 NPC [11, 34] P

Thin NPC, Cor. 3.2 NPC, Obs. 2.4

Superthin P, Thm. 4.2 P, Cor. 5.7

Polygonal P, Thm. 3.8 NPC, Cor. 5.5

Solid P, Cor. 3.9 P [41]

Table 1: Hardness of the Hamiltonian cycle problem in grids. See Section 2 for definitions of the

grid classes. Our results are in bold. The blanks correspond to open problems.

only estimated. Here we show that for any g ≥ 6, N ≥ 5 there exist planar graphs of girth g with

maximum degree 3, having exactly N Hamiltonian cycles.

Other related work includes [31], where Hamiltonian cycles in torical grids are considered, and

works of Bjorklund and Husfeldt [8], Gabow [18], and Feder and Motwani [16], who showed that

“long” cycles can be found in graphs that have “very long” cycles.

Our Contributions

To the best of our knowledge, this paper is the first to address Hamiltonicity of different kinds of

grids in full generality1. Refer to Table 1. We also give several results on Hamiltonian cycles in

high-girth graphs. The following list summarizes our results.

• In Section 2 we define various types of grid graphs, note some relations between them, and

make preliminary observations about their Hamiltonicity.

• In Section 3 we prove that the HCP in triangular grid graphs is NP-complete. The grid used in

the reduction is thin, which implies NP-completeness of the problem in thin triangular grids.

Further, we show that the problem remains NP-complete even if restricted to grids with

maximum degree 4. We prove that, except for one counterexample, any polygonal triangular

grid without local cut vertices is Hamiltonian.

• In Section 4 we prove that in a superthin square grid there exists at most one Hamiltonian

cycle, and that the HCP in superthin square grids is polynomially-solvable.

• In Section 5 we prove that the HCP in hexagonal grid graphs is NP-complete. The grid used

in the reduction is polygonal, which implies NP-completeness of the problem in polygonal

hexagonal grids. We show that in a superthin hexagonal grid there exists at most one 2-

factor. This implies that there is a polynomial-time algorithm for the HCP in superthin

hexagonal grids.

1In [5, 26, 36] we announced results from Sections 3, 5, 6; [22, 23, 33] independently obtained results, similar to

some of ours from Section 3.
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• In Section 6 we prove that for g ≥ 6, the HCP is NP-complete for planar graphs of maximum

degree 3 and girth g. We also prove that for any integer N ≥ 5 there exist planar graphs of

maximum degree 3 and girth g that have exactly N Hamiltonian cycles. We show that the

TSP in planar graphs of maximum degree 3 and girth g has a (1+ 8
g
)-approximation given by

computing an optimal Chinese Postman tour. We prove that in any graph the tour produced

by Christofides’ algorithm is always of length at most that of a Chinese Postman tour.

Our proofs of Hamiltonicity are constructive and imply efficient algorithms for computing Hamil-

tonian cycles when they exist.

2 Grids Taxonomy

We first recall some definitions related to (square) grid graphs and introduce some new notions.

We then extend the definitions to triangular and hexagonal grids.

Induced graphs. Throughout the paper we will be concerned with graphs “induced” by finite

point sets. We say that a graph G = (V, E) is induced by a set S ⊂ R
2 if the vertices of G

are the points in S, and the edges of G connect the vertices that are at distance 1; i.e., V = S,

E = {{i, j} | i, j ∈ S, |i− j| = 1}. To avoid trivialities, all graphs are assumed to be connected and

have no degree-1 vertices.

Definition 2.1. Let Z� ≡ Z
2 be the infinite square (integer) lattice, i.e., the set of vertices of the

tiling of R
2 with unit squares. A square grid graph, or square grid, is a plane graph induced by a

subset of vertices of Z�.

Similarly we define triangular and hexagonal grids:

Definition 2.2. Let Z∆ (resp., Z7) be the vertices of the tiling of the plane with unit-side equilateral

triangles (resp., regular hexagons). A triangular grid graph, or triangular grid, (resp., hexagonal

grid graph, or hexagonal grid) is a plane graph induced by a subset of vertices of Z∆ (resp., Z7).

We use the general term grid graph, or simply grid, to refer to any of the three types of grid

graphs described above.

We define a pixel as a grid graph that is a simple cycle of minimal length; simple cycles of

length three, four, and six are pixels in the triangular, square, and hexagonal grids, respectively.

In the following X denotes the (infinite) set of all pixels of a certain type of lattice. (Note that we

use the term “pixel” to denote the boundary of a tile – triangle, square, or hexagon.)

Holes. Let G = (V, E) be a grid graph. A bounded face that contains a lattice point in its interior

is called a hole. We denote by h the number of holes in G.

Let C0 be the closed walk that separates a grid graph G = (V, E) from its unbounded face. We

call C0 the outer boundary of G. Let C1, . . . , Ch be the boundaries of the holes; each boundary is

a cycle in G. Let B = {C0, C1, . . . , Ch} be the boundary of G (see Figures 2, 3, and 4). A vertex
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v ∈ V is called boundary if it belongs to a boundary cycle. The non-boundary vertices are called

internal. Note that in a triangular grid a vertex is boundary if and only if its degree is less than 6;

a square (resp., hexagonal) grid may have boundary vertices of degree 4 (resp., 3).

Solid Grids. A grid graph is called solid if it has no holes; i.e., if every bounded face is a pixel.

See Figures 2, 3, and 4 for examples of solid grid graphs.

Umans and Lenhart [41] proved that the Hamiltonian cycle problem is polynomially solvable

for solid square grids. Solid square grids were introduced as a discrete analog of simple rectilinear

polygons [4, 41].

Cuts and Local Cuts. A vertex v ∈ V is called a cut if its removal disconnects G. Vertex v is

a local cut if v is a cut or if the number of holes in G \ v is less than the number of holes in G; i.e.,

removal of a local cut “merges” holes. Because a solid grid has no holes, it has no local cuts.

Polygonal Grids. A polygonal grid is a grid with no local cut.

It will be useful to characterize polygonal grids as an assembly of a collection of pixels.

Proposition 2.3. Let G = (V, E) be a polygonal grid. G can be defined as the union of a set of

pixels χ ⊂ X such that V is the union of the vertices of pixels in χ and E is the union of the edges

of pixels in χ.

Proof. We take χ as the set of pixels with the following property: for any pixel p ∈ χ all edges (and

hence – all vertices) of p are in G. We prove that every vertex and every edge of G is contained in

at least one pixel from χ.

Indeed, consider a vertex v ∈ V . Since G is connected, there is a vertex u ∈ V such that uv ∈ E

(Figure 1). Suppose that both pixels (call them p1 and p2) that have uv as an edge are not in χ.

Then pi has a vertex ai such that ai /∈ V , i = 1, 2. Now, if a1, a2 belong to different holes (or one

of them belongs to a hole and the other to the unbounded face) of G, then removal of v decreases

the number of holes in G. On the other hand, if both a1, a2 belong to the same hole (or to the

unbounded face), then there is an a1-a2 path γ that does not intersect any edge of G (here, γ is a

path in the plane, not a path in G). Let G′ be the part of G lying within the cycle a1-u-a2-γ-a1;

the part is not empty because it contains v. Removal of u disconnects G′ from the rest of G, and

thus u is a cut – a contradiction.

Similarly, if there is an edge of G that is not an edge of at least one pixel from χ, then one of

the edge’s incident vertices is a local cut.

In light of the above proposition, we can say that for every polygonal graph G there exists a

set of pixels χ ⊂ X that defines G.

Dual Grids. Let G be a polygonal grid and let χ be the set of pixels that defines G. The dual

grid of G is a graph whose vertices are the pixels of χ. The edges of the dual grid connect two

vertices if the corresponding pixels share an edge (see Figure 5). The dual grid is a subgraph of
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γ

Figure 1: Either removal of v decreases the number of holes, or u is a cut.

Figure 2: Example square grids: solid (left), with holes (middle), and polygonal (right). Thick

lines mark the boundary.

Figure 3: Example triangular grids: solid (left), with holes (middle), and polygonal (right). Thick

lines mark the boundary.
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Figure 4: Example hexagonal grids: solid (left), with holes (middle), and polygonal (right). Thick

lines mark the boundary.

the graph-theoretic dual of G. We assume that the vertices of the dual grid are embedded at the

centers of the faces defined by the corresponding pixels.

Remark. The dual grid of a polygonal square grid is a square grid, the dual grid of a polygonal

triangular grid is a hexagonal grid, and the dual grid of a polygonal hexagonal grid is a triangular

grid. Notice that in the triangular and hexagonal cases the distances between adjacent vertices in

the dual are not equal to one, but, upon scaling, can be assumed to be grid graphs.

Thin Grids. A polygonal grid is called thin if all of its vertices are boundary vertices (see

Figure 7). Equivalently, a thin grid does not have a “window” (Figure 6) as an induced subgraph.

Superthin Grids. The dual grid of a thin grid is a superthin grid. Equivalently, a superthin

grid is a grid that contains no pixels (Figure 7). Every vertex of a superthin grid is a local cut.

Degree-Bounded Grids. A grid is called subcubic if the maximum degree of a vertex in it is 3.

Papadimitriou and Vazirani [34] proved that the Hamiltonian cycle problem on square grids is NP-

complete, even when restricted to subcubic grids; Buro [11] gave an alternative proof. If a square

grid is subcubic, it does not have a “window” (Figure 6, left) as an induced subgraph; hence, a

subcubic square grid is thin.

Observation 2.4. The Hamiltonian cycle problem on thin square grids is NP-complete.

A triangular grid is called subquartic (resp., subcubic) if the maximum degree of a vertex in it

is 4 (resp., 3). We do not have any results specific to triangular grids with maximum degree 5, so

we do not introduce a name for such grids.

All hexagonal grids are subcubic, and Hamiltonicity of a graph with maximum degree 2 is trivial.

Hence, we do not introduce names for degree-bounded hexagonal grids.
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Figure 5: Example dual grids: square (left), triangular (middle), and hexagonal (right). Thick lines

mark the boundary. The polygonal grids are represented with solid circles and solid lines. The

dual grids are represented with hollow circles and dashed lines.

Figure 6: Forbidden subgraphs of thin grids. The duals are the forbidden subgraphs of superthin

grids.

Figure 7: Thin grids and their (superthin) duals: square (left), triangular (middle), and hexagonal

(right). Thick lines mark the boundary. The polygonal grids are represented with solid circles and

solid lines. The dual grids are represented with hollow circles and dashed lines.
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Figure 8: Relationships among grid classes. The relations specific to triangular (resp., square) grids

are marked with triangles (resp., squares).

2.1 Summary

The relationships among different classes of grids is shown in Figure 8. Of course, a hexagonal grid

is also a superthin triangular grid, but we think that the former is an important enough special

case of the latter to be considered separately.

3 Hamiltonian Cycles in Triangular Grids

In this section we show that the HCP for triangular grids is NP-complete, even if the maximum

degree of the grid is 4. Next we prove that a polygonal triangular grid is (almost) always Hamilto-

nian.
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Figure 9: G′ and the embedding.
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Figure 10: The gadgets.

HCP for Triangular Grids is NP-complete

Itai et al. [27] and Papadimitriou and Vazirani [34] proved that the HCP in square grid graphs is

NP-complete by a reduction from HCP in undirected planar bipartite graphs with maximum degree

3 [27]. We follow the idea of [27, 34] to show that the HCP in triangular grids is NP-complete.

Let G′ be an undirected planar bipartite graph with maximum degree 3; let the nodes of G′ be

2-colored “black” and “white”. We say that G′ has nodes and arcs, saving the terms vertices and

edges for the triangular grid graph G that we build from G′ as follows. First, G′ is embedded in the

plane, with the arcs drawn as polygonal paths having segments at angles 0, 60, or 120 degrees with

respect to the x-axis, so that the turn angles are 120o at each corner along an embedded polygonal

arc (Figure 9). The embedding is then represented by a triangular grid graph G with nodes and

arcs simulated by the gadgets shown in Figure 10.

In detail, the nodes are represented by unit triangles; the arcs are simulated by “tentacles”.

The triangles corresponding to the black (resp., white) nodes of G′ are called black (resp., white).

A tentacle arc is connected to the black triangle with a “pin” connection (Figure 11, left) and to

the white triangle with an “arm” connection (Figure 11, right); the terms are borrowed from [34].

The only means of traversing a tentacle is either by a return path (Figure 12, left) or by a (kind

of a) cross path (Figure 12, right). Of course, there may be many different cross paths, but the
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Figure 11: A “pin” connection (left) and an “arm” connection (right). The node gadgets are shown

with hollow circles.
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Figure 12: The paths.

essential difference between the return and the cross paths is that the former connect the tentacle

vertices aligned along a line, while the latter “jump back and forth” between the two lines that

bound the tentacle. The idea of the difference is that a cross path connects the two node gadgets

at its ends, while a return path just traverses the vertices in the tentacle, returning to the same

end from which it started.

Theorem 3.1. The HCP for triangular grid graphs is NP-complete.

Proof. If G′ has a Hamiltonian cycle, then G has one that traverses the black and white triangles of

G in the order of the corresponding arcs of G′ in the cycle. It traverses by cross paths the tentacles

that correspond to arcs in the cycle. The remaining tentacles are picked up by return paths from

the adjacent white triangles.

Conversely, any Hamiltonian cycle C of G comes from a Hamiltonian cycle of G′ in this way.

Indeed, it is not hard to see, by inspection of Figure 11, that in C any triangle, representing a node

of G′, is attached to exactly two cross paths.

Observe that the grid in the proof of the above theorem is thin. Thus,

Corollary 3.2. The HCP for thin triangular grids is NP-complete.

Subquartic Triangular Grids

Papadimitriou and Vazirani [34] also proved that the HCP in square grid graphs is NP-complete,

even when restricted to graphs of maximum degree 3; Buro [11] gave an alternative proof. In this

section we prove that the HCP in triangular grids is NP-complete, even when restricted to grids of

maximum degree 4.

The graph G constructed in the proof of Theorem 3.1 has certain vertices of degree 5, namely,

the vertices of the white triangles and the inner points of the angles of the tentacles. Figure 13

11



r r
r
r r
r
r r
r
r r
r
r r
r

r r
r

r r
r

r r
r

r r
r

r r
r

r r
rr r
rr r
rr r
rr r
r

r r
r
r r
r
r r
r
r r
r
r r
r

r r
r

r r
r

r r
r

r r
r

r r
r

r r

Figure 13: Left: Modified white triangle. Right: Modified turn of a tentacle.

Figure 14: The only non-Hamiltonian polygonal triangular grid graph: the Star of David.

shows how the construction may be modified so that the resulting graph has vertices of degree 4 or

less.

Theorem 3.3. The HCP for subquartic triangular grids is NP-complete.

Polygonal Triangular Grids are Hamiltonian

The above proof of the hardness of the HCP in triangular grids relied on the grid having local cuts,

e.g. the “black” ends of the tentacles, at the “pin” connections (Figure 10, right). It turns out

that having local cuts is crucial for the hardness of the problem: we prove below that the HCP is

polynomial in triangular grids without local cuts. In fact, the connectivity of a triangular grid is so

high that, with the exception of one particular graph (which we call the “Star of David”, Figure 14),

all triangular grids without local cuts are Hamiltonian.

Arkin, Fekete, and Mitchell [4] gave algorithms to construct short covering tours through square

grids without local cuts, both for solid grids and for grids with holes. Inspired by the ideas from [4],

in [36] we gave an algorithm to find a Hamiltonian cycle in a solid triangular grid. The algorithms

for solid grids [4,36] take the cycle C around the boundary of (the unbounded face of) the grid, and

attach to it all internal vertices. The algorithm for square grids with holes [4] takes the boundary

cycles in B and merges them at a low cost (with few additional edges). In this section we extend

the ideas from [4,36] to the case of triangular grids with holes (but without local cuts). The crucial

observations are the following:

1. One can attach to the cycles in B all internal vertices at the cost of 1 per vertex. This results

in a cycle cover of G in which the cycles are (vertex-)disjoint.
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Figure 15: Cycles Ci and Cj face each other: they can be spliced together by flipping the opposite

edges of the rhombus abcd.

2. A cover of G by vertex-disjoint cycles may be modified so that for any cycle Ci there exists a

cycle Cj , “facing” Ci (Figure 15). By “flipping” the edges of the unit rhombus, to which Ci, Cj

belong, the cycles may be merged; thus, all the cycles can be spliced into one Hamiltonian,

cycle through G.

We formalize and prove these observations in the next two lemmas.

Lemma 3.4. Let V6 be the set of internal (degree 6) nodes of G. Then, unless G is the Star of

David, the cycles in B can be modified, through a sequence of local modifications, into a set of cycles

that visit all vertices in V6. The cost of the modification is 1 additional edge per vertex of V6.

Proof. We modify B by consistently applying three types of local modifications, which we call the

L-, V- and Z -modifications. Let B′ = {C ′, C ′
1, . . . , C

′
h} be the cycles at any particular stage of the

modification; we maintain the invariant that C ′ is a simple cycle within G such that all of the

vertices of G that have not been visited by the cycles in B′ (i.e., V \C ′ \C ′
1 . . . \C ′

h) are inside C ′.

Each modification adds one new vertex to a cycle in B′. The V-modification is applied only when

L cannot be applied; the Z -modification is applied only when no other modification can be applied.

The modifications are “monotone” in that each modification will result in B′ visiting a superset of

the vertices that it previously visited.

We now describe the modifications. Let v ∈ V6 \B′ be an unvisited vertex. The L-modification

is applied as long as there exists a unit equilateral triangle abv such that ab is an edge of a cycle in

B′ (Figure 16). The V-modification is applied only when L cannot be applied and B′ goes around

v as in Figure 17, left; the modified B′ is shown in Figure 17, right. Finally, the Z -modification

is applied only when none of L, V can be applied and B′ goes around v as in Figure 18, left; the

modified B′ is shown in Figure 18, right.

Let u ∈ B′ be a vertex visited by a cycle in B′. We say that u is a blunt (resp., sharp) wedge if

B′ makes a 120o (resp., 60o) turn at u.

We now proceed to showing that all vertices in V6 can be attached to B′ as claimed. Suppose

that at some stage none of the modifications L, V, or Z can be applied, but B′ does not yet go

through all vertices in V6. Then, since G is connected, there exists a vertex v ∈ V6 \ B′ such that
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−→

Figure 16: The L-modification. v is the hollow circle.

−→

Figure 17: The V-modification. v is the hollow circle.

at least one of the neighbors of v (say, u) is a vertex of B′. Observe that the degree of v in G is

6, for otherwise v is a boundary vertex and a cycle in B has been going through v from the very

beginning.

Since L cannot be applied, none of the edges of the hexagon that “surrounds” v is in B′

(Figure 19, left). Since u is in B′, at least one of the edges 1,2 in Figure 19, left, must be in B′.

Since L cannot be applied, at least one of the vertices adjacent to both v and u must be in B′ (say,

the edge 1 in Figure 19, left, is in B′, so the vertex s is in B′ (Figure 19, right)).

Consider three cases:

Case I: s is a sharp wedge like in Figure 20, left. Then V can be applied to attach v to B′

(Figure 20, right).

Case II: s is a sharp wedge like in Figure 21, left. Then Z can be applied to attach v to B′

(Figure 21, right).

Case III: s is a blunt wedge (Fig 22, left). Then, since L cannot be applied, the vertex t (Fig-

ure 22, right), adjacent to both v and s, is in B′.

Now, by considering the same three cases of how B′ goes through t, one can conclude that, unless

t is a blunt wedge (Case III), v can be attached to B′ at a cost of 1 edge. But if t is a blunt

−→

Figure 18: The Z -modification. v is the hollow circle.
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Figure 19: Left: None of the crossed edges may be in B′. At least one of the edges 1,2 (say, 1) is

in B′. Right: Thus, s ∈ B′.
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Figure 20: s is a sharp wedge, and a V may be applied.

s
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Figure 21: s is a sharp wedge, and a Z may be applied.
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Figure 22: Left: s is a blunt wedge. Right: Thus, t ∈ B′, for otherwise L could be applied.

s
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u
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s

t
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x

Figure 23: Left: t is a blunt wedge. Right: Thus, x ∈ B′, for otherwise L could be applied.

wedge (Figure 23, left), then, since L cannot be applied, the vertex x, adjacent to both v and t, is

in B′ (Figure 23, right). Considering the three cases of how B′ goes through x, we conclude that

x is a blunt wedge too, the vertex, adjacent to both v and x is in B′, and is also a blunt wedge.

Continuing, we see that if v cannot be attached to B′ at a cost of 1, the part of B′ that goes around

v is one cycle, C, which is the boundary of the Star of David. Since v is a vertex of G, the cycle

C does not surround a hole in G; thus, C is the outer boundary of G, and G is the Star of David.

An interesting corollary of the above lemma is that G admits a cycle cover by vertex-disjoint

cycles.

Corollary 3.5. Let G be a triangular grid graph without local cuts. Then, unless G is the Star of

David, G admits a cycle cover such that the total length of all cycles in it is equal to the number of

vertices of G.

We prove now that any cycle cover of G by vertex-disjoint cycles can be spliced together into

one Hamiltonian cycle through G. We do it by showing that the cycle cover may be modifiedby

local modifications into another cycle cover in which there exist two cycles that “face” each other.
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v

Figure 24: u ∈ Ci, v ∈ Cj . x ∈ G.

Definition 3.6. Let Ci, Cj be two cycles in G. We say that Ci, Cj face each other if there exists

a unit rhombus abcd, a, b, c, d ∈ V with ab ∈ Ci, cd ∈ Cj (see Figure 15).

Lemma 3.7. Let B be a set of vertex-disjoint cycles going through all vertices of G. Then there

exist two cycles in B that can be modified into cycles that face each other.

Proof. Because G is connected, there must exist two vertices, u and v, adjacent in G, belonging to

different cycles, say u ∈ Ci, v ∈ Cj . Since G is local-cut-free, one of the nodes of the grid adjacent

to both u and v must be in G (Figure 24). In other words, there must exist a unit equilateral

triangle uvx within G whose vertices are visited by more than one cycle in B.

Consider two cases:

Case I: One of the edges of the triangle belongs to a cycle in B (Figure 25, left). Suppose that

ux ∈ Ci, v ∈ Cj . If any of the crossed edges in Figure 25, left, is in B, then the cycles Ci and

Cj already face each other without any modifications; thus, assume that the crossed edges

are not in B. This leaves only two edges of G that could be adjacent to v in B (Figure 25,

center). This implies that if any of the edges shown crossed in Figure 25, center, are in B,

then Ci and Cj face each other; thus, assume that the crossed edges are not in B.

For v not to be a local cut, at least one of the vertices of the grid that are at distance 1 from

v and are on the same horizontal line as v must be in G; suppose, without loss of generality,

that it is a vertex w to the right of v (Figure 25, right). If B goes through w as in Figure 26,

left, a Z -modification may be applied to Cj to have Ci and the modified Cj face each other

(Figure 26, center). So, we may assume that the crossed edges in Figure 26, right, are not

in B. Let us consider how B may go through w.

Suppose that B goes through w as in Figure 27, left or Figure 27, center. If w ∈ Ck 6= Ci,

then Ci and Ck already face each other; thus, suppose that w ∈ Ci. Then the modifications as

in Figure 28, left and Figure 28, center, lead to modified Ci and Cj facing each other. Finally,

if B goes through w as in Figure 27, right, a modification as in Figure 28, right, leads to the

desired result.

Case II: None of the edges of the triangle belongs to a cycle in B. In other words, u, v, x belong

to different cycles, say Cu, Cv, Cx. If one of the edges, crossed in Figure 29, left, is in B, then

we are in Case I; thus, suppose that none of the crossed edges is in B. This leaves for each

of u, v, x only two edges of the grid that are possibly adjacent to the vertex in B (Figure 29,
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Figure 25: Left: ux ∈ Ci, v ∈ Cj , crossed edges are not in B. Center: the edges of Cj adjacent to

v may be deduced; crossed edges are not in B. Right: w ∈ G.
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wCi

Cj

Figure 26: Left and center: A Z leads to the cycles facing each other. Right: Assuming all crossed

edges are not in B.
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Figure 27: Different ways in which the B may go through w. Left and center: If w /∈ Ci, we already

have facing edges.
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Figure 28: The modifications depending on how B goes through w in Figure 27.
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Figure 29: Cu 6= Cv 6= Cx.

right). Since G has no local cuts, at least one other vertex adjacent to a crossed edge is in

G (in fact, at least two). Suppose y ∈ G (Figure 29, right). Now, no matter how B visits y,

we can find facing cycles. Indeed, if y ∈ Cu or y ∈ Cx, then we are in Case I. Otherwise, the

cycle to which y belongs faces both Cu and Cx.

Thus, starting from the boundary cycles of G, one may apply the modifications as in Lemma 3.4

and then as in Lemma 3.7 to get a Hamiltonian cycle through G.

Theorem 3.8. Except for the Star of David (Figure 14), any polygonal triangular grid is Hamil-

tonian.

A solid grid either has a cut (in which case it is not Hamiltonian), or is polygonal, Thus,

Corollary 3.9. There exists a polynomial-time algorithm for the HCP in solid triangular grid

graphs.

4 Hamiltonian Cycles in Superthin Square Grids

In this section we prove that the HCP for superthin square grid graphs can be solved in polynomial

time. We also show that in a superthin square grid there exists at most one Hamiltonian cycle.

The proofs are by case analysis of the local structure of a Hamiltonian cycle.

Let G = (V, E) be a superthin square grid; let C be a Hamiltonian cycle in G. Let deg(u) denote

the degree of a vertex u ∈ V . Let v be a degree-3 vertex of G. In the figures below, vertices of G

are shown with solid circles; hollow circles represent points of Z� \ V where there can be no vertex

of G; asterisks represent grid points “in question”.

Lemma 4.1. The following statements about G and C are true.

1. There exists no degree-4 vertex in G.

2. C makes a turn at v.

3. There exists either a vertex of G at the grid point a, or a vertex at the grid point b, or both

(Figure 30, left).
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Figure 30: Left: a ∈ V or b ∈ V . Center: a ∈ V , b /∈ V ⇒ (l, v) /∈ C.
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Figure 31: Left: deg(l) = 3, deg(r) = 2 ⇒ (l, v) /∈ C. Right: deg(l) = 3, deg(r) = 3 ⇒ (l, v) /∈ C

4. If a ∈ V , b /∈ V (resp., a /∈ V , b ∈ V ) so that deg(r) = 2 (resp., deg(l) = 2), then deg(l) = 3

(resp., deg(r) = 3) and C goes through r − v − x and a− l − y (resp. l − v − x and b− r − z)

(Figure 30, center).

5. If a ∈ V and b ∈ V , then at least one of l, r has degree 3 (Figure 30, right).

6. If exactly one of l, r (say, l) has degree 3, then C uses r − v − x and a − l − y (Figure 31,

left).

7. If both l and r have degree 3 (Figure 31, right), then either deg(l′) = 3 or deg(r′) = 3

(or both). Thus, if there exist three-in-a-row vertices of degree 3 (like l, v, r), there exist a

fourth-in-a-row vertex of degree 3 (l′ or r′).

Proof. By inspection.

Thus, in a Hamiltonian superthin grid, degree-3 vertices appear in pairs, such that the vertices

in the pair are adjacent, and any Hamiltonian cycle does not use the edge between the vertices. In

Figure 30, center, the pair is l, v; in Figure 31, right, the pairs are l′, l and v, r (or v, r and r, r′).

Whether a graph has the stated property can be checked in linear time, and hence

Theorem 4.2. There exists a polynomial-time algorithm for the HCP in superthin square grid

graphs.

The analysis above also shows that if a Hamiltonian cycle in a superthin grid graph exists, it is

unique:

Corollary 4.3. In a superthin grid graph there exists at most one Hamiltonian cycle.

5 Hamiltonian Cycles in Hexagonal Grids

In this section we show that the HCP for hexagonal grids is NP-complete. The grid in our reduction

is polygonal, which implies hardness of the problem for polygonal hexagonal grids. Next we prove

that there is a polynomial-time algorithm for the HCP in superthin hexagonal grid graphs. We do

it by proving that in a superthin hexagonal grid there exists at most one 2-factor. The proof is by

case analysis of the local structure of a 2-factor.
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HCP for Hexagonal Grids is NP-hard

Our approach to prove hardness of the HCP for hexagonal grids is similar to the NP-completeness

proofs for square and triangular grids, using a reduction from HCP in undirected planar bipartite

graphs with maximum degree 3 [28]. Using the notation of Section 3, let G′ be an undirected

planar bipartite graph with maximum degree 3; the nodes in the parts of G′ are colored “black”

and “white”. As before, we say the G′ is composed of “nodes” and “arcs”, saving the terms “vertices”

and “edges” for the hexagonal grid graph G, built from G′ using the following transformation.

Transformation T

1. Given G′ we obtain a drawing D(G′) of G′ as shown in Figure 32.

2. We distinguish several elements of D(G′), i.e., the white and black nodes, and the arcs between

them. For each of these elements we provide a hexagonal grid graph that acts as a gadget

that simulates the element of G′.

3. We show how to combine the gadgets culminating in the desired graph G.

Figure 32: From left to right: a planar bipartite graph G′ with maximum degree 3; planar recti-

linear layout G′ of G; the drawing D(G′). The arcs involved in an example Hamiltonian cycle are

highlighted.

The details of transformation T follow.

Using methods of Rosenstiehl and Tarjan [37] or Tamassia and Tollis [38], one can obtain, in

linear time, a rectilinear drawing of G′ that uses a grid of linear size. We modify the drawing

slightly to obtain another drawing, D(G′) (Figure 32), which leads to a hexagonal-grid simulation

of G′, the graph G. The nodes in the drawing D(G′) are represented by horizontal bars. The arcs

of the drawing are one of two fixed angles, 60 or 120 degrees. This drawing is based on the so-called

st-ordering of the nodes of G′. In an st-ordering we can choose two nodes of a face (the external

face) and designate s and t the unique source and sink of a topological ordering of the graph. This

ordering implies a directed acyclic structure with a single source and sink, which in the drawing
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Figure 33: The tentacle.

Figure 34: Tentacles with cross and return paths.

goes from top to bottom. We choose both s and t to be white nodes, as this will simplify the

transformation from D(G′) to G. All nodes, except the nodes s and t, have at most two upward or

downward arcs. The two terminal nodes, s and t, have all arcs going in the same direction. The

ordering of the arcs from left to right is obtained by a compatible st-ordering of the dual graph of

G′ as described in [37,38]. We can convert the rectilinear planar drawing to D(G′) by a left to right

sweep of the arcs. In this way we can draw 60-degree and 120-degree arcs and maintain planarity,

which can be achieved by stretching the corresponding node bars towards the right as needed. This

leads to the following lemma.

Lemma 5.1. Given an undirected planar bipartite graph with maximum degree 3, G′, we can obtain

the drawing D(G′) in linear time.

We proceed with the second step of our transformation, i.e., obtaining a hexagonal grid from

D(G′). The arcs of D(G′) are simulated by tentacles—hexagonal strips as in Figure 33. Tentacles

come in two varieties distinguished by the counter-clockwise angle made with the x-axis: 60 and 120

degrees2. Each tentacle can be traversed in two ways: by a cross path or a return path (Figure 34).

The cross path is used to simulate an arc that is used in a Hamiltonian cycle of D(G′), and therefore

of G′, and a return path for an unused arc.

The node gadgets are made of smaller components listed below (Figure 35).

U-turn. A U-turn is used only in black nodes. The U-turn is where a return path simulating

an unused arc turns back on itself. As seen in Figure 36 (left) there are two distinct ways to

traverse a U-turn, one is a cross path, and the other uses two return paths.

20-degree tentacles are also used as extenders inside node gadgets.
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Figure 35: From left to right: U-turn, rosette, core of black nodes, and core of white nodes. The

edges, used by any Hamiltonian cycle are highlighted.

rosette. A rosette is used to go from a horizontal tentacle to a tentacle of 60 or 120 degrees.

The two ways to traverse a rosette, that is, cross and return paths, are shown in Figure 36

(middle).

core. Every node gadget has a core of three hexagons. The traversal of the core of a node gadget

of degree three dictates which pair of arcs are used in a Hamiltonian cycle and which one is

not. This is illustrated in Figure 36 (right). The cores of black and white nodes are reflections

of each other. It is clear that given two arcs of a node, there is only one way to traverse the

core.

extender. An extender is a 0-degree tentacle that is used inside the node gadgets to simulate

the extent of the width of a bar from one end to the other. We use double arrows in Figure

37 to illustrate the extenders and how they can be set to any length, as the situation requires.

Figure 36: From left to right: U-turn, rosette, and core, with paths shown with bold lines.

We combine the components to come up with six distinct gadgets for all types of nodes. The

entire collection of degree-3 node gadgets is shown in Figure 37. A degree-2 node gadget is a subset

of the shown gadgets omitting all hexagons beyond the core that are associated with the third

connection to a tentacle.

The last step of transformation T assembles the components to obtain the hexagonal grid G.

Note that extenders can only be extended in one direction; thus, we shift the core left or right

within the vertex boundary as required. A technical issue arises when trying to connect pairs of
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tentacles meeting at a 60-degree angle. We only consider the tentacle-extender bends that are

shown in Figure 37. This raises a parity issue, since all tentacles leaving the node gadgets need

to match perfectly with each other in order to represent straight arcs. In Figure 37 we also show

how this is possible for our set of node gadgets by means of an array of diagonal bands. Node

gadgets are embedded in a diagonal band array, while all the tentacles are tightly enclosed within

diagonal bands. Moreover, by adding or removing pairs of hexagons to the extenders, tentacles are

shifted from one band to the next without skipping any. Therefore, perfect tentacle matching is

guaranteed by aligning node gadgets with a predefined diagonal band array.

From Lemma 5.1, and the constructions used for the rest of transformation T , we obtain the

following result.

Lemma 5.2. Transformation T from G′ to G is polynomial.

In order to complete the proof for the NP-completeness of the HCP in hexagonal grids we need

the following lemma.

Lemma 5.3. G′ is Hamiltonian if and only if G is Hamiltonian.

Proof. (G′ is Hamiltonian implies that G is Hamiltonian) A Hamiltonian cycle in G′ yields a

Hamiltonian cycle in G: The gadgets representing arcs in the cycle are traversed with cross paths,

the rest of the arcs are picked up by return paths.

(G is Hamiltonian implies that G′ is Hamiltonian) Suppose we have a Hamiltonian cycle in G.

One can verify that every tentacle can be traversed in exactly one of two ways, either by a cross

path, or by a return path. We now focus on the part of the cycle that passes through each node

gadget. Observe that all nodes, both black and white of all degrees consist of components as shown

in Figure 35 (traversed as in Figure 36), and extenders as shown in Figure 34. Each component

forces one of two possible traversals, that is, cross path or return path. Thus, given a Hamiltonian

cycle in G, we obtain the cycle in G′: Gadgets in G that are traversed by cross paths correspond

to arcs in the cycle in G.

From Lemmas 5.2 and 5.3:

Theorem 5.4. The HCP for hexagonal grid graphs is NP-complete.

Observe that the grid in the proof of the above theorem is polygonal. Thus

Corollary 5.5. The HCP for polygonal hexagonal grids is NP-complete.

Hamiltonian Cycles in Superthin Hexagonal Grids

Let G = (V, E) be a superthin hexagonal grid. A 2-factor F in G is a 2-regular subgraph of G,

i.e., a subgraph of G, in which every vertex has degree 2; in (other) words, a 2-factor is a set of

vertex-disjoint cycles (of positive length) that go through all vertices.

Suppose there exist two different 2-factors, F and F ′, in G; suppose v ∈ V is a vertex, visited

differently by F and by F ′. Clearly, v has degree 3. Given how F and F ′ visit v, it can be inferred
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Figure 37: There are six distinct node gadgets. The anatomy of a node can be broken down to the

components we call core, U-turn, extender, and rosette. These components are shown in a bounding

rectangle. The core of each vertex is shaded either dark or light to represent black or white nodes

respectively. Each hexagon in a U-turn is marked by a circle. At the bounding rectangle the node

gadgets meet with extenders that simulate arcs. Note that the extenders are constructed so that

they all fit in a diagonal band between two parallel lines. Maintaining the strips between the bands

ensure that strips connecting two vertex gadgets are aligned.
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Figure 38: Top middle gadget from Figure 37.

how they visit the neighbors of v — vertices v′ and v′′. Refer to Figure 41. Since G is superthin,

at least one of a′, a′′ is not in V . Indeed, otherwise both b and b′′ are not in V , and both 2-factors

are “stuck” at v. Say, without loss of generality, a′ /∈ V . Also since G is superthin, w /∈ V . But

then there is no way the vertex v′ can be visited by F since both edges, adjacent to x, and both

edges, adjacent to x′, have to be used by F .

Theorem 5.6. In a superthin hexagonal grid there exists at most one 2-factor.

A 2-factor (if one exists) can be found in polynomial time using a b-matching algorithm [1].

Clearly, the graph is Hamiltonian if and only if the 2-factor consists of one (Hamiltonian) cycle.

Corollary 5.7. The HCP in superthin hexagonal grids is polynomially solvable.

6 Hamiltonian Cycles in High-Girth Graphs

By our definition (see Section 2), superthin square (resp., hexagonal) grids are the square (resp.,

hexagonal) grids with girth at least 6 (resp., 10). Thus, Theorems 4.2 and 5.6, and Corollaries 4.3

and 5.7 may be reformulated as follows. If the girth of a square (resp., hexagonal) grid graph G is

greater or equal than 6 (resp., 10), then G has a unique Hamiltonian cycle, and it can be found in

polynomial time. It seems natural to ask how general this result is, i.e., will the previous statement

remain true if we drop the words “square (resp., hexagonal) grid” from it? In this section we answer
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Figure 39: An example graph G that corresponds to D(G′) from Figure 32. A Hamiltonian cycle

of G that corresponds to the Hamiltonian cycle shown for D(G′) has been highlighted.

the question in the negative. Specifically, we show that the HCP is hard for graphs of arbitrary

girth g ≥ 6. The problem remains hard even if restricted to planar graphs of maximum degree 3.

We also show that, for any g ≥ 6, N ≥ 5, there exist planar graphs of maximum degree 3 and girth

g, that have exactly N Hamiltonian cycles.

Our results come from a simple idea: Increase the girth of the hexagonal graph G from the

previous section, while keeping the graph planar and subcubic, and retaining the one-to-one corre-

spondence between the Hamiltonian cycles in it and planar bipartite subcubic graph G′.

Theorem 6.1. For arbitrary g ≥ 6, the HCP in planar graphs of maximum degree 3 and girth g

is NP-complete.

Proof. Let E2 be the edges of G that are used by any Hamiltonian cycle in G (Figures. 33, 35); call

these edges black. Replace every edge in E2 with a path of length g/3−2. Make every tentacle long,

so that it has at least g “wiggles” (see Figure 33). Call the resulting graph Gg. By construction,
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Figure 40: Bottom part of graph G shown in Figure 39.

Gg is planar and its maximum degree is 3.

Claim. The girth of Gg is g.

Proof. Let E1 be the edges of G that are not black (so, call them white). The edges of Gg may

also be called white and black: white edges are those that correspond to white edges of G, and

black—those that appeared as a result of subdividing black edges of G. Any cycle in Gg that uses

a black edge has length more than g (and some such cycles have length exactly g). It is not hard

to see (Figures 33, 35) that any cycle within a tentacle or a node gadget has to use black edges.

Finally, a cycle in Gg, consisting solely of white edges and going through two or more node gadgets,

has to traverse a tentacle and thus, has length greater than g.

Hamiltonian cycles in Gg map one-to-one into Hamiltonian cycles in G, and, thus, into Hamil-

tonian cycles in G′. Hence, Gg is Hamiltonian if and only if G′ is.

As a by-product of our reduction we obtain, for any g ≥ 6, a one-to-one mapping between

Hamiltonian cycles in planar bipartite graphs of maximum degree 3 and Hamiltonian cycles in

planar girth-g graphs of maximum degree 3. This allows one to reason about Hamiltonian cycles

in the latter in terms of the Hamiltonian cycles in the former. For instance,

Theorem 6.2. For any g ≥ 6, N ≥ 5 there exist planar girth-g graphs of maximum degree 3 that

contain exactly N Hamiltonian cycles.
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Figure 41: F is solid, F ′ is dashed. v is visited differently by the 2-factors; this implies how v′ and

v′′ are visited. Since G is superthin, at least one of a′, a′′ is not in V . For the same reason w /∈ V .

But then F is “stuck” at v′.

Figure 42: The prism graph CN�K2.

Proof. The planar bipartite maximum-degree-3 (prism) graph G′ = CN�K2 (Figure 42) has exactly

N + 2 Hamiltonian cycles (Figure 43). Thus, the high-girth graph constructed from G′ by the

procedure in our reduction also has exactly N + 2 Hamiltonian cycles.

TSP in High-Girth Graphs

The Traveling Salesman Problem (TSP) in a planar maximum-degree-3 girth-g graph has an ap-

proximation algorithm with the approximation ratio of 1 + 8
g
. For g > 16 this is smaller than 3/2,

the approximation ratio of Christofides’ algorithm.

Theorem 6.3. Let G be an (unweighted) planar girth-g subcubic graph. Let T be the shortest walk

that visits every vertex of G, let L be its length (i.e., the number of edges in it). Then a tour of

length (1 + 8
g
)L, visiting every vertex of G at least once, can be found in polynomial time.
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Figure 43: The Hamiltonian cycles in CN�K2. The cycle on the left can be chosen in N different

ways.

Proof. We first prove that T can be extended, to a walk that traverses every edge of G at least

once, at the expense of increasing the length by at most 2d3, where d3 is the number of degree-3

vertices of G. Thus, the cost of the optimal Chinese Postman tour (the tour that traverses every

edge) is at most L+2d3. Then, using Euler’s formula, we bound 2d3 by 8L/g. Because the Chinese

Postman tour can be found in polynomial time, the theorem follows.

Follow T . When T passes through a degree-2 vertex, using both edges, adjacent to it, do

nothing. When T passes through a degree-3 vertex, using two edges, adjacent to it, detour to visit

the remaining edge, adjacent to the vertex; the cost of the detour is 2. When T makes a U-turn

at a vertex v, the cost of the detour to visit the other edge(s), adjacent to v, is 2(i − 1), where

i ∈ {2, 3} is the degree of v. But if T U-turns at v, then there is a path to v, such that all edges

along the path are traversed by T twice. Let u be the other end of the maximal such path. Clearly,

u has degree 3, and all 3 edges, adjacent to it are traversed by T . Thus, the cost of adding these

edges to T is 0; this amortizes the increase in the cost of adding to the tour the edges, adjacent

to v.

Overall, we get a tour, traversing all edges of G, of length L + 2d3. Since every face of G

has at least g sides, Fg ≤ 2E, where F and E are the number of faces and edges of G. Of

course, E = d2 + 3d3/2, where d2 is the number of degree-2 vertices of G. By Euler’s formula,

F = 2 − (d2 + d3) + E = 2 + 3d3/2. Thus, for g ≥ 6, we have 2d3 ≤ 4d2+4g
g

. Since, clearly, L ≥ d2,

and L ≥ g, the theorem follows.

Remark. Having degree-1 nodes in G does not hurt the approximation factor. Indeed, the paths to

the nodes must be traversed both by T and by the approximate tour.

TSP approximation algorithms with a better approximation ratio than 3/2 have been developed

in several classes of graphs; refer to Table 2. However it was not always checked whether there exist

examples of graphs from the corresponding classes, for which Christofides’ algorithm may produce

a tour longer than the proposed approximation algorithms. For the classes of graphs, studied

in [4, 6, 30, 32] such examples are readily available; for the classes studied in [7, 19, 35] they are yet

to be found.

Theorem 6.3 suggests another example of a class of graphs (high-girth planar subcubic graphs)

for which there exists an approximation algorithm with a better performance than Christofides’

algorithm. Unfortunately, as the next theorem shows, it is not possible to find a graph from

the class for which Christofides’ algorithm will perform worse than the Chinese-Postman-based
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Class of graphs Apx Ref.

Solid grids 6/5 [4]

Geometric 1 + ε [6, 32]

Planar 1 + ε [30]

3-edge-connected cubic (3/2 − 5/389) [19]

Edge weights ∈ {1, 2} 7/5, 8/7 [7, 35]

Planar max-deg-3 girth-g 1 + 8/g Thm. 6.3

Table 2: Approximation ratios for TSP in certain graph classes. Only for graphs from the first three

classes are examples known for which Christofides’ algorithm performs worse than the proposed

algorithms.

algorithm from Theorem 6.3.

Theorem 6.4. Let G = (V, E) be an undirected, possibly, weighted graph. Let Cr(G) (resp.,

CP (G)) be a tour produced by the Christofides’ algorithm (resp., optimal Chinese Postman tour).

For any structure S in G let |S| be its weight; if S contains an edge multiple times, the weight of

the edge is counted with its multiplicity in |S|. Then |Cr(G)| ≤ |CP (G)|.

Proof. For a metric ρ on V let [G]ρ denote G endowed with ρ. Let SP (G) be the shortest path

metric on V ; we identify G with the complete graph [G]SP (G), called the shortest-path metric

completion of G.

Let MST (G) be a Minimum Spanning Tree of G. CP (G) is obtained by adding to G a minimum-

weight matching on the odd-degree nodes of G; this converts G into an Eulerian graph. Cr(G) is

obtained by first finding MST (G) and then converting it into an Eulerian graph by adding a

minimum-weight (w.r.t. SP (G)) matching on the odd-degree nodes of MST (G). Thus,

|Cr(G)| ≤ |CP ([MST (G)]SP (G))|.

The inequality is due to the possible “shortcuts” introduced by Christofides’ algorithm (finding the

best set of shortcuts is an NP-hard problem itself [34]).

MST (G) is a subgraph of G, so a tour, visiting every edge in G, also visits every edge in

MST (G). Thus,

CP ([MST (G)]SP (G)) ≤ CP ([G]SP (G)) = CP (G).

7 Discussion

We provided a comprehensive study of the Hamiltonian cycle problem in grid graphs. We suggested

a unified classification of standard square grids and extended it to triangular and hexagonal grids.

We resolved the complexity of the Hamiltonian cycle problem for many of the grid classes (see

Table 1). We also addressed the Hamiltonicity of planar bounded-degree graphs with high girth.
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In this section we discuss some algorithmic extensions and applications of our results. Our proof

of Hamiltonicity of polygonal triangular grids (Theorem 3.8) is constructive and can be turned into

an algorithm to find a Hamiltonian cycle; the algorithm runs in time linear in the number of vertices

of the grid. Applying ideas from [3, 4] one can represent the cycle implicitly, so that the size of

the representation is linear in the number of pixels that define the grid. The representation can be

found in time linear in the number of pixels. Indeed, all that is needed to apply our modifications

is to partition the grid into horizontal trapezoids. Within each trapezoid we can perform the

modifications, in blocks, in O(1) time. After that we are left with only O(h) cycles; marching

around them, we find the alternating rhombus and flip its edges.

Another feature of our modifications is that they can be done with only one pass through the

grid. This is important, say, when a large triangular mesh has to be processed or displayed. A

body of work in computer graphics has examined finding long cycles in triangular meshes [12–14].

We feel that the following corollary from Theorem 3.8 may have important applications.

Corollary 7.1. Let M be a triangulated manifold containing a subgraph, on the full set of vertices,

isomorphic to a triangular grid. Then, if M has no local cuts, there exists a Hamiltonian cycle

through the vertices of M , and such a cycle can be found in linear time.

Remark. Umans and Lenhart [41] observed that their algorithm for the HCP in solid square grids

actually works for a larger set of graphs, quad-quad-graphs, that “locally” look like solid square

grids. Corollary 7.1 is another example of a “free” extension of results for grid graphs to a more

general class of graphs that locally look like grids.

Our proof of existence of girth-g graphs with a prescribed number of Hamiltonian cycles also

leads to an algorithm for actually constructing such graphs. Starting from the prism graph CN�K2,

one can build the gadgets as in Section 6 in time linear in N (and g). Moreover, CN�K2 gives a

concise implicit representation of the high-girth graph.

The hexagonal grids provide better approximations to the area swept by a circular lawnmower

cutter, miller, or circular vacuum cleaner. This motivates oour study of the TSP in grids that are

dual to hexagonal grids, i.e., in triangular grids.

The only algorithmic work of which we are aware that used hexagonal grids for approximating

the path of a circular cutter is [4]. The approximation ratio of the algorithm in [4] is 3γ · αTSP ,

where γ ≈ 1.15 is the dilation of the triangular lattice, and αTSP is the approximation ratio of the

TSP heuristic employed. The running time of the algorithm, of course, is also dependent on the

TSP heuristic, which, e.g., makes impractical the use of a PTAS [6, 32] for the TSP. Theorem 3.8

implies the following improvement to the approximation factor and running time of Theorem 3

in [4].

Corollary 7.2. For the case of a circular cutter, the lawnmowing problem has a linear-time 3γ-

approximation algorithm.

A common technique to show that finding bounded-degree MST is NP-hard is to reduce the

TSP to it. Indeed, an instance of the TSP may be reduced to an instance of the degree-k MST

problem by placing a set of k − 2 “suburbs” close to each city in the TSP; the cost of the edges
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between the suburbs and between suburbs and “non-parent” cities is made prohibitively high.

In [34], the degree-3 Euclidean MST problem was proved hard by reduction from the HCP (actually,

Hamiltonian Path problem) in grid graphs of maximum degree 3: bounding the degree of the grid

allows placing one suburb for each city in the direction of the “missing” grid vertex. The authors

of [34] remarked that it did not appear possible to extend their method to show the hardness of

the degree-4 Euclidean MST problem “because insertion of two suburbs [the number required for

the degree-4 MST] presupposes considerably more space, and much more restrictive arrangement

of the cities” [34, p. 245]. We hope that the hardness of the HCP in triangular grids of maximum

degree 4 (Theorem 3.3) can potentially help here. Indeed, since the degree of each vertex in the

infinite triangular grid is six, two directions around every vertex become “missing”, which opens a

(vague) possibility that the required two suburbs could be inserted. However, we did not succeed

in finishing the argument.

Open Problems

The most natural problems left open by this work are the blanks in Table 1. In particular, what is

the hardness of HCP in polygonal square grids? The grids from [11,27,34], used in the reductions

to show hardness of HCP in square grids, have local cuts (at the “pin” connection of the tentacles

to the vertex gadgets). We believe that the polynomial-time algorithm of [41] for the HCP in solid

square grids can be extended to solve the HCP in polygonal square grids.

Conjecture 7.3. HCP in polygonal square grids is in P .

We also conjecture that the HCP in solid hexagonal grids can be solved by cycle merging, similar

to what was done for the HCP in solid square grids [41].

Conjecture 7.4. HCP in solid hexagonal grids is in P .

An open problem, not listed in Table 1, is the hardness of the HCP in triangular grids of

maximum degree 3.

A related research direction is studying the TSP in grids for which there are polynomial-time

algorithms to solve the HCP. Is there a class of graphs for which HCP is in P but TSP is NP-

complete?
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