
CISC452/CMPE452/COGS 400
Perceptron

Farhana Zulkernine

McCulloch and Pitts’s Neurons

• McCulloch and Pitts (1943) gave the first
mathematical model of a single neuron.

• Early models of ANNs did not demonstrate
learning.

• Weights were static and so were the
connections.

• Had single layer that could not implement
XOR.

2

History & Evolution of ANN Models

3

1943
McCulloch,
Pitts

In 1943, McCulloch and Pitts described
how neurons in the brain might work
by modeling a simple neural network

using electrical circuits.

In 1949, Donald Hebb proposed a
mechanism by which neural structures

could learn. A version of this
mechanism is used in most neural

networks today.

1949
Donald
Hebb

1959
Widrow,
Hoff

1962
Widrow, Hoff

1986

Rosenblatt's "perceptrons" (1958) used a
learning rule: if the output is unsatisfactory,
modify each weight by a quantity that is
likely to improve network performance.

1958
Rosenblatt

As computers became more advanced,
Bernard Widrow and Marcian Hoff

developed models called "ADALINE" and
"MADALINE" (Multiple ADAptive LINear
Elements) to recognize binary patterns.

In 1962, Widrow and Hoff proposed
computation of error at a node and

propagation of the correction to
adjacent nodes for learning.

The idea behind the Backpropagation
algorithm in multi-layer ANN was
proposed by multiple researchers

Introduce Learning
• Hebb's learning rule (1949): For each input pattern

presentation, increase connection weight between nodes
i and j if both nodes are simultaneously ON or OFF.

• Activation of j always causes an activation of i where
wji is the weight associated with connection from j to i
and xi and xj are inputs to i and j respectively.

• The strength of connections between neurons
eventually comes to represent the correlations between
their outputs, e.g.,

∆wji = c . xixj
where c is a some small constant.

4

j

i

xj

w10
ji

xi=y

Perceptrons

• Rosenblatt's "perceptrons" (1958) used the
following learning rule
– If the output is unsatisfactory, modify each weight

by a quantity that is likely to improve network
performance.

• Also introduced the idea of supervised
learning.
– Correct output was known and was used to modify

weights to generate better output, and thereby,
TRAIN the network.

5

More Learning Algorithms…

• Widrow and Hoff's learning rule (1960, 1962)
was also based on gradient descent.

• Then back-propagation algorithms were
proposed for training MULTI-LAYER
networks.

6

Perceptron

• Frank Rosenblatt
proposed the perceptron
learning rule in 1950's
based on the idea that
the operation of a
neuron and its learning
could be modeled
mathematically, and
used as a form of
computation.

7

Perceptron

• A Perceptron Network is designed to learn the
relationship between an input and output data.

• Input/Desired-output examples – supervised
learning: {(X1, D1) , … , (Xp, Dp)}
Vector Xi = (xi1, xi2, … , xin), Dj = (dj1, dj2, … , djm)

xi ϵ {-1,+1}n or [0,1]n or Rn

d ϵ{-1,+1}m or di ϵ {0,1}m

• yjl = f(net) = f (∑k=1..n xik wij
kl)

if net >= θ, 0 otherwise
wij ϵ R

• (Dj – Yj) is the error, θ is threshold or bias
8

Xi

Yj

Perceptron for Prediction

• Train the perceptron using input and desired
output vectors.

• Example: Given X1, we like the perceptron to
produce D1 for output where d1 is known.

9

X1 = (10, 3150, 0.25)
Acreage of
property (x13)

Square feet of
house (x12)

Age of house in
years (x11)

Sale is over $300K
(1=yes) (d11)

D1 = (1, 0)
House will sell within
6 months (1=yes) (d12)

Features and Functionality

• Two layer network
• Applies feedforward processing – all

connections go to the next layer.
• Initially wi are assigned random values which

results in poor initial performance (high error).
• To improve performance, network is trained to

adjust the weight values network learns.
– A Learning Rule is a strategy by which input/output

pairs are used to incrementally change the weights to
gradually improve the performance of the network.

10

Adjusting both weight and bias

Now weight w0= − θ can be learned like the other weights

Allows each neuron to set its own threshold θ.

12

∑
n

i=1
xiwi - θ = 0 

∑
n

i=0
xiwi = 0

x0 = 1

x1

xn

y=f(a)

w0= θ

w1

wn θ

∑
n

i=0
wixia =

∑
n

i=1
xiwi – x0w0 = 0, with x0 =1, w0= -θ

Plotting the line

• For 2-D space, a neuron will represent a
straight line

w0+w1x1 +w2x2= 0
• Representing it as y=mx+c, (and y = x2)

x2 =(-w1/w2)x1 - w0/w2

Slope Intercept

• On x1 axis, x2=0 and x1 = -w0/w1

• On x2 axis, x1=0 and x2 = -w0/w2

13
x1

x2
(-w0/w1,0)

(0, -w0/w2)

Perceptron Learning

• Two types of learning:
1. Simple Feedback learning

Uses the correct/incorrect feedback and info
about (y>=d) or (y<d) to change weights.

2. Error Correction Learning
Uses an error measure to adapt the weight vector.

14

Simple Feedback Learning

15

If y=1 and d=0 (y > d):

wji ← wji − cxi

where (i = 1,..,n) and c is a small learning rate

If y=0 and d=1 (y < d):

wji ← wji + cxi

where (i = 1,..,n) and c is a small learning rate

Use input value in calculation
because if input value is high,
error will be high and vice versa)

Perceptron Learning Example

16

We would like our perceptron to correctly classify the
five 2-dimensional data points below.

Let the random initial weight vector
w0 = (w0, w1, w2) = (2, 1, -2).
So, the dividing line crosses the
axes at
[(-w0/w1,0) and (0, -w0/w2)]
which are (-2, 0) and (0, 1).
Weight adaptation for learning:
wi ← wi ± cxi

i1

1 2 3-3 -2 -1

i2

1
2
3

-3
-2
-1

-1

1

class -1
class 1

Example(cont…)

17

Considering learning rate c=1, x0 =1
x = (x0, x1, x2) = (1, -2, -1)
Since y=1, d= -1,
decrease the weight Δw = -cx
Δw = (-1)⋅(1, -2, -1)
Δw = (-1, 2, 1)
w1 = w0 + Δw
w1 = (2, 1, -2) + (-1, 2, 1) = (1, 3, -1)

i1

1 2 3-3 -2 -1

i2

1
2
3

-3
-2
-1

-1

1

class -1
class 1

(-2, -1)

Let us pick the misclassified point (x1 , x2) = (-2, -1)

Example (cont…)

18

w1 = (2, 1, -2) + (-1, 2, 1) = (1, 3, -1) [(-w0/w1,0) and (0, -w0/w2)]
The new dividing line intersects the axes at (-1/3, 0) and (0, 1).

Let us pick the next misclassified
point (0, 2) for learning:
x = (1, 0, 2) (include x0 = 1)
Δw = (1). (1, 0, 2) (y =-1, d = 1)
w2 = (1, 3, -1) + Δw = (2, 3, 1)
Why do you think we pick the closest
misclassified point?

i1

1 2 3-3 -2 -1

i2

1
2
3

-3
-2
-1

-1

1

class -1
class 1

Example (cont…)

19

w2 = (2, 3, 1) [at (-w0/w1,0) and (0, -w0/w2)]
Now the line crosses at (-2/3, 0) and (0, -2).

With this weight vector, the perceptron
achieves perfect classification!
The learning process terminates.
In most cases, many more iterations are
necessary than in this example.

i1

1 2 3-3 -2 -1

i2

1
2
3

-3
-2
-1

-1

1

class -1
class 1

How do you know the algorithm works?

• Activation a = w.x
• If y=1 and d=0, then (w – ∆w).x < w.x
• Considering learning rate c=1, ∆w = cx = x
• Therefore, (w – ∆w).x => w.x – x.x
• But x.x > 0 and so, (w.x – x.x) must be < w.x

which implies that the weight adjustment will
eventually lead to a weight value that will
correctly classify the input data.

• Same justification can be used for y=0 and d=1.
20

Perceptron Convergence Theorem
• It can be guaranteed that the Perceptron

training algorithm will classify all the data
correctly when they are linearly separable
and c is sufficiently small.

• ***See proof in the book or the slides posted
on OnQ.

21

Choice of c

• If c is too small, the algorithm will make very
small changes to the weights each time  very
long training time

• If c is too big, the weight changes will be too
much and the data that were previously
correctly classified may be misclassified again.
– The separator line will fluctuate its slope too much

and never reach the correct slope.

22

Choice of c (cont…)

• A common choice is c = 1.
• To ensure that the sample x is correctly classified

following the weight change
• (w ± ∆w).x must be of the opposite sign of w.x

=> |∆w . x| > |w . x|
↔ c |x . x| > |w . x| since ∆w = cx

↔ c > -----------

23

|w . x|
|x . x|

Terminating Condition

• Until all data are correctly classified
– Problem ***

 Data may not be linearly separable  results in infinite loop
 Add a maximum number of iteration

 The value of c may be too high and the weight vector fluctuates too
much.
 Try using a lower value.

• Until a fixed number of iteration has been run
– One iteration = Running with X1..Xp once

• Until acceptable error level is reached
– Error = (misclassified data points / total data points) <=

threshold
– When data is not linearly separable – How do we know that?

• Combine multiple of the above conditions

24

Not Linearly Separable – Algorithms

• The "Pocket" and "Least Mean Squares"
(LMS) algorithms attempt to achieve robust
classification when the two classes are not
linearly separable.

25

The Pocket Algorithm
• The pocket algorithm is a useful modification of the

perceptron training algorithm
– Weight change mechanism is the same.
– Identifies the weight vector (w1,…,wn) with the longest

unchanged run (# of points correctly classified: #p) as the
best solution so far.

– Stores the best weight vector in a "pocket" as well as the
best length of the run associated with it.

– Pocket contents are replaced with a new weight vector
when a longer successful run is found.

26

epochw2

0, 0 w1, #p

w1 X
w3

w2, #p

X
w4, #pX

If #w1>#p If #w2>#p
Training data

Pocket Algorithm with Ratchet

• A lucky run of several successes may allow a
poor solution to replace a better solution in the
pocket.

• To avoid this, the Pocket algorithm with
ratchet ensures that the pocket weights always
"ratchet up"
– w1 in the pocket is replaced by w2 that has longer

successful run only after testing on all training
samples whether w2 does correctly classify a
greater number of samples than w1.

– Expensive computation.
27

Results

• The Pocket algorithm gives good results,
although there is no guarantee of reaching the
optimal weight vector in a reasonable number
of iterations due to distribution of data points.

• The best solution may never get saved in the
pocket and hence ratchet version in that case
will also not be able to find that solution.
– If the best solution ever gets selected to be put into

the Pocket then ratchet will test it for all solutions
and keep it in the pocket.

28

Learning by Error Correction

• Compute the error (d-y), difference between desired
and actual output

• Adjust the weights to reduce error
w t +1

ji = wt
ji + ∆w = wt

ji + (d-y)*cxi

where (i = 1,..,n) and c is learning rate
• Range of the input and output values should be taken

into account
– Note that for both d and y ϵ {-1, +1}, (d-y) ϵ {-2, 0, +2}
– c * (d-y) will be high.
– so c should be ½ of what it would be for y ϵ {0, 1}

29

Categorical Inputs

• What if input values are categorical?
– E.g. color ϵ {red, blue, green, yellow}

• The simplest alternative:
– Generate four new dimensions: red, blue, green and yellow
– Recode categorical value as a binary vector [red, blue, green,

yellow] = {0,1}4.
 For example, if red=0, blue=0, green=1, yellow=0 then "green" can be

represented as (0,0,1,0).
• You can use 2 digits to represent the 4 possible values

[(0,0),(0,1),(1,0),(1,1)] – Problems
– Mapping of layers get complicated
– Results in longer training time and need more neurons in hidden

layers.
• In the general case, if an attribute (e.g. color) can take one

of n different values, then n new dimensions are obtained.
30

Perceptron and Linear Separability

• In general, networks of perceptron-like
processors can solve most non-linearly
separable tasks by using more than one layer
of processors.

• Rosenblatt (and others) realized this in the
1960's, but did not have a learning rule that
would work effectively with more than one
level (it wasn't invented until the mid 1970's).

31

	CISC452/CMPE452/COGS 400�Perceptron
	McCulloch and Pitts’s Neurons
	History & Evolution of ANN Models
	Introduce Learning
	Perceptrons
	More Learning Algorithms…
	Perceptron
	Perceptron
	Perceptron for Prediction
	Features and Functionality
	Adjusting both weight and bias
	Plotting the line
	Perceptron Learning
	Simple Feedback Learning
	Perceptron Learning Example
	Example(cont…)
	Example (cont…)
	Example (cont…)
	How do you know the algorithm works?
	Perceptron Convergence Theorem
	Choice of c
	Choice of c (cont…)
	Terminating Condition
	Not Linearly Separable – Algorithms
	The Pocket Algorithm
	Pocket Algorithm with Ratchet
	Results
	Learning by Error Correction
	Categorical Inputs
	Perceptron and Linear Separability

