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Perceptron Convergence Theorem

e The theorem states that for any data set which
IS linearly separable, the perceptron learning

rule iIs guaranteed to find a solution in a finite
number of iterations.

 |dea behind the proof: Find upper & lower
bounds on the length of the weight vector to
show finite number of Iiterations.



Perceptron Convergence Theorem

Let's assume that the input variables come from
two linearly separable classes C, & C..
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Let 7. & T, be subsets of training vectors which
belong to the classes C, & C, respectively.
Then T1 u T2 is the complete training set.
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Perceptron Convergence Theorem

As we have seen, the learning algorithms
try to find a weight vector w such that

w-x >0 YV xe C, (x is an input vector)
w-x <0 Vxed,

If the kth member of the training set, x(k), is
correctly classified by the weight vector w(k)
computed at the kth iteration of the algorithm,
then we do not adjust the weight vector.

However, if it is incorrectly classified, we use the
Modifier (k4 1)=w(k)+nd (k)x(k)
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Perceptron Convergence Theorem

So we get
w(k+1)=w(k)—nx(k) if wlk)x(k)>0,x(k)eC,
w(k+1)=w(k)+nx(k) if wk)x(k)=<0, x(k)eC,

We cansetn =1, asforn# 1 (>0) just scales
the vectors.

We can also set the initial condition w(0) = 0, as
any non-zero value will still converge, just
decrease or increase the number of iterations.



Perceptron Convergence Theorem

Suppose that w(k)-x(k) <O fork =1, 2, ... where
X(k) € T, so with an incorrect classification we

get
w(k+1)=w(k)+x(k) x(k)eC,

By expanding iteratively, we get
wk+1)=x(k)+w(k)
=x(k)+x(k-1)+w(k-1)

;x(k)+...+x(l)+w(0)



Perceptron Convergence Theorem

As we assume linear separability, 4 a solution w
where w-x(k) > 0, x(1)...x(k) € T,. Multiply both
sides by the solution w’ to get

w w(k+1)=w"x(1)+...+w"x(k)

N |/

These are all > 0,
hence all >= q,

where _ (k)
a=min w "X\K
Thus we get |

w w(k+1)=> ka



Perceptron Convergence Theorem

Now we make use of the Cauchy-Schwarz
iInequality which states that for any two vectors
A B -

|4I7|BII" = (4-B)°

Applying this we get
lw{Fllw (E+ 1| = (w*w (k+1))°
From the previous slide we know w w(k+1) = ka

Thus, it follow that

.- klml
lw(k+1)[[" = —
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Perceptron Convergence Theorem

We continue the proof by going down another
route.

w(j+1)=w(j)+x(j) forj=1,....k with x(j)eT,
We square the Euclidean norm on both sides

[w(+ D= lw()+x()IF
= [lw (/I +[x (I +2w ()2 ()
Thus we get I

Incorrectly

. 2 N A\ [[2 classified,
b (G+DIF=lw (DI =[x (NIF - 235
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Perceptron Convergence Theorem

Summing both sides for all J

w(j+1)]

w(j)|I*—

—[lw(7)II

2

IA

=

I (1)IE=llw (0)IF < [lx(1)]F

We get

[w(k+1)IF < 2. [lx(7)IF

Jj=1

< IB

p=max |[x(j)I



Perceptron Convergence Theorem

But now we have a conflict between the
equations, for sufficiently large values of k

lw(k+1)|f < kp lw(k+1)| >

So, we can state that kK cannot be larger than
some value k__ for which the two equations are

both satisfied.
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Perceptron Convergence Theorem

Thus it is proved that forn,_ =1, ¥V k, w(0) = 0,

given that a solution vector w’ exists, the
perceptron learning rule will terminate after at
most k__ iterations.
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