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McCulloch and Pitts’s Neurons

• McCulloch and Pitts (1943) gave the first 
mathematical model of a single neuron.

• Early models of ANNs did not demonstrate 
learning.

• Weights were static and so were the 
connections.

• Had single layer that could not implement 
XOR.
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History & Evolution of ANN Models
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In 1943, McCulloch and Pitts described 
how neurons in the brain might work 
by modeling a simple neural network 

using electrical circuits.

In 1949, Donald Hebb proposed a 
mechanism by which neural structures 

could learn. A version of this 
mechanism is used in most neural 

networks today.
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Rosenblatt's "perceptrons" (1958) used a 
learning rule: if the output is unsatisfactory, 
modify each weight by a quantity that is 
likely to improve network performance.

1958
Rosenblatt

As computers became more advanced, 
Bernard Widrow and Marcian Hoff 

developed models called "ADALINE" and 
"MADALINE" (Multiple ADAptive LINear
Elements) to recognize binary patterns.

In 1962, Widrow and Hoff proposed 
computation of error at a node and 

propagation of the correction to 
adjacent nodes for learning. 

The idea behind the Backpropagation
algorithm in multi-layer ANN was 
proposed by multiple researchers



Introduce Learning
• Hebb's learning rule (1949): For each input pattern 

presentation, increase connection weight between nodes 
i and j if both nodes are simultaneously ON or OFF.

• Activation of j always causes an activation of i where 
wji is the weight associated with connection from j to i
and xi and xj are inputs to i and j respectively.

• The strength of connections between neurons 
eventually comes to represent the correlations between 
their outputs, e.g.,

∆wji = c . xixj
where c is a some small constant.
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Perceptrons

• Rosenblatt's "perceptrons" (1958) used the 
following learning rule
– If the output is unsatisfactory, modify each weight 

by a quantity that is likely to improve network 
performance.

• Also introduced the idea of supervised 
learning.
– Correct output was known and was used to modify 

weights to generate better output, and thereby, 
TRAIN the network.
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More Learning Algorithms…

• Widrow and Hoff's learning rule (1960, 1962) 
was also based on gradient descent.

• Then back-propagation algorithms were 
proposed for training MULTI-LAYER 
networks.
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Perceptron

• Frank Rosenblatt 
proposed the perceptron
learning rule in 1950's 
based on the idea that 
the operation of a 
neuron and its learning 
could be modeled 
mathematically, and 
used as a form of 
computation.
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Perceptron

• A Perceptron Network is designed to learn the 
relationship between an input and output data.

• Input/Desired-output examples – supervised 
learning:  {(X1, D1) , … , (Xp, Dp)}
Vector Xi = (xi1, xi2, … , xin), Dj = (dj1, dj2, … , djm)

xi ϵ {-1,+1}n or  [0,1]n or Rn

d ϵ{-1,+1}m   or  di ϵ {0,1}m

• yjl = f(net) =  f ( ∑k=1..n xik wij
kl) 

if  net >= θ,   0 otherwise
wij ϵ R

• (Dj – Yj ) is the error, θ is threshold or bias
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Perceptron for Prediction

• Train the perceptron using input and desired
output vectors. 

• Example: Given X1, we like the perceptron to 
produce D1 for output where d1 is known.
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X1 = (10, 3150, 0.25)
Acreage of 
property (x13)

Square feet of 
house (x12)

Age of house in 
years (x11)

Sale is over $300K 
(1=yes) (d11)

D1 = (1, 0)
House will sell within 
6 months (1=yes) (d12)



Features and Functionality

• Two layer network  
• Applies feedforward processing – all 

connections go to the next layer. 
• Initially wi are assigned random values which 

results in poor initial performance (high error).
• To improve performance, network is trained to 

adjust the weight values network learns.
– A Learning Rule is a strategy by which input/output 

pairs are used to incrementally change the weights to 
gradually improve the performance of the network.
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Adjusting both weight and bias

Now weight w0= − θ can be learned like the other weights

Allows each neuron to set its own threshold θ.
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Plotting the line

• For 2-D space, a neuron will represent a 
straight line 

w0+w1x1 +w2x2= 0
• Representing it as y=mx+c,    (and y = x2)

x2 =(-w1/w2)x1 - w0/w2 

Slope Intercept

• On x1 axis, x2=0 and x1 = -w0/w1

• On x2 axis, x1=0 and x2 = -w0/w2
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Perceptron Learning

• Two types of learning:
1. Simple Feedback learning

Uses the correct/incorrect feedback and info 
about (y>=d) or (y<d) to change weights.

2. Error Correction Learning
Uses an error measure to adapt the weight vector.
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Simple Feedback Learning
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If y=1 and d=0 (y > d): 

wji ← wji − cxi

where (i = 1,..,n) and c is a small learning rate

If y=0 and d=1   (y < d): 

wji ← wji + cxi

where (i = 1,..,n) and c is a small learning rate

Use input value in calculation 
because if input value is high, 
error will be high and vice versa)



Perceptron Learning Example
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We would like our perceptron to correctly classify the 
five 2-dimensional data points below.

Let the random initial weight vector 
w0 = (w0, w1, w2) =  (2, 1, -2). 
So, the dividing line crosses the 
axes at
[(-w0/w1,0) and (0, -w0/w2)]
which are (-2, 0) and (0, 1).
Weight adaptation for learning:
wi ← wi ± cxi

i1
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i2
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2
3

-3
-2
-1

-1

1
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class  1



Example(cont…)
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Considering learning rate c=1, x0 =1
x = (x0, x1, x2)  =  (1, -2, -1)
Since   y=1, d= -1, 
decrease the weight  Δw = -cx
Δw = (-1)⋅(1, -2, -1)
Δw = (-1, 2, 1)
w1 = w0 + Δw
w1 = (2, 1, -2) + (-1, 2, 1) = (1, 3, -1)

i1

1 2 3-3 -2 -1

i2

1
2
3

-3
-2
-1

-1

1

class -1
class  1

(-2, -1)

Let us pick the misclassified point (x1 , x2) = (-2, -1)



Example (cont…)

18

w1 = (2, 1, -2) + (-1, 2, 1) = (1, 3, -1) [(-w0/w1,0) and (0, -w0/w2)]
The new dividing line intersects the axes at (-1/3, 0) and (0, 1).

Let us pick the next misclassified 
point (0, 2) for learning:
x = (1, 0, 2)                     (include x0 = 1)
Δw = (1). (1, 0, 2)               (y =-1, d = 1)
w2 = (1, 3, -1) + Δw = (2, 3, 1)
Why do you think we pick the closest 
misclassified point?
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Example (cont…)
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w2 = (2, 3, 1) [at (-w0/w1,0) and (0, -w0/w2)]
Now the line crosses at (-2/3, 0) and (0, -2).

With this weight vector, the perceptron
achieves perfect classification!
The learning process terminates.
In most cases, many more iterations are 
necessary than in this example.
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How do you know the algorithm works?

• Activation  a = w.x
• If y=1 and d=0, then (w – ∆w).x < w.x
• Considering learning rate c=1, ∆w = cx = x
• Therefore, (w – ∆w).x => w.x – x.x
• But x.x > 0 and so, (w.x – x.x) must be < w.x

which implies that the weight adjustment will 
eventually lead to a weight value that will 
correctly classify the input data.

• Same justification can be used for y=0 and d=1.
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Perceptron Convergence Theorem
• It can be guaranteed that the Perceptron 

training algorithm will classify all the data 
correctly when they are linearly separable 
and c is sufficiently small.

• ***See proof in the book or the slides posted 
on OnQ.
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Choice of c

• If c is too small, the algorithm will make very 
small changes to the weights each time  very 
long training time

• If c is too big, the weight changes will be too 
much and the data that were previously 
correctly classified may be misclassified again. 
– The separator line will fluctuate its slope too much 

and never reach the correct slope.

22



Choice of c (cont…)

• A common choice is c = 1. 
• To ensure that the sample x is correctly classified 

following the weight change 
• (w ± ∆w).x  must be of the opposite sign of w.x

=> |∆w . x| > |w . x|
↔ c |x . x| > |w . x|    since ∆w = cx

↔ c > -----------
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Terminating Condition

• Until all data are correctly classified
– Problem *** 

 Data may not be linearly separable  results in infinite loop 
 Add a maximum number of iteration

 The value of c may be too high and the weight vector fluctuates too 
much.
 Try using a lower value.

• Until a fixed number of iteration has been run
– One iteration = Running with X1..Xp once 

• Until acceptable error level is reached
– Error = (misclassified data points / total data points) <= 

threshold
– When data is not linearly separable – How do we know that?

• Combine multiple of the above conditions
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Not Linearly Separable – Algorithms

• The "Pocket" and "Least Mean Squares" 
(LMS) algorithms attempt to achieve robust 
classification when the two classes are not 
linearly separable.
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The Pocket Algorithm
• The pocket algorithm is a useful modification of the 

perceptron training algorithm 
– Weight change mechanism is the same.
– Identifies the weight vector (w1,…,wn) with the longest 

unchanged run (# of points correctly classified: #p) as the 
best solution so far.

– Stores the best weight vector in a "pocket" as well as the 
best length of the run associated with it.

– Pocket contents are replaced with a new weight vector 
when a longer successful run is found.
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Pocket Algorithm with Ratchet

• A lucky run of several successes may allow a 
poor solution to replace a better solution in the 
pocket. 

• To avoid this, the Pocket algorithm with 
ratchet ensures that the pocket weights always 
"ratchet up"
– w1 in the pocket is replaced by w2  that has longer 

successful run only after testing on all training 
samples whether w2 does correctly classify a 
greater number of samples than w1.

– Expensive computation.
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Results

• The Pocket algorithm gives good results, 
although there is no guarantee of reaching the 
optimal weight vector in a reasonable number 
of iterations due to distribution of data points.

• The best solution may never get saved in the 
pocket and hence ratchet version in that case 
will also not be able to find that solution.
– If the best solution ever gets selected to be put into 

the Pocket then ratchet will test it for all solutions 
and keep it in the pocket.
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Learning by Error Correction

• Compute the error (d-y), difference between desired 
and actual output

• Adjust the weights to reduce error
w t +1

ji = wt
ji + ∆w = wt

ji + (d-y)*cxi

where (i = 1,..,n) and  c is learning rate
• Range of the input and output values should be taken 

into account
– Note that for both d and y ϵ {-1, +1}, (d-y) ϵ {-2, 0, +2} 
– c * (d-y) will be high.
– so c should be ½ of what it would be for y ϵ {0, 1} 
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Categorical Inputs

• What if input values are categorical?
– E.g.   color ϵ {red, blue, green, yellow}

• The simplest alternative:
– Generate four new dimensions: red, blue, green and yellow 
– Recode categorical value as a binary vector [red, blue, green, 

yellow] = {0,1}4. 
 For example, if red=0, blue=0, green=1, yellow=0 then "green" can be 

represented as (0,0,1,0).
• You can use 2 digits to represent the 4 possible values 

[(0,0),(0,1),(1,0),(1,1)] – Problems
– Mapping of layers get complicated
– Results in longer training time and need more neurons in hidden 

layers. 
• In the general case, if an attribute (e.g. color) can take one 

of n different values, then n new dimensions are obtained.
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Perceptron and Linear Separability

• In general, networks of perceptron-like 
processors can solve most non-linearly 
separable tasks by using more than one layer 
of processors. 

• Rosenblatt (and others) realized this in the 
1960's, but did not have a learning rule that 
would work effectively with more than one 
level (it wasn't invented until the mid 1970's).
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