
Applicability of Optimizing Control
for Dynamic Discrete-Event Systems

LENKO GRIGOROV grigorov@cs.queensu.ca
School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

KAREN RUDIE rudie@ee.queensu.ca
Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract— The results of a simulation of a new near-optimal
online control method for dynamic discrete-event systems is
presented. The performance of the suggested control algorithm
is compared to the performance of a previous online control
algorithm which does not use optimality information. A case-
specificvalue function, needed for the control optimization, is
described. The paper provides insight into the applicability of
the new approach for the control of dynamic discrete-event
systems.

I. I NTRODUCTION

A wide variety of systems, such as factory robots and
communications protocols, can be suitably described as
discrete-event systems (DESs). Possible approaches to their
control are standard supervisory control [5] and online con-
trol with limited lookahead [2]. Of the two, only the latter
is applicable to dynamic discrete-event systems (DDESs)—
systems which can vary with time [4]. Such systems are
constituted of separate, small DES modules, which are
combined together using synchronous product [1]. The
systems vary in that, after each occurrence of an event, they
may be comprised of different modules.

In the aforementioned theories, control is concerned
mainly with the acceptability (legality) of the resulting
system behavior. In [4], a modification to the online control
algorithm is proposed so that control becomes not only
acceptable, but also near-optimal with respect to user-
selected criteria. The user of a system defines avalue
function, v : L(G) → R, such that it returns the value
of each event string that can be generated. This function is
used to evaluate nodes in the look-ahead tree built by the
online controller. By convention,v should return−∞ for
illegal strings.

In this paper we present the results of a proof-of-
concept simulation which was carried out to compare the
performance of the suggested control method [4] to the
performance of the original online control method [3]. It
provides insight into the applicability of the new approach
for the control of DDESs.

II. SIMULATION SETUP

For the purpose of comparing the two control methods,
the example provided in [3] is used. This example is chosen
for two reasons: the system setup is such that it immediately
fits in the DDES paradigm, and it offers a very convenient
way to compare the new algorithm to the original algorithm.

The dynamic system under consideration consists of a
number of trains, each modeled as a separate module. Each

train can travel along tracks, which are connected as shown
in Fig. 1. There is a tunnel in section 2 of each of track 1
and 4. Trains can enter the system from stations 1 and 2 and
can leave the system from stations 2 and 3. The number of
trains is not known a priori and trains can enter and leave
the system at different times (see [3]), which makes the
system a DDES.

S3

S1 J1 J2 S2

track 1

track 2

track 4

track 3

track 5

track 6

track 7

Fig. 1. Train system. Stations are denoted bySi.

The value functionv used to optimize the system control
is based on the legality specifications in [3] and it returns
−∞ when an event string is illegal. In addition, it is used
to attempt to fulfill the following specifications:

1) Trains should move through the system aiming to
reach stations. Thus, trains which arrive at a station
different from their starting station contribute the
value 200 to the overall value of the string, while
arrivals at the starting station contribute negatively
with a value of−200.

2) The use of the tracks and tunnels should be balanced.
Thus, for every use of a section of a track, the value
of 1 + lnm is subtracted, wherem stands for the
number of times the particular section has been used.
Furthermore, for every string, the difference between
the tunnel usage times 10 is subtracted.

3) Trains should move in an interweaved fashion (i.e.,
should not wait for too long before they move). Thus,
for each train it is calculated how many time intervals
have passed since it has moved last and then all these
intervals are summed up and subtracted.

The simulation consists of two parts. First, the original
online control algorithm is run to collect performance infor-
mation not collected in [3] but important for the comparison
of the two methods. Then, the modified algorithm is run to
collect the same performance information:

• Average number of trains during the simulation.
• The value of the generated strings at the end of each

simulation.
• The number of trains which arrive at a station during

each simulation.



TABLE I

SIMULATION RESULTS

Value of generated string Decision time per step (ms) Inspected Reused
Length
of run

Tree
depth

Trains
(avg) (min) (avg) (max)

Arrivals
(avg) (min) (avg) (max)

nodes per
step (avg)

nodes per
step (avg)

(a) Using the original online control algorithm [3]

40 10 4.3 -1095.8 -583.0 90.5 1 0 132.8 1612 107.1 1.2
40 20 4.4 -1668.2 -725.3 135.4 0.8 0 500.7 7711 423.9 1.3
100 10 4.9 -2218.4 -1546.9 -750.8 2.4 0 581.9 39147 316.6 1.4

(b) Using the DDES optimal control algorithm [4]

40 2 5.2 -216.5 -39.0 287.6 0.7 0 44.4 170 25.2 0.7
40 3 6.5 -70.9 79.2 296.9 1.4 10 158.1 911 193.3 4.3
40 5 6.4 -69.1 124.9 217.8 1.7 30 2502.9 34810 3487.6 102.1
40 7 5.2 210.9 227.0 243.1 2 60 11039.1 104721 14893.0 307.5
100 5 8.4 927.7 1183.3 1291.1 7.8 20 14593.7 85823 13992.5 155.3

• The decision time for every control step.
• The number of tree nodes inspected at every control

step.
• The number of tree nodes whose value was reused (i.e.,

had been computed previously) for every control step.
Please note that this is different from the re-utilization
statistic provided in [3], where the average ratio of
the portion of the look-ahead window that survives
between steps is shown.

For each pair of tree depth and simulation length, ten
simulation runs are executed and the results are averaged for
these runs. The only exceptions are the minimal and max-
imal values which reflect the overall minimal or maximal
value for the given set of runs.

Both algorithms are implemented in the Java program-
ming language. Other implementations may run faster or
slower; thus, the time spent by the algorithm at each control
step should be used for comparative purposes within this
simulation only. In eight out of the ten runs with a length
of forty and a tree depth of seven, the Java Virtual Machine
ran out of memory (64 MB) before the completion of the
simulation. Information from only the two successful runs
is included in the table with results.

III. R ESULTS

The information gathered for the original online control
method is shown in Table I-a. The results are comparable
to the results presented in [3] with the exception of the
decision time per step which improved with the new im-
plementation. At the end of each run, the string produced
is evaluated with the value function to serve as a basis
for comparison with the optimizing control method. The
average value of the strings is negative. This is due to the
randomness in the execution of events—as long as an event
is legal, it is considered for execution and there is no attempt
to guide the system along a path that is valuable for the
user. Naturally, the increase of tree depth does not have a
beneficial effect on the performance of the algorithm.

The information gathered for the newly proposed control
method is shown in Table I-b. Overall, the optimizing
control algorithm outperforms the original online control
algorithm. The execution of events is targeted and thus

the resulting value of the event strings is much greater.
Furthermore, as expected, the greater the depth of the look-
ahead tree, the better is the performance of the algorithm—
both in terms of the string value and the average number
of arriving trains. On the other hand, the optimal control
algorithm requires more computational resources than the
original algorithm, both in terms of time and space. Almost
every branch of the look-ahead tree has to be examined
fully and thus the decision time and the number of nodes
created are considerably greater than in the original control
algorithm. However, the values are still good enough for the
practical use of the system in this example. Furthermore,
as seen, the proposed control algorithm performs well even
with very shallow look-ahead trees; this all depends on the
specific value function used.

IV. CONCLUSION

In this paper we presented the result from a simulation
comparing the performance of online control of dynamic
discrete-event systems with and without optimality infor-
mation. It was shown that optimizing control increases
significantly the value of strings generated by the system.
However, this comes at the cost of greater time and space
complexity. The computational demands of this method
may render it inapplicable to very large systems. On the
other hand, the original online control method may still
perform well with larger systems. This leads us to believe
that ultimately a combination of the two approaches would
offer the best performance.

REFERENCES

[1] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event Sys-
tems. Norwell, Massachusetts, USA: Kluwer Academic Publishers,
1999.

[2] S.-L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete event systems,”IEEE Transactions on
Automatic Control, vol. 37, no. 12, pp. 1921–1935, 1992.

[3] ——, “Supervisory control using variable lookahead policies,”Dis-
crete Event Dynamic Systems: Theory and Applications, vol. 4, pp.
237–268, 1994.

[4] L. G. Grigorov, “Control of dynamic discrete-event systems,” Master’s
thesis, Queen’s University, Kingston, Ontario, Canada, 2004.

[5] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM Journal of Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

2


