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Abstract

This paper is an overview of the current research on hierarchical control of discrete-event
systems. Four major approaches are identified and described: bottom-up design, top-down
design, state aggregation, and interface-based design. The research examined is grouped into
these sections, in an attempt to unify the terminology and concepts where possible without an
in-depth theoretical investigation. The motivation for this paper is to examine the different
approaches to hierarchical control of discrete-event systems with an eye on their implications
for the usability of the proposed models.

1 Introduction

Computerization is one of the major advancements in technology during the past few decades.
Nowadays it is almost unthinkable to design and build a new machine without considering
some kind of computer control for it. Even the use of inherently continuous systems like radio
signals or chemical processes is “digitized” by the introduction of digital protocols and digital
controllers.

The process of digitalization implies, at a low level, the discretization of the process or
device which will be controlled. While Classical Control Theory deals with the control of
continuous systems, a new approach is necessary for the control of discrete systems. In the
eighties, Ramadge and Wonham publish a number of very influential articles [36, 50, 37].
They proposed a framework for the control of a class of discrete systems, called Discrete-
Event Systems (DESs). We will introduce the framework and related matter next, followed
by the motivation for this paper.

1.1 Preliminaries

Discrete-Event Systems are systems where events (changes of state) occur sequentially and
asynchronously. For example, an elevator in a building can be modeled as a DES. The events
would be the opening and closing of the doors, the pressing of the buttons, the arrival at
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a floor, etc. The states of the system would include information about requests for a stop
at different floors, the position of the elevator, the direction in which it moves, etc. Events
occur sequentially: the model does not allow the simultaneous pressing of two buttons (in
reality, the low-level event processing unit ensures the sequencing of events). Also, events
are asynchronous because, for the purpose of the model, it does not matter how much time
passes between two events. Even though an elevator is a much more complicated system, in
reality, the electronic control of elevators uses a model similar to the one described.

There are many ways to model DESs, including Petri nets [34], fuzzy matrices [31], and
modal logic [38]. However, the most commonly used and natural model is that of an automa-
ton and, for practical purposes, a Finite-State Machine (FSM). The latter is also used in the
Ramadge and Wonham framework. This approach is not only very intuitive, it allows the
use of results from Automata Theory and, as the main interest of this paper, it is amenable
to hierarchical structuring.

An FSM is a tuple G = (Σ, Q, δ, q0, Qf ), where Σ is a finite set of symbols (also referred to
as the “alphabet”), Q is a finite set of states, δ : Q × Σ → Q is a partial transition function,
q0 is the initial state and Qf ⊆ Q is the set of final states (frequently referred to as Qm,
the set of “marked” states). Note that in many of the articles discussed in this paper, FSMs
are defined to have a set of initial states, Q0, instead of a single initial state, q0. Usually,
during discussion, it is assumed that such FSMs are restricted to some initial state q0 ∈ Q0

as needed. The “empty symbol” ǫ, which is not in Σ, is used to denote a string of symbols
with length zero. The notation Σ∗ stands for the set of all finite strings of symbols from Σ
and ǫ. The transition function δ can be naturally extended to Q × Σ∗ → Q. Such an FSM
can be interpreted as a DES if the states are considered to be states of the system and the
symbols from Σ to be the events which can occur in the system. Thus, strings of symbols
would describe sequences of events.

The language L(G) is defined to be the set of all possible sequences of events in the system.
The FSM G is said to generate L(G). The language Lm(G) is defined to be the set of all
sequences of events which lead to a final state. The FSM G is said to accept Lm(G). More
formally,

L(G) = {s | s ∈ Σ∗, δ(q0, s) is defined},
Lm(G) = {s | s ∈ Σ∗, δ(q0, s) is defined, δ(q0, s) ∈ Qf}.

The language L(G) can be viewed as the unrestricted behavior of a DES and Lm(G) as the
sequences of events that accomplish a task, also called marked strings.

The length of a string s is denoted |s|. The string t is called a prefix of the string s,
denoted t ≤ s, if ∃u ∈ Σ∗, s = tu. The empty string ǫ is a prefix of any string. The prefix-
closure of a language is defined to be the set of all prefixes of strings in the language. For all
automata, prefix-closing the generated language produces a language equal to the generated
language itself. More formally,

L = {t | t ∈ Σ∗,∃s ∈ L, t ≤ s}, L(G) = L(G).

A prefix-closed language is a language which equals its prefix-closure. Prefix closure is an
important operation because it describes the possible partial behavior of a DES. An FSM G
is called non-blocking if L(G) = Lm(G). In other words, all string prefixes it can generate
eventually lead to a final state. The non-blocking property is important because, when it is
not satisfied, the DES may get “stuck” during runtime, i.e., reach a state from which a final
state is not reachable.
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Figure 1: DES model of a customer in a store.

An example of a DES is the simplified model of a customer at a store [21] (Fig. 1). The
customer can enter the store, pick something to buy, pay with cash or a credit card, and leave
at any time. Here Σ = {“enter”, “pick”, “pay cash”, “pay cc”, “leave”}. The set of states is
Q = {q0, q1, q2, q3}. The transition function can be determined from the diagram in Fig. 1,
e.g., δ(q1, pick) = q2. The initial state is q0. The set of final states is Qf = {q0}. Examples
of event sequences are “enter, leave” or “enter, pick, pay cc”. The second sequence is not
“complete”—it does not belong to Lm. However, it belongs to Lm, since it is a prefix of the
sequence “enter, pick, pay cc, leave”, which is in Lm. This particular example is very simple,
but one can easily imagine the application of DESs in factory processes, computer protocols,
and other areas.

After having defined a DES, one of the questions of greatest interest is how one would be
able to influence its unrestricted behavior. In other words, what restrictions would one use
so that certain specifications on the behavior are met? The largest body of research on DESs
deals with this specific problem: the control of DESs.

The basic FSM model does not provide any means of control. Thus, Ramadge and Won-
ham [36] extend it by distinguishing between controllable and uncontrollable events. Control-
lable events are events which can be “disabled”, or prevented from occurring, and “enabled”.
Uncontrollable events remain enabled all the time. The sets of all controllable and uncon-
trollable events are denoted Σc and Σuc, respectively. Thus,

Σ = Σc ∪ Σuc, Σc ∩ Σuc = ∅.

A specification for the desired behavior of a DES G is given as a language K ⊆ L(G). The
restriction of the complete behavior is done by disabling the controllable events when needed.
This can be formalized by the construction of an FSM S = (Σ, QS , δS , qS

0 , QS
f ), such that

K = L(S). Consequently, the controlled behavior of the DES, L(S/G), can be obtained by
intersecting the two languages: L(S/G) = L(S) ∩ L(G) = L(S × G). This method is called
supervisory control and S is termed a supervisor.

Unfortunately, control of DES is not such a trivial issue. Sometimes, the specification K
would contain a string t such that an uncontrollable event can follow in the system while the
specification does not permit it, i.e., ∃s ∈ L(G), s = tσ, σ ∈ Σuc, tσ 6∈ K. Let us consider
the example in Fig. 1. The only controllable events are Σc = {“pay cash”, “pay cc”} (paying
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with cash or a credit card, respectively). Imagine that the credit card reader is broken. Then,
the desirable behavior from a customer would be K = {“enter, leave”, “enter, pick, pay cash,
leave”}. This specification, however, cannot be implemented using supervisory control: the
event “leave” is uncontrollable, thus, it cannot be disabled after the string “enter, pick”.
Despite our best intentions to prevent theft from the store, the underlying system does not
have the necessary capability. This discussion leads to the following definition: a language K
is called controllable with respect to a system G if and only if

{sσ | s ∈ K, σ ∈ Σuc, sσ ∈ L(G)} ⊆ K.

Controllability of a specification language is important because only in such a case can the
required restrictions be implemented via supervisory control. In [50], the authors show that
the class of all controllable sublanguages with respect to a DES, C(K, G) = {L | L ⊆ K, L is
controllable with respect to G}, is a complete semilattice with respect to set union and has a
supremal element. The largest controllable sublanguage of K with respect to G, sup C(K, G)
(also denoted K↑ where G is clear from the context), can be computed in polynomial time
in terms of the number of states. In the example from Fig. 1, sup C = ∅ since, once we let
a customer in the store, we cannot prevent theft. In most research papers, the specification
language is assumed to be controllable and the interest lies in other aspects of control.

In many cases, a complete system is composed of separate modules which interact. This
fact can be utilized when the system is modeled as a DES. Modular control of DESs, [51],
uses the operation called synchronous product (also known as parallel composition) and de-
noted || to compose DES systems (modules) into supersystems. For two systems, G1 =
(Σ1, Q1, δ1, q01, Qf1) and G2 = (Σ2, Q2, δ2, q02, Qf2), the synchronous product is defined to
be the automaton G1‖G2 = (Σ1 ∪ Σ2, Q1 × Q2, δ, [q01, q02], Qf1 × Qf2), where the states are
elements of the Cartesian product of the sets of states of the two automata, the transition
function δ is defined as δ : (Q1 × Q2) × (Σ1 ∪ Σ2) → Q1 × Q2,

δ([q1, q2], σ) =



















[δ1(q1, σ), δ2(q2, σ)] if both δ1(q1, σ) and δ2(q2, σ) are defined,
[δ1(q1, σ), q2] if only δ1(q1, σ) is defined and σ /∈ Σ2,
[q1, δ2(q2, σ)] if only δ2(q2, σ) is defined and σ /∈ Σ1,
undefined otherwise.

In other words, the modules interact, and are synchronized, through their common events.
The parallel composition can be defined equivalently in linguistic terms. Let P1,2 : (Σ1 ∪
Σ2)

∗ → Σ∗
1,2 be the natural projections of strings from the combined alphabets to Σ∗

1 and

Σ∗
2, respectively. Then, L(G1)‖L(G2) = P−1

1 (L(G1)) ∩ P−1
2 (L(G2)). Modular DES design

is an elegant and convenient architectural approach, however, it has a significant drawback.
In general, the state space of a supersystem may grow exponentially with the number of
modules. Thus, the computation of a supervisor for the complete system becomes intractable
even for moderately-sized real systems. The good result is that, under certain conditions,
local supervisors can be constructed for each module such that their combined use ensures
the global specification is met [51, 17].

Another extension to the basic model arises from real-world problems. The observability
of events can be taken into account [30]. Some events from the DES model may not be
observable to a supervisor. For example, if there is no signaling device at the door of a store,
the cashier may not be able to observe the events “enter” and “leave” for the customers.

4



The alphabet Σ can be partitioned into Σo and Σuo, the sets of observable and unobservable
events, respectively. Thus,

Σ = Σo ∪ Σuo, Σo ∩ Σuo = ∅.
Notice that observability and controllability of events are not related, thus, events can be
observable and controllable, observable but uncontrollable, etc. The natural projection P :
Σ∗ → Σ∗

o is defined as

P (ǫ) = ǫ,

P (σ) =

{

σ if σ ∈ Σo,
ǫ if σ ∈ Σuo,

P (sσ) = P (s)P (σ) where s ∈ Σ∗, σ ∈ Σ.

A language K is said to be observable with respect to L if and only if for all s, s′ ∈ K such
that P (s) = P (s′)

∀σ ∈ Σ : sσ ∈ K ∧ s′ ∈ K ∧ s′σ ∈ L ⇒ s′σ ∈ K,

s ∈ K ∩ Lm(G) ∧ s′ ∈ K ∩ Lm(G) ⇒ s′ ∈ K.

In other words, if the projections of two strings look the same, their one-step continuations
should be the same and, if both are marked, then either both belong to K or neither does.
(If K is prefix-closed, the second requirement is trivially fulfilled.) This specification is
important because otherwise it will not be possible to implement a supervisor for K that
observes only P (K). Indeed, when we allow for unobservable events, there exists a supervisor
for a specification K if and only if K is controllable and observable [30].

Further information on discrete-event systems and their control can be found in [6, 25, 49].

1.2 Motivation

While the initial concepts of DES formalization and modeling seem to be simple and easy,
real-world applications have been very scarce. In my opinion, this has two major reasons:

• the “hidden” computational complexity of DES and

• the user unfriendly model.

By “hidden” complexity I mean the following. The synthesis of a supervisor is polynomial
in terms of the number of states of a DES. However, the number of states in a real system
would normally be so large, e.g., 220, that the computation cannot be carried out using
reasonable resources. This somewhat unexpected result stems from the exponential increase
of the state space of a system with the composition of the subsystems from which the system
consists. Much of the attention of DES control research is dedicated to the development of
methodologies that avoid computations over the complete system. Big advancements have
been made, with the introduction of modular control [51], online control [11], decentralized
control [39] and, as we will explore in greater detail in this paper, hierarchical control [54, 2,
3, 46, 27].

Besides purely computational problems (for which some workarounds are already avail-
able), the standard DES model suffers greatly from a purely human-usability viewpoint.
Despite the fact that intuition is not part of any precise formalisms, it plays a significant role
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in people’s cognitive processes [43]. This is recognized by Wonham, the pioneer of DES, who
mentions in his recent informal presentations that greater transparency is needed for the inner
workings of DES control [48]. The concept of a state machine with events as transitions seems
very intuitive, and it is so as long as there are no more than a few states and transitions. A
system with ten thousand states and thirty thousand transitions cannot be comprehended,
let alone updated, if so desired. The synthesis of supervisors for such systems results in ob-
jects which, to the users, are nothing more than “magical boxes”. Would somebody employ
models which are computationally demanding, incomprehensible and hard to modify? The
answer is, most probably not. Surprisingly, DES researchers continue devising increasingly
complicated and obscure control paradigms and schemes while virtually no research is done
for the provision of more intuitive interfaces to DESs. Fortunately, as a side effect, some
of the research has resulted in more user-friendly DES designs, namely, the modular and
hierarchical architectures. The modular approach breaks down the complexity of perception
in a “horizontal” fashion, while the hierarchical approach breaks down the complexity in a
“vertical” fashion.

Hierarchical structuring is important for complex control systems, as exemplified in the
command hierarchies in the military or the government and as formally examined in [18].
Thus, I believe, hierarchical structuring is of major interest for the study of better human
interfaces to DES. Modular control is also of importance, however, since its introduction in
[51], it has been investigated in a relatively consistent way using the synchronous product (or
a minor modification thereof) as a base. On the other hand, research of hierarchical control
has produced a number of wildly varied approaches. Thus, it is of greater value to conduct
an in-depth review of the latter. This paper will focus on hierarchical control of DESs, and
hierarchical DESs in general.

1.3 Overview of hierarchical control of DESs

As already discussed, the study of hierarchical control of DESs is far from being unified
around a common base. The first popular paper on the topic is by Zhong and Wonham
[54], where the problem is stated as that of the generation of a hierarchically consistent
abstraction of a DES. This approach is generally termed “bottom-up design” and further
refinements are found in [47, 20, 35, 7, 24]. Soon after, Brave and Heymann publish a paper,
[2], which uses a modified version of Statecharts, [22], to model hierarchical systems. This
article does not generate enough interest until much later, in the work of Marchand and
Gaudin [33, 19] and Ma and Wonham [32]. In 1995, Bing Wang defends a Master’s Thesis
[46] on a new approach termed “top-down design” for hierarchical DESs. A hierarchical State
Tree Structure is employed which starts with a simple DES model and where subsystems
are gradually refined. This initial research is also used in [32]. At about the same time,
Caines and Wei publish an influential paper on lattices of hierarchical abstractions of state
machines [3]. This work is extended in [4, 5, 41, 42, 23] and, later, in [1]. Leduc et al.
propose an interesting method for hierarchical control, borrowing ideas from Object-Oriented
Programming [27, 28, 29]. Low-level systems have interfaces and the communication between
high level and low level is restricted to these interfaces. Cury and his research group publish
an article on a novel approach to DES control [13] which is more abstract than the Ramadge
and Wonham framework. This serves as the base for a natural extension to hierarchical
control of DESs [15, 16, 44]. Other approaches to hierarchical control can be found in the
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work of Chen and Lin [10] and Chen and Hanisch [8].

In the rest of the paper, the above approaches will be examined in greater detail.

2 Approaches to hierarchical control of DES

2.1 Bottom-up design

In the bottom-up approach, a high-level abstraction of a low-level system is made. Control
is applied on the top level with the idea that the low level will perform accordingly.

2.1.1 Hierarchical control based on the standard framework

The bottom-up design concept for DESs first appeared in [53] and then in [54]. There, a
two-level model is considered (see Fig. 2). At the low level, there is a system Glo which is

Chi Ghi

Clo Glo

T ∗

virt.

ctrl

Σ∗

ctrl

θ

Figure 2: A two-level hierarchical system.

controlled by a low-level supervisor Clo. The high-level abstraction of Glo is called Ghi and the
high-level supervisor for Ghi is called Chi. The events at the high level are “reported” by the
lower level through an information channel. In this way, the behavior of the high-level system
is “driven” by the behavior of the low-level system. Furthermore, the high-level supervision is
only virtual. The high-level supervisor has no direct influence over Ghi. Instead, the control
decisions are communicated to the low-level supervisor which has to implement them on Glo.

The low-level system Glo = (Σ, Q, δ, q0, Qf ) is a standard DES. The set of events at the
high level is denoted T . The abstraction Ghi is defined using a causal map θ : L(Glo) → T ∗

such that

θ(ǫ) = ǫ,

θ(sσ) = either θ(s)

or θ(s)τ for some τ ∈ T,

where s ∈ Σ∗, σ ∈ Σ. The abstraction specification can be visualized conveniently if we
imagine that the states of Glo are vocalized. Let τ0 6∈ T be a “silent” event symbol and
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T0 = T ∪ {τ0}. The output function ω : Q → T0 is such that ω(q0) = τ0 and for any other
state q reachable via the string sσ,

ω(q) = τ if θ(sσ) = θ(s)τ,

ω(q) = τ0 if θ(sσ) = θ(s).

The interpretation is that each state of Glo contains a high-level event which is output when
the state is reached (see Fig. 3). The silent event τ0 is ignored by the high level. Depending

(a)

τ0 τ0

τ0 τ1

τ2 τ1

u

b

a

b

a

(b) τ1
τ2

τ1

Figure 3: The low-level (a) and high-level (b) model of a hierarchical system. The
output of the function ω is displayed in the states of the low-level system. Here Σc =
{a, b} and Σuc = {u}.

on the specific map θ, it might not be possible to construct a finite automaton to visualize
ω. However, it is assumed that a practical choice of θ is made and that it leads to a finite
representation. The high-level system Ghi is such that the language it generates equals the
image of the low-level language under θ, i.e., L(Ghi) = θ(L(Glo)).

In order to be able to define a supervisor for Ghi, the alphabet T has to be partitioned
in controllable and uncontrollable events Tc and Tuc. However, it can be seen easily that
there may be no natural way how to derive this partitioning from Σc and Σuc. For example,
in Fig. 3, assuming the given controllability of low-level events, the high-level event τ1 is
both “uncontrollable” in the string aua and “controllable” in the string abb. Thus, the
following definition is introduced: (Glo, θ) is output-control-consistent when, for all τ ∈ T , it
is unambiguous if τ is controllable or uncontrollable. If a hierarchical system (Glo, θ) is not
output-control-consistent, there is an algorithm to compute a new alphabet T ′ from T and
then adjust θ accordingly so that ambiguous events τ are separated into τc and τuc and the
system becomes output-control-consistent.

Let Ehi ⊆ L(Ghi) be a prefix-closed specification language which is controllable with
respect to L(Ghi). Let Elo = θ−1(Ehi). Then, if the system is output-control-consistent,
there exists a control strategy Chi over T such that its implementation in the low level
by a supervisor Clo results in L(Clo/Glo) = E↑

lo. Furthermore, θ(E↑
lo) ⊆ Ehi. Intuitively,

this means that, in reality, only a subset of the “expected” high-level specification may be
achievable because of the low level control. A system (Glo, θ) is called hierarchically consistent
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when specifications “virtually” achievable at the high level can actually be achieved through
low-level control, i.e., θ(E↑

lo) = Ehi. A sufficient condition for hierarchical consistency is that
of strict output-control consistency. A system is strictly output-control-consistent when it is
output-control-consistent and the low-level system allows for the enablement and disablement
of every controllable high-level event independently. If a system is output-control-consistent
but not strictly so, there is an algorithm which introduces new high-level events and modifies
θ so that additional information about the low level is available at the high level and the
system becomes strictly output-control-consistent. If Glo has n states and m transitions, the
complexity of the combined algorithms (for output-control consistency and for strict output-
control consistency) is O(n3m + n2m2) [49].

When the low-level system is not completely observable, i.e., Σuo 6= ∅, then strict output-
control consistency is not sufficient to guarantee hierarchical consistency [24]. The notion of
H-observability is introduced. Let K ⊆ L(Glo). The language Ehi ⊆ L(Ghi) is H-observable
with respect to L(Ghi) and K when, for all s, s′ ∈ K such that P (s) = P (s′), a version of the
observability condition for high-level controllable events holds:

∀τ ∈ Tc : θ(s)τ ∈ Ehi ∧ θ(s′) ∈ Ehi ∧ θ(s)τ ∈ L(Ghi) ⇒ θ(s′)τ ∈ Ehi.

Then, if Glo is strictly output-control-consistent, Ehi is H-observable with respect to E↑
lo and

L(Ghi) and E↑
lo is observable with respect to L(Glo), there exists a high-level control strategy

over T such that its implementation in the low level results in Ehi.

2.1.2 Non-blocking hierarchical control

The approach discussed above does not guarantee non-blocking solutions when the specifi-
cations are not prefix-closed. In [47], Wong and Wonham generalize the methodology and
present further conditions under which the hierarchical control will be non-blocking.

Instead of using controllable and uncontrollable events as the means to control the be-
havior of a system, the generalized concept of control structures is introduced. Let the set of
prefix-closed sublanguages of a language L be denoted FL. Then, C : FL → 22L

is a control
structure on L if, for all H ∈ FL,

1. C(H) is a complete upper semilattice with respect to 2H and ∪,

2. ∅, H ∈ C(H),

3. K ∈ C(H) ⇒ K ∈ C(H) and

4. ∀I ∈ FL, H ⊆ I : C(I) ∩ 2H ⊆ C(H) with equality if H ∈ FI ∩ C(I).

The control structure assigns to every “subsystem” H a set of languages which are “con-
trollable” using some control method. Every control structure is closed under union, is
non-empty, is closed under prefix-closure and is harmonious with respect to subsystems (if
H is a subsystem of I, it inherits all relevant controllable sublanguages of I; as well, if H
is a controllable sublanguage of I, all controllable sublanguages of H are inherited from I).
These axioms also guarantee that a supremal controllable sublanguage always exists. It is
verifiable that the standard control mechanism in the Ramadge and Wonham framework [36]
satisfies the requirements for a control structure.

Let θ, Glo and Ghi be defined as before and C be a control structure on L(Glo). The tuple
(Glo, θ, C) is called control consistent if there is a high-level control structure C ′ implied by
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the low-level control structure, i.e., C ′ ◦ θ = θ ◦ C. The control structure C ′ exists if and
only if the controllable sublanguages attached to low-level languages with the same high-level
image also have the same high-level image:

ker θ ≤ ker(θ ◦ C).

If we assume that there is a finite number of prefix-closed low-level sublanguages, n =
|FL(Glo)|, a direct verification of this condition would have a complexity of O(n2m2), where
m is the number of prefix-closed sublanguages controllable with respect to L(Glo). In [7], the
authors propose a simplification of the computation when standard supervisory control struc-
tures are used. The kernel condition is split into three independently-verifiable conditions
with a total computational complexity of O(n2m). Additionally, a number of weaker and less
computationally expensive necessary conditions for control consistency are presented. They
can be used to check if a system is not control-consistent.

In the generalized settings of control structures, control consistency plays the same role
as hierarchical consistency in the standard supervisory control. Let H ∈ FL and κH : 2H →
C(H) be a mapping such that, for any sublanguage K of H, it gives the largest controllable
sublanguage of K. In standard supervisory control, κH(K) equals K↑ with respect to H. Let
C and C ′ be control structures on L(Glo) and L(Ghi), respectively. Then, control consistency
means that the high-level supervisory solutions for high-level specifications are equivalent to
the low-level supervisory solutions for the low-level images of the high-level specifications:

C ′(Ehi) = θ(C(Elo)) ⇔ κEhi
= θ ◦ κElo

◦ θ−1.

In order to give conditions for a non-blocking hierarchical supervisory solution, the notion
of observer map is defined. The map θ is called an observer for K ⊆ L(Glo) when

∀s ∈ K, ∀τ ∈ T : θ(s)τ ∈ θ(K) ⇒ ∃u ∈ (Σ∗ \ {ǫ}) : su ∈ K ∧ θ(su) = θ(s)τ

In other words, “unobserved” evolution at the low level cannot change the evolution options
at the high level: θ is refined enough to distinguish critical branching in the low level (see
Fig. 4 for a counterexample). If K = L(Glo), θ is simply called an observer.

τ0 τ0

τ1

τ0 τ2

a

b

a
b

Figure 4: A counterexample for an observer map. Here θ(aa)τ1 = ǫτ1 = τ1 ∈ L(Ghi)
but there is no extension u ∈ Σ∗ of aa such that θ(aau) = τ1.

If (Glo, θ, C) is control-consistent, then

κElo
◦ θ−1 is non-blocking ⇒ κEhi

is non-blocking .

This means that the non-blocking property of a low-level supervisory solution is carried over
to the high level. If this is to be valid in the reverse direction, an additional requirement
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has to be imposed on θ. The system (Glo, θ, C) is called strongly observable with respect
to a set of languages J ⊆ 2L(Glo) if the observer property of θ is invariant for any language
from J . Let X be the set of prefix-closed controllable sublanguages which are supremal
with respect to their high-level images. Let there be consistency of marking between levels,
θ−1(Lm(Ghi)) = Lm(Glo), and let (Glo, θ, C) be strongly observable with respect to X, then,

κElo
◦ θ−1 is non-blocking ⇔ κEhi

is non-blocking.

A generalized version of the strict output-control consistency can be used for a simpler veri-
fication of strong observability with respect to X.

2.1.3 Multi-level modular hierarchical control

The hierarchical control discussed so far referred to a two-level hierarchy only. However,
inherently, there is nothing which prevents the extension of this approach to a multi-level
hierarchy. A study discussing such a design is [35].

For a language K ⊆ Σ∗, let V oc(K) = {s|s ∈ K, ω(s) 6= τ0} be the set of “vocal” (non-
silent) strings of K and let θv denote the restriction of θ to vocal strings, θv = θ|V oc(L(Glo)).
Then K is called weakly observable if θ is an observer for V oc(K). The abstraction map θ is
a weak observer if it is an observer for V oc(L(Glo)).

Let C ′ be a control structure on Ghi. The system Ghi is called a consistent abstraction of
Glo if the following conditions are satisfied:

1. L(Ghi) = θ(L(Glo)),

2. ∀t ∈ L(Ghi),∀s ∈ θ−1
v (t) : t ∈ Lm(Ghi) ⇒ s ∈ Lm(Glo),

3. ∀K ∈ C ′(L(Ghi)) : ∃ a non-blocking supervisor S, θ(L(S/V oc(Glo))) = K.

In other words, Ghi is a high-level image of Glo, the marking is consistent between levels
and, for vocal strings, all the controllable behavior of the high level can be implemented by
a low-level supervisor. The above conditions differ from the definition of hierarchical and
control consistencies in some details: for example, conditions on the marking of strings are
introduced, however, the control conditions are weaker.

The relation between the existence of consistent abstractions and the abstraction map θ
is defined as follows: a consistent abstraction of Glo exists if and only if θ is a weak observer.
Furthermore, if θ is a weak observer, then a supremal (in terms of largest control structure)
consistent abstraction of Glo exists.

Let Ghi be a consistent abstraction. When a controllable high-level language K ⊆
C ′(L(Ghi)) is considered, a supremal (in terms of low-level permissiveness and marking)
low-level supervisor, S, exists such that θ(L(S/Glo)) = K.

Thus far, hierarchical control of a single DES was considered. However, as was shown
earlier, many times it is beneficial to use a composition of modules (DES subsystems). While
it is possible to compute G = G1‖G2 for some DESs G1 and G2 and then apply hierarchical
control on G, it is more desirable to be able to work with each subsystem separately. In
other words, abusing the notation, the case when θ(G1‖G2) = θ1(G1)‖θ2(G2) is of interest.
In terms of languages and marking, θ is distributive. However, the control structures are not
preserved.

Let Σ1, T1 and Σ2, T2 be the sets of low- and high-level events, respectively, for two
hierarchical systems (G1, θ1, C1) and (G2, θ2, C2). The disjunction of the event sets is assumed:
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Σ1 ∩ Σ2 = ∅ and T1 ∩ T2 = ∅. Let C ′ be the high-level control structure implied by the
control structure C of a low-level system. The control structure C ′(θ1(G1))‖C ′(θ2(G2)) for
the parallel composition of the two high-level systems is defined as the intersections of the
controllable languages in C ′(θ1(G1)) and C ′(θ2(G2)) amended with T ∗

2 and T ∗
1 , respectively.

Generally,

C ′(θ(G1‖G2)) ⊆ C ′(θ1(G1))‖C ′(θ2(G2)).

In order to obtain the desirable result of distributiveness of the control structures across
parallel composition (i.e., equality in the expression above), additional requirements have to
be posed on the abstraction map.

The system Ghi is called a reliable abstraction of Glo if it is a consistent abstraction
and, for all strings (not only vocal), all the controllable behavior of the high level can be
implemented by a low-level supervisor. If θ is an observer, a supremal reliable abstraction,
denoted Θ, exists. Then,

C ′(Θ(G1‖G2)) = C ′(Θ1(G1))‖C ′(Θ2(G2)).

Having the above results, a multi-level hierarchical and modular control architecture can
be introduced. At each level, a number of DESs can work in parallel, synchronized using the
operation ‖. Each module can be a simple DES, or an abstraction of a lower-level system.
An example is shown in Fig. 5. In order to maintain consistency throughout such a composed
system, a few requirements have to be satisfied. If there is a low-level specification for a
module, it has to be applied before the high-level abstraction of the module is made. Also,
in order to have consistent controllability for parallel modules, the abstractions of lower-level
systems have to be reliable.

S ′′/G′′

G′
1 G′

2

G

S ′ ‖/

Figure 5: A hierarchical system composed of multiple modules. The arrows indicate
reliable abstractions.
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2.1.4 Hierarchical control based on Γ control structures

A recent approach to DES control was first popularized in [13] and presented in greater detail
in [14]. The authors propose an advanced control structure for DESs, termed the Γ control
structure. While this control enhancement applies to DESs in general, it can be used to
streamline hierarchical control in particular.

Let L be a language over Σ. A Γ control structure is a map Γ : L → 22Σ×{M,N}. For every
s ∈ L, Γ(s) = {(γ,#)}, where γ ⊆ Σ is a set of enabled events after s and # is either M
or N meaning the that when γ is selected s is considered a marked or a non-marked string,
respectively. Thus, the control structure Γ offers a number of control options after each string
in L. Further requirements on Γ are:

• (γ1, N), (γ2, N) ∈ Γ(s) ⇒ (γ1 ∪ γ2, N) ∈ Γ(s) and

• (γ1, M), (γ2, #) ∈ Γ(s) ⇒ (γ1 ∪ γ2, M) ∈ Γ(s) where # can be either M or N .

These requirements express the fact that the control options are closed under union and that
marking is consistent between control options. Let the union of two control options (γ1, #1)
and (γ2, #2) be defined as (γ1, #1) ∪ (γ2, #2) = (γ,#) where γ = γ1 ∪ γ2 and # = M if
and only if at least one of #1 and #2 equals M . The union of two sets of control options
Γ1 ⊔ Γ2 contains control options (γ,#) such that there are (γ1, #1) ∈ Γ1 and (γ2, #2) ∈ Γ2

and (γ,#) = (γ1, #1) ∪ (γ2, #2).

A supervisor for a DES with a Γ control structure is a map which simply selects an
available control option after a string s. A Γ-compatible language is a language which can be
fully achieved by restricting L using only the available control options in Γ. As a result, a
supervisor for a language exists if and only if the language is Γ-compatible. If a specification
language is not Γ-compatible, then a supremal Γ-compatible sublanguage exists and can be
computed in O(|Σ|n2m2) steps, where n is the number of states in the automaton for L and
m is the number of states in the automaton for the specification language. This result is
comparable to the one in the standard Ramadge and Wonham framework.

Based on the above control scheme, the authors of [15] propose a method for hierarchical
control of DESs. For every string s ∈ L(Glo), let

Lvoc(s) = {v|v ∈ Σ+, ω(sv) ∈ T, ∀u < v : ω(su) = τ0}

be the set of shortest extensions of s that form a vocal string and

Lm(s) = Lvoc(s) ∪ {v|v ∈ Σ∗, sv ∈ Lm(Glo),∀u < v : ω(su) = τ0}

be the set of shortest vocal extensions of s together with all non-vocal extensions of s which
lead to a marked state. Let the set Γvoc(s) contain all control options (γ,#) such that there
is controllable sublanguage of Lm(s) or Lvoc(s) if # = M or # = N , respectively, such that it
accomplishes γ as the set of possible high-level events after s and it contains a marked string if
and only if # = M . In other words, Γvoc(s) contains all high-level control options for s which
can be achieved at the low level. If this is a multi-level hierarchical system, controllability at
the low level can be defined as Γ′-compatibility for some low-level control structure Γ′. There
is a maximal high-level control structure Γ which is defined as

Γ(t) =
⊔

Γvoc(s) for all t ∈ L(Ghi), s ∈ θ−1
v (t). (1)
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Then, the system (Glo, θ, Γ) is hierarchically consistent (every Γ-compatible high-level lan-
guage can be achieved by a non-blocking supervisor at the low level). Furthermore, if every
two different vocal strings have a different high-level image, the system is control consistent
(every low-level non-blocking controllable language has a non-blocking controllable high-level
image).

In [16], Γ control is discussed in the context of modular DES. Similar to [35] (see Sec-
tion 2.1.3), the goal is to obtain consistent abstractions of two modules, G1 and G2 with
Σ1 ∩Σ2 = ∅, such that the parallel composition of the two abstractions produces a consistent
abstraction of the parallel composition of the modules. Let us denote Γc the maximal hier-
archically consistent abstraction of G as discussed above. Then, (G1, Γ

c
1)‖(G2, Γ

c
2) contains

more control options than (G1‖G2, Γ
c). Thus, the notion of reliable abstraction is adapted

to the Γ control settings:

Γr(t) =
⊔

Γvoc(s)for all t ∈ L(Ghi), s ∈ θ−1(t).

Then, (θ, Γr) is called a reliable abstraction of Glo. Note that this definition differs from
(1) in using θ−1 instead of θ−1

v . This results in Γr being a more restrictive control structure
than Γc. However, reliable abstractions guarantee that (G1, Γ

r
1)‖(G2, Γ

r
2) = (G1‖G2, Γ

r). In
other words, composing reliable abstractions of modules results in a reliable abstraction of
the composition of the modules. The authors, however, propose a refinement of the control
structure so that fewer control options get lost by moving from Γc to Γr. The following proof
rule, called assume and guarantee, served as an inspiration:

G1 ∩ E2 ⊆ S1 and G2 ∩ E1 ⊆ S2

G1 ⊆ E1 and G2 ⊆ E2

⇒ G1 ∩ G2 ⊆ S1 ∩ S2,

where intersection can be interpreted as parallel composition and inclusion as satisfying the
property of hierarchically consistent abstraction. The “environment” E2 for the system G1 is
defined as the high-level abstraction of G2 where all events are uncontrollable and all strings
are marked. In a similar way, E1 is defined. Then, (G1‖E2, Γ

c
1)‖(G2‖E1, Γ

c
2) = (G1‖G2, Γ

c).
Generally, this construction results in a more permissive control structure than Γr.

2.1.5 Discussion

The bottom-up design for hierarchical control is one of the best studied approaches to solving
the problem. It can be seen that many advanced results have been obtained. The algebraic
flavor to the works of [47] and [35] results in more elegant and consistent theories. The Γ
control structures provide a generalized control framework which can also be applied to control
problems other than hierarchical control, thus serving as a base for unification. Unfortunately,
solving more complicated problems results in the use of more complicated methodologies. The
proliferation of very abstract concepts, like the many kinds of “consistencies” between the
two levels of hierarchical systems, makes the research very hard to follow. Furthermore,
algorithms for the computation of some of the abstract constructs are not currently available.
For example, it is not clear how to compute control structures directly (a key concept for
most of the research). In the case of composed hierarchical systems, the current results are
valid only when disjoint modules are considered. Thus, a lot of further research is necessary
on this topic.
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In my opinion, however, the greatest issue with bottom-up design is in the inherent de-
pendence between levels. Using such an architecture, the high-level system is directly derived
from and highly dependent on the low level. This help in synthesizing the control strategies,
however, makes the modification of such systems a very demanding task. A small change at
the bottom of the hierarchy may propagate all the way up to the very top level. In a dynami-
cal production environment, where methods and goals change constantly, easy upgradeability
of the control system is highly desirable. It is my belief that, no matter how advanced are
the results using bottom-up architectures, managers would avoid deploying systems which
need a complete makeover when even a small detail changes. In real life, it would not be
acceptable to have to re-verify the control strategy for the whole manufacturing plant when
a new machine feeder is installed.

2.2 Top-down design

The top-down design for hierarchical DESs is largely influenced by the work of Harel on
the so-called statecharts [22]. A statechart is a finite-state machine which is enhanced by
additional capabilities. Two of them are of special importance to the modeling paradigm
discussed in this section: orthogonality (parallelism) and hierarchy. In other words, states
can be composed into concurrent units and may consist of substates.

In the top-down architecture for DESs, the system model is recursively defined from the
top (the highest-level system) to the bottom (the lowest-level subsystems). This is achieved
by a process of refinement of coarse models to more detailed descriptions. The bottom-level
subsystems need not represent the finest possible refinement—it may be that the system
designer is not interested in a finer model. This approach is in some sense “dual” to the
bottom-up design where, instead of refinement of coarse systems, abstraction of detailed
systems is used.

2.2.1 Hierarchical State Machine Models

The first publication on hierarchical DESs modeled after statecharts was an article by Brave
and Heymann [2]. They propose the use of hierarchical state machines (HSMs), a model
derived from statecharts. An HMS is defined using a partial ordering function ⊢ on states
which specifies a tree of state containment (the hierarchy). There is a unique state r such
that for any state a, r ⊢∗ a (where ⊢∗ is the transitive closure on the relation ⊢). In general,
states are divided into OR states, AND states and basic states. Basic states do not have
substates while OR and AND states do. In OR states, the system can occupy only one of
the substates at a time. In AND states, the system occupies all substates simultaneously
(this models parallelism). Furthermore, for every HSM, there is an equivalent canonical
HSM where every AND state contains only OR substates and the type of substates vertically
across the hierarchy alternates between AND and OR. As in FSMs, transitions between states
signify the occurrence of events, only transitions can be defined between levels, as well. Since
there can be a number of states occupied at the same time, instead of states, it is convenient
to talk about configurations of the state machine, i.e., tuples of mutually-orthogonal states.
Every HSM has an equivalent representation as a standard “flat” DES modeled by an FSM.
An HSM would be used instead of an FSM because the descriptive complexity of HSM is
exponentially lower. For an example of an HSM, see Fig. 6.
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Figure 6: A hierarchical state machine. The state B is an OR state. The state C is an
AND state and it contains two concurrent OR states, C1 and C2.

In [2], the authors consider asynchronous HSMs, i.e., HSMs where distinct substates
cannot share the same event. This guarantees that the substates of an AND state cannot
be synchronized via a mutual event. The first problem discussed is that of reachability in
HSMs. Given a state a, a configuration q and a set of configurations P , the goal is to
check if there exists a sequence of events in a which leads from q to a configuration p ∈ P .
In order to compute this efficiently, for every state a, two sets are defined. The input set
of a, Xa(q), is the set of configurations of a which are reachable from q through parent
states, b ⊢ a. The output set of a, Ya(P ), is the set of configurations of a from which P
is reachable through parent states, b ⊢ a. Thus, the computation of reachability can be
viewed as the recursive problem of reachability between Xa(q) and Ya(P ) for relevant states
a. The algorithm proposed for this calculation has a complexity of O(m2k3n + mk2n|P |),
where m is the depth of the hierarchical structure, k is the branching factor of the structure
(how many immediate substates a superstate has) and n is the number of basic states. The
second issue considered is that of the forbidden configuration problem. Given a partition
of the event set into controllable and uncontrollable events, a set of configurations F and a
starting configuration q0, the goal is to control the system in a way so that it never occupies a
configuration from F . Let Gu be a version of the HSM G in which all controllable transitions
are removed. Then, a solution to the problem exists if and only if there is no configuration
in F which is reachable from q0 in Gu. There is an algorithm to compute the maximally
permissive supervisor which avoids the configurations in F with a complexity of O(|Q|),
where Q is the set of states. Furthermore, a related algorithm can be used to provide online
control of the DES, similar to [11].

This line of work has been continued recently in [33, 19], where a similar model derived
from statecharts is used. In this version of HSM, the most notable change is in the restriction
of interactions between levels: transitions can no longer lead between states across multiple
levels. Instead, higher-level transitions can lead only to the states of immediate substates
and vice versa. Additionally, all concurrent substates of a lower level must have a single final
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state and the “return” to the higher level is synchronized on these final states. Otherwise,
substates are still considered asynchronous, i.e., they do not share common events. Again,
every HSM system has an equivalent representation in the standard FSM form, which may
result in exponential expansion of the number of states.

The major problem addressed in [33] is again the forbidden configuration problem. Given
a set of basic states F , the goal is to design a non-blocking supervisor so that a state belonging
to F is never reached. For a two-level system, an algorithm is proposed which relies on the use
of the standard synthesis of a supervisor for each substate separately. Then, an adjustment
is made to the high level so that entrance to low-level components is restricted as needed,
and the standard synthesis is invoked again, this time for the high level. Additionally, the
problem of optimal control is addressed. The optimal control paradigm follows [40]. Two
types of cost are associated with each event σ ∈ Σ: cost of occurrence, ce : Σ → R

+, and cost
of disablement, cc : Σ → {0,∞}. The cost of disablement is used to encode the partitioning
of events into controllable (cost 0) and uncontrollable (cost ∞). Then, for a supervisor S, the
cost of L(S/G), c(S), is defined as the supremal cost of all marked strings in the language
and includes the costs of all events that need to be disabled by the supervisor along the
way. An optimal supervisor is a supervisor S for which it holds that any other supervisor
S′, c(S′) ≥ c(S). Furthermore, a DP-optimal supervisor is such that, for any prefix, the
supervisor is optimal with respect to the continuations of the prefix. Again, an algorithm
is presented which finds a DP-optimal supervisor for a two-level HSM by the application of
the algorithm in [40] on every substate. Both of the proposed hierarchical algorithms can
easily be generalized to multi-level systems. In [19], a refinement of the supervisor synthesis
for the forbidden configuration problem is proposed, so that the set F , besides basic states,
may include also state configurations. The approach used relies on the computation of weak
forbidden configurations, that is, the configurations from which a string of uncontrollable
events can lead to a forbidden configuration. This is done using an iterative process which
performs only “local” computations at the lower level. Then, using the obtained configuration
sets, local supervisors for each superstate can be found.

The major contribution of these works, in comparison to [2], is that the resulting control
is non-blocking and the structure of the supervisor matches the structure of the supervised
hierarchical system. Unfortunately, analysis of the computational complexity of the synthesis
methodology is not provided.

2.2.2 State Tree Structures

In 1995, Bing Wang defended a Master’s thesis on top-down design for DESs in the Ramadge
and Wonham framework [46]. This work, despite its incompleteness, is widely cited and
serves as an inspiration for more advanced theories. In it, a very structured method for the
hierarchical refinement of DESs is proposed.

First, the notion of state trees is defined. A state tree is a tree of states (nodes), where
each superstate is expanded in one of two possible ways: as an OR superstate or as an AND
superstate. Furthermore, the substates of an AND superstate have to be OR superstates;
that is, to have a more meaningful model. Figure 7 shows an example of a state tree.

Second, the notion of holons is defined. A holon is an FSM with the following amendments:
the alphabet Σ is partitioned into two alphabets, ΣB and ΣI , the sets of boundary events
and internal events, respectively; also, the set of states Q is partitioned into two sets QE

and QI , the sets of external and internal states, respectively. The set of final states is empty
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Figure 7: A state tree. Here ‘∪’ identifies the siblings for an OR superstate and ‘×’
identifies the siblings for an AND superstate.

(irrelevant) and Q0 ⊆ QE . Furthermore, the transition function δ is defined to consist of
three parts:

• δI : QI × ΣI → QI (internal transitions),

• δBI : QE × ΣB → QI (incoming transitions) and

• δBO : QI × ΣB → QE (outgoing transitions).

The interpretation is that the internal states represent the “inner working” of the system,
while the boundary states and the boundary transitions represent the interface to the rest of
the world.

Finally, the state-tree structure (STS) is defined. A state-tree structure is a state tree
where every superstate has a holon associated with it. Furthermore, the holons are properly
connected at each level (their interfaces match) and, for every two holons at two different
levels, their internal events are distinct (different levels deal with different events). An im-
portant drawback in the consistency of the theoretical foundation of this work is that the
holon associated with an AND superstate is defined over the monolithic result of the parallel
composition of all the OR substates of this state. In other words, concurrency is not preserved
in the model.

A specification for an STS system is recursively given as local restrictions for every holon
in the structure. If the specification for the system behavior is initially given in a standard
non-hierarchical form, a procedure to convert it to an STS specification exists. Controllability
and supremal supervisory solutions in the STS settings, however, require very complicated
recursive definitions. The main problem is that the “interface” of a lower-level holon does
not provide sufficient information about the relation between input and output boundary
events. If one considers only the higher level, any pair of input and output events for a
given superstate is achievable, and there is no relation between the controllability of the
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input and output events. However, the inner structure of the lower-level holon may render
some pairs of input and output events unfeasible or may allow for the disablement of a
higher-level uncontrollable transition through lower-level restrictions. Thus, the algorithm
proposed for the synthesis of a supremal STS supervisor for an STS specification starts from
the top of the hierarchy and uses higher-level restrictions on lower levels when going down,
combined with back-tracking to utilize lower-level control feedback in the design of higher-
level control. For any STS specification, a supremal (most permissive) STS supervisor exists
such that the language achieved under its supervision is a subset of the specification language.
Unfortunately, the complexity of the involved algorithms is not provided.

This work is extended further by Ma and Wonham in [32]. The major shortcoming,
namely, the inability to deal with AND superstates, is addressed. Furthermore, a much more
elegant and consistent theoretic approach is used. Instead of using traditional tools to work
with state machines, symbolic computation with binary decision diagrams is applied. Single
transitions between specific states in the model are replaced by transitions between sub state
trees [sic]. A sub state tree of a state tree T is obtained by removing some of the OR
superstates from T . The set of all sub state trees of T is denoted ST (T ). Let T1 ∈ ST (T ),
then there is a transition on event σ to T2 ∈ ST (T ), where T2 is defined as the result of
making σ transitions in T1 in all possible places. Conversely, a backward transition function,
Γ, is defined, where Γ(T1, σ) is the largest sub state tree that can reach T1 ∈ ST (T ) on σ.

Every element of ST (T ) can be encoded using a binary predicate which describes the
structure of the sub state tree. The structure of each AND superstate is described as the
conjunction of the structures of its substates and the structure of each OR superstate as the
disjunction of the structures of its substates. For example, the sub state tree in Fig. 8(b)
is described by the predicate (vB1

= C1) ∧ (vB2
= D ∧ vD = F2), where vX stands for the

variable for node X. Note that the part of the predicate for B3 is omitted since, in this sub
state tree, trivially vB3

= 1 (B3 has a complete subtree).

A

B1 B2 B3

C2C1 E1 E2D

F1 F2

⋃ ⋃

××

⋃

A

B1 B2 B3

C1 E1 E2D

F2

⋃

××

(a) (b)

Figure 8: A state tree (a) and one of its sub state trees (b).

The Γ function is redefined to work on predicates. Then, the problem of enforcing a
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specification S given as a set of illegal sub state trees of T can be cast as finding the largest
non-blocking and controllable sub-predicate of the predicate ¬PS , where PS is the predicate
corresponding to S. An example of this approach is provided in the computation of the
coreachability predicate. Given a predicate P and a predicate Pm, the algorithm computes a
predicate which contains all sub state trees which can reach Pm via sub state trees satisfying
P .

Another work based on the top-down approach of Wang is [20]. The authors cast the
problem in purely linguistic terms. The concept of structured language is introduced with
a recursive definition where strings in each level k (k = 0 for the top-most level) consist of
events σ ∈ Σk and tokens x ∈ Xk. Tokens represent the languages of subsystems in the lower
level. With each x ∈ Xk, a language Lx ∈ (Σk+1 ∪Xk+1)

∗ and an output map θx : Lx → 2Σk

is associated. The language represents the strings which can be generated by the subsystem,
while the map provides the interface to the higher-level system (for each lower-level string, it
gives the the higher-level events which can follow). Next, recursive definitions for language
containment, join (union), meet (intersection) and controllability of structured languages are
defined. According to these definitions, the set of all controllable structured sublanguages
forms an upper semi-lattice with respect to containment and join. Thus, a supremal (largest)
controllable structured sublanguage of any structured sublanguage exists. This result brings
together this hierarchical approach and the original Ramadge and Wonham framework. The
proposed computation of the supremal controllable structured sublanguage involves the use
of a special operator on languages, Ω. When applied on a language, it removes the strings
that are one-step uncontrollable. The operator is contractive and monotone and its fixpoints
are controllable structured sublanguages. Thus, by iterative application on a structured
language, Ω produces the supremal controllable structured sublanguage. The computational
complexity of the application of the operator is not provided.

2.2.3 Discussion

Top-down design of hierarchical DESs is not as well studied as bottom-up design and, con-
sequently, the theories relevant to it are not as advanced. The two major directions taken
by researchers, statechart-derived models and recursive STS models, are similar in the use of
system refinement, however, in many ways they differ. State tree structure models appear to
be more structurally coherent, since the interactions between subsystems and between levels
uses well-defined interfaces. The hierarchical state machines, especially the ones considered
in [2], can have very “messy” transition structures and, even more so, supervisors. On the
other hand, the introduction of STSs in [46] is incomplete and looks more like the result
of “hacking” rather than rigorous theory building. It takes the work of Ma and Wonham,
[32], to provide a theoretically more solid base. Further research is needed in the supervision
of hierarchical systems with mutually-synchronized concurrent subsystems. As well, most
works do not consider marking of strings in the language of a system. However, the biggest
indication of the nascent nature of top-down design is the lack of complexity analysis of the
many algorithms proposed by the different authors.

Even though Brave and Heymann published their work, [2], very soon after Zhong and
Wonham [54], the number of publications dealing with top-down design is markedly smaller
than the number of publications on bottom-up design. I find this lack of interest on the
part of researchers a bit puzzling, since top-down design provides a very natural approach
for managerial tasks. The main goal is specified and then it is refined into executable units.
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Another good feature of recursive definition is that recursion can stop at any level as long as
a condition is satisfied. In the case of supervisory control, for example, there is no need to
provide specifications for subsystems whose behavior is already acceptable. Unfortunately, as
Bing Wang shows, the interfaces between levels are not sufficient to provide good decoupling
of the different levels. Feedback from lower levels is needed to guarantee that a higher level has
correct assumptions about the real achievability of strings. Another disadvantage in recent
works, [32], is the departure from intuitive representations of hierarchical DESs in order to
provide more advanced and theoretically sound solutions.

2.3 State aggregation

Another line of work, very similar to the bottom-up design, is found in the work of Caines
et al. [3, 4, 5]. This work is initially inspired by hybrid systems (systems whose different
dynamics are modeled as either continuous or discrete) and thus it concerns states in discrete-
event systems. Hierarchy is introduced by aggregating states in state partitions. The control
specifications are not given linguistically; rather, by using conditions on the traversal of states.

2.3.1 Partition machines

The first article on partition machines cast in DES terms, [3], was published in 1995 and
became much cited in this area of research. The set of states, Q, of an FSM G is partitioned
into blocks Qi, i ∈ {1 . . . n} such that

⋃

i Qi = Q and i 6= j ⇒ Qi ∩ Qj = ∅. An important
concept is that of dynamical consistency. An ordered pair of blocks Qi and Qj is said to be
dynamically consistent (DC), denoted 〈Qi, Qj〉, if, for every state qi ∈ Qi, there is a path
to some qj ∈ Qj (the path traverses only states in Qi before the last transition into Qj).
Then, a dynamically consistent partition machine M is an FSM such that the set of states
QM = {Qi|i ∈ {1 . . . n}} and the transition function δM is defined so that there is a transition
from Qi to Qj if and only if 〈Qi, Qj〉. Each transition is on a newly defined event which results
in all transitions having unique events. The partition machine can be considered a high-level
abstraction of the low-level (original) system. A multiple-level hierarchy can be built by
considering the high level as a low level and doing another partitioning. Indeed, dynamical
consistency can be defined with respect to a partition π, denoted 〈Qi, Qj〉π. In this case,
〈Qi, Qj〉 = 〈Qi, Qj〉id, where id is the identity partition with QM = {{q}|q ∈ Q}.

Next, controllability is defined. In this context, controllability stands for reachability
between states. A system is controllable if, for any two states q1 and q2, there is a string
s ∈ Σ∗ such that δ(q1, s) = q2. Then, a partition machine M of G is in-block controllable if
each block considered separately is controllable, denoted M ∈ IBCP (G), and is between-block
controllable if the high-level structure is controllable.

Two operators which act on partitions are defined: chain union, ∪C , and lower bound, ⊓.
Both preserve the IBCP property of partitions. Thus, if ≤ is a partial order of partitions
based on their fineness, (IBCP (G),⊓,∪C ,≤) forms a lattice bounded below by the identity
partition with QM = {{q}|q ∈ Q} and bounded above by the trivial partition with QM = {Q}
(in case G is controllable).

The following can be concluded: if the state partition is in-block controllable (i.e., M ∈
IBCP (G)), then the high-level system is controllable at the high level if and only if the
low-level system is controllable. In other words, an in-block controllable partition guarantees
consistency of controllability between levels. Furthermore, let π1 ≤ π2 be two partitions and
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let π1 ∈ IBCP (G). Let Q1 and Q2 be two blocks in the partition π2. Then, 〈Q1, Q2〉π1 if
and only if 〈Q1, Q2〉. In other words, in order to verify dynamical consistency between two
blocks, one need not resort to checking at the lowest level: it suffices to check using a finer
but in-block controllable partition.

In [4], the above theories are extended to the so called ST-systems (source-target systems)
which, translated to traditional DES settings, means FSMs with non-empty sets of initial
and marked states, i.e., Q0, Qf 6= ∅. A system is called strong ST-controllable when for all
qs ∈ Q0, qt ∈ Qf , there exists a string s ∈ Σ∗ so that δ(qs, s) = qt. A weak ST-controllable
systems is a system where for every source state, there is a string which leads to some target
state. Similar to [46], the input and output states of blocks, I(Qi) and O(Qi), are defined
as the states to which a transition from another block leads and the states from which a
transition leads to another block, respectively. The states in Q0 are also input states and the
states in Qf are also output states.

The other concepts from [3] are also updated to reflect the ST setting. The ST version of
dynamical consistency is defined as follows: 〈Qi, Qj〉 if for each qs ∈ I(Qi) there is a string sσ
such that δ(qs, s) ∈ O(Qi), passing only through states in Qi, and δ(qs, sσ) ∈ I(Qj). Then,
an ST partition machine is a machine where transitions between blocks exist if and only if the
states form an ST dynamically-consistent pair. In-block controllability is defined as follows:
for every block, there exists a path from each input state to some output state and each
output state is reachable from any other output state. Again, as in [3], the ST version of
IBCP , ST -IBCP , forms a lattice of hierarchical aggregate models of the base system G.

Given two ST systems M1, M2 ∈ ST -IBCP (G) such that M1 ≤ M2, then M2 is ST
between-block and ST in-block controllable with respect to M1 as a base machine. Also,
every ST controllability problem at the high level can be decomposed and recursively defined
as block-to-block locally solvable ST controllability problems at the lower levels.

An application of the hierarchical design described above is presented in [41, 42]. The
authors utilize the IBCP lattice to speed up the computation of an optimal path between
a source and a target state. Let a low-level cost function c : Q × Σ → (0,∞) be defined
which assigns a positive cost to events leaving states. The cost of a path between two states
is defined as the sum of the costs of all state-event pairs along the path. A path between two
states is called optimal if there is no other path between the states which has a smaller cost.
A hierarchy (G, M), where M is a partition machine of G, is optimality consistent, OC(C),
if there is a high-level cost function C such that:

• for all states (q, r) ∈ Qi × Qj , for all low-level optimal paths u between q and r, there
is a high-level optimal path between Qi and Qj which contains u and

• for all blocks Qi and Qj , for all high-level optimal paths U between Qi and Qj , for
all states (q, r) ∈ Qi × Qj there is a low-level optimal path between q and r which is
contained in U .

Let the following high-level costs functions be defined:

• D+(Qi, Qj) equals the most costly path among all low-level optimal paths between
states in Qi and Qj ,

• D+/−(Qi, Qj) equals the most costly path among all low-level optimal paths between
states in Qi and the corresponding states that are least costly to reach in Qj and

• D−(Qi, Qj) equals the least costly path among all low-level optimal paths between states
in Qi and Qj .
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Two dynamical programming algorithms are presented which attempt to find a possibly sub-
optimal low-level path between a source and a target state. Both algorithms first generate
a high-level optimal path. Then, the P -HADP algorithm searches for a low-level opti-
mal path within the blocks from the high-level path, while the HADP algorithm searches
for a low-level optimal path which traverses the partition blocks in the same way that
the high-level path does. If the hierarchical system is OC(D+/−), the P -HADP (D+/−)
algorithm produces an optimal solution. If, for all dynamically consistent pairs 〈Qi, Qj〉,
D+/−(Qi, Qj) = D−(Qi, Qj), then the HADP (D+/−) algorithm finds an optimal solution.
Furthermore, estimates of the sub-optimality of solutions in general are provided. The HADP
algorithm is applied to the Broken Manhattan Grid class of problems with a significant ac-
celeration in the computing while the solutions remain only marginally sub-optimal. In this
case, the hierarchical structure of the system is used to advantage: a high-level solution is
gradually refined as per the levels in the hierarchy. This results in sub-optimal solutions,
however, at much smaller computational cost. An estimate of the increase of efficiency of the
optimal-path search is bounded below by O(

√
n), where n is the number of states in G.

An extension of the partition-machine hierarchical control to a setup closer to the original
Ramadge and Wonham framework is presented in [5, 23]. In these works, events are considered
to be controllable and uncontrollable. Accordingly, the notions of dynamic consistency, in-
block controllability, etc. have to be redefined appropriately.

First, trace-DC is defined. Since, unlike before, there are uncontrollable transitions, two
types of trace-DC relations are defined. The relation 〈Qi, Qj〉u holds when, for every state
in I(Qi), there is an uncontrollable string sσ ∈ Σ∗

uc such that s traverses only states in
Qi and σ leads to Qj . Conversely, the relation 〈Qi, Qj〉d holds when, for every state in
I(Qi) there exists a string sσ ∈ Σ∗ such that s traverses only states in Qi and σ leads to
Qj and all strings s contain at least one controllable event. These two relations cannot hold
simultaneously. A trace-DC partition machine is such that there is a high-level uncontrollable
transition V j

i from Qi to Qj whenever 〈Qi, Qj〉u, there is a high-level controllable transition

U j
i whenever 〈Qi, Qj〉d and there are no other high-level transitions. Trace-DC partitioning

implies output-control consistency (see Section 2.1.1, [54]). Based on the partitioning, a
natural map Θπ : Σ∗ → Σ∗

π can be defined, where Σπ stands for the high-level alphabet. The
map Θπ reports the crossings of the boundaries between blocks. It is an observer in the sense
of [47] (see Section 2.1.2) and a trace-DC system is control consistent in the same sense.

The controllability of a high-level system depends on the actual control that can be ex-
ercised by the low-level system. Thus, it is important that high-level controllable transitions
can be enabled and disabled independently using low-level control. A subset of states R ⊆ Q
is called non-blocking-controllable if all states in R are reachable via states in R, there are no
uncontrollable events leading to states not in R and, from every state in R, a final (target)
state can be reached via states in R. A partition machine is called non-blocking IBC if, for
every pair 〈Qi, Qj〉d and all q ∈ I(Qi), there is a non-blocking controllable set

Rj
i ⊆ Qi ∪ I(Qj)

⋃

〈Qi,Qk〉u

I(Qk)

and, if Qi ∩ Qm 6= ∅, there is a non-blocking controllable set

Rm
i ⊆ Qi

⋃

〈Qi,Qk〉u

I(Qk),
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such that q ∈ Rj
i , q ∈ Rm

i and Rm
i ∩ Qm 6= ∅. In other words, every block of the partition

machine allows for independent non-blocking control of high-level transitions. An algorithm,
High-Low Synthesis (HLS), is proposed which translates a high-level supervisor to a low-level
supervisor by restricting the low-level behavior to the sets Rj

i and Rm
i as needed. Let K

be a non-blocking and controllable high-level language and the result of the HLS algorithm
for K be denoted KHLS(K). Provided that a partition is non-blocking IBC, KHLS(K) is
a non-blocking and controllable language and Θπ(KHLS(K)) = K. Furthermore, it can be
concluded that the hierarchical system (G, Θπ) is hierarchically consistent in the sense of [54]
(see Section 2.1.1). Unfortunately, the hierarchical consistency of a system (G, Θπ) does not
guarantee that there is a non-blocking IBC partitioning of G. It may be necessary to split
some states of G to facilitate the partitioning. A vocalized lifting (VL) algorithm is proposed
to create a non-blocking IBC partition of G if (G, Θπ) is hierarchically consistent.

The authors in [23] give a rough estimate of the computational advantage of using this
hierarchical model for the synthesis of supervisors as opposed to using the low-level system
solely. Let K be a high-level specification, Klo be the low-level image of K, m be the
number of states of an automaton for K, N be the number of states in the low-level system
and n be the number of states in the high-level system (the cardinality of the partition).
Then, to compute K↑ and then the low-level implementation of the supervisor would cost
roughly n2m2 +N4/n3, while the computation of K↑

lo would cost roughly (N4m2)/n2. When
m = n =

√
N , the ratio is 1/(N

√
N) in advantage for the hierarchical approach.

2.3.2 State aggregation based on matrices

Another approach to state aggregation for DESs is described in [1]. There, the whole problem
is cast in boolean matrix algebra which results in an efficient method for state partitioning
of large systems.

Let the states of a DES system G be ordered, q1, q2, . . . , qn, where n = |Q|. Then, the
one-step reachability of the system can be represented by an binary adjacency matrix n× n,
A, such that there is a 1 in Aij if there is a transition from qi to qj , otherwise Aij = 0.
See Fig. 9 for an example. A permutation of the matrix is a matrix where the columns and

1

2

3

4 A =











0 1 1 0
0 0 1 1
0 0 1 1
0 1 0 0











Figure 9: A DES and the corresponding adjacency matrix

rows have been shuffled (i.e., the indexes form a permutation of the original indexes). The
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adjacency matrix A is called reducible if there is a permutation matrix P such that

P tA P =

(

B C
0 D

)

,

where B and D are square matrices and boolean algebra is used. If B or D are reducible,
this process can be repeated on them, thus finally yielding an irreducible matrix R. A more
intuitive interpretation of the blocks on the diagonal is as follows. Each block signifies a set
of states in G. The states in blocks closer to the bottom of the matrix do not have transitions
leading to states in blocks closer to the top of the matrix. Another property of the matrix A
is that Ak (the k-th power of A) signifies the k-step reachability between states.

The reduction of the adjacency matrix A will, indeed, result in an aggregation of the
states of G in blocks where each block is only one-way accessible from some other block(s)
and all states in the block are mutually reachable. An algorithm to obtain the irreducible
matrix R of A is proposed. Its complexity is of the order O(log n) matrix manipulations.

A nice side result from the reduction of A is that the grouping of the states of G forms an
ST -IBCP partition. Furthermore, this aggregation algorithm can be used for a solution to
the forbidden configuration problem in the ST settings or the Ramadge and Wonham settings.
Let F ⊆ Q be the set of forbidden states. The goal is to control the system in a way that it
reaches a target state from a source state and it never enters a state from F on the way. First,
a sub-automaton of G is considered where the surviving states, Qu ⊆ Q, are either sources
or targets of an uncontrollable transition and only the uncontrollable transitions remain.
The adjacency matrix of the sub-automaton is reduced, resulting in an aggregation where
the states in a block are mutually reachable through uncontrollable events and thus can be
considered “equivalent” in terms of control. The blocks connected to a block containing a
forbidden state can be grouped with it since they can lead uncontrollably to the forbidden
state and thus are equivalent. Then, the original automaton is reinstantiated by replacing
the states in Qu with the corresponding blocks. As a result, all transitions from states in
Q\Qu to the blocks are controllable and thus a supervisor will be able to prevent the entrance
to blocks containing forbidden states. If the source or target states belong to a block with
forbidden states, there is no supervisory solution to the problem. Unlike the traditional ST -
IBC partitioning, the aggregation proposed here is invariant with respect to the source and
target states.

A problem with the proposed aggregation algorithm is that some graphs may be irreducible
to start with (e.g., fully connected graphs). Thus, the problem becomes one of finding a
decomposition of an irreducible matrix A into irreducible blocks. There are many approaches
that can be taken, however, the authors chose to use the method of cutting asymmetric
transitions. Let As be the symmetric matrix of A (where As

ij = 1 if and only if Aij = Aji = 1).
Then, if the matrix As is reducible, there is an algorithm to compute an aggregation such that
the blocks are as big as possible and have comparable sizes. The algorithm takes O((logn)2)
steps.

2.3.3 State aggregation with Γ-control

In [44], the authors propose a hierarchical control approach which combines the ideas of Γ
control structures [13] (see Section 2.1.4) and state aggregation. The system at the low level,
G, is given in the standard FSM way, while the high-level aggregate model is enhanced with
a Γ control structure.
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A subset of the events, ΣA ⊆ Σ, is selected as the significant events for the high level.
Then, a partition π of the states of G is made such that q1, q2 ∈ Qi if and only if there is a string
of non-significant events s ∈ (Σ\ΣA)∗ between them. The transition function δA : π×ΣA → π
of the high level is defined as δA(Qi, σ) = Qj if there are states q1 ∈ Qi, q2 ∈ Qj such that
δ(q1, σ) = q2. Let Θ be the natural projection from Σ∗ to ΣA∗.

For every block Qi and every state qj ∈ I(Qi), two sets of languages are defined. The
set Cij contains all supremal controllable sublanguages within Qi with initial state qj that
contain strings reaching a marked state or leading out of Qi. The set Dij contains all supremal
controllable sublanguages within Qi with initial state qj that contain strings leading out of
Qi and do not pass through a marked state inside Qi. Using these sets of languages, a Γ
control structure for the high-level system can be constructed: for every block Qi and input
state qj , Γij contains control options equal to Θ(K) for all K ∈ Cij ∪Dij (the possible sets of
events leading out of Qi) and, for every K which contains a marked string, the corresponding
control option is marked. This definition constructs a valid Γ control structure. Furthermore,
there exists a high-level Γ-compatible sublanguage Ehi ⊆ Θ(L(G)) if and only if there exists a
controllable Elo ⊆ L(G) such that Θ(Elo) = Ehi. An algorithm is proposed for the synthesis
of the low-level supervisor given a high-level supervisor. It makes use of the languages in Cij

and Dij for every block and can be used either offline (to compute the complete low-level
supervisor) or online (to compute local low-level supervisors for every block that is reached).

2.3.4 Discussion

The state-based hierarchical modeling in the form of partition machines was originally in-
spired by hybrid systems, and thus the first articles published on the topic have a much
different flavor than that of the standard Ramadge and Wonham framework. Controllability
is initially considered as the existence of paths between states; only later, in [5], controllable
and uncontrollable events are introduced. While the first results seem very crude, recently the
theory is greatly advanced [23, 1]. Nevertheless, many open questions remain. The greatest
problem is that of the efficient computation of IBC partitions: not all IBCP lattice elements
can be computed directly, while the non-blocking IBC partitions in [23] do not form a lattice
at all. Furthermore, even if IBC partitions are available, there is no analysis as to what
properties of the partitions are desirable and how many levels are to be used in a multi-level
hierarchy to achieve optimal performance. In [1], reduction of the adjacency matrices of DES
systems is considered, however, only initial research is presented for the case when a matrix
is irreducible. The research on Γ control structures does not indicate how the approach can
be extended to multi-level hierarchies.

In my opinion, partition machines form a very intuitive hierarchical modeling paradigm.
The aggregation of states and the definition of transitions seem to be consistent with what
people would naturally expect. However, the paradigm has a significant drawback in that
the actual event occurring in the DES system take a back seat in the models. Indeed, in the
aggregate models, most (or all) high-level transitions occur on unique events and there is no
inherent relation between high-level and low-level events. While connectivity between states is
well preserved, the high-level sequences give no indication as to what—even approximately—
is happening in the system (in the low level). If one is interested only in states of the system
and not in the specific evolution of the system behavior, partition machines may provide a
viable supervisory methodology. However, if a more traditional viewpoint is used, where the
actual event occurrences are also important, this approach needs greater reconciliation with
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the rest of DES control theory.

2.4 Interface-based design

Recently, the work of Leduc et al. [27, 28, 29] introduced a novel approach to hierarchical
DESs. Unlike previous approaches where different levels of the hierarchy are more or less
closely coupled, in this one, a strict decoupling of the levels is achieved through the use of
well-defined interfaces. This is in line with the methods which nowadays are applied most
successfully in the design of complicated systems such as circuitry and software and is, indeed,
inspired by them.

2.4.1 Interface-based supervisory control

In [27, 28], a master-slave hierarchical DES is considered. The high-level system, Ghi, requests
services from the low-level system, Glo, through an interface, GI , modeled as a DES. The
alphabet of the complete system, Σ, is partitioned into the set of high-level events, ΣH ,
the set of low-level events, ΣL, the set of request events, ΣR, and the set of answer events,
ΣA. These sets are mutually exclusive. The set ΣI = ΣR ∪ ΣA contains the events for the
interface. The system Ghi is defined over ΣH and ΣI ; Glo is defined over ΣL and ΣI ; and GI

is defined over ΣI . Thus, the interaction between the high level and the low level is restricted
by the interface. A command-pair interface has the following restrictions. First, it alternates
requests and answers. In other words, L(GI) ⊆ (ΣRΣA)∗. Second, the only marked strings
are the empty string and the strings ending with an answer, i.e., Lm(GI) = (ΣRΣA)∗∩L(GI).
The complete system is G = Ghi‖Glo‖GI . For a picture of an interface-based hierarchical
DES, see Fig. 10.

Ghi GI Glo

ΣA

ΣR

ΣA

ΣR

r′

a′
1, . . . , a

′
l

r′′

a′′
1, . . . , a

′′
n

a′′′
1 , . . . , a′′′

m

r′′′

Figure 10: An interface-based hierarchical system.

Let Shi and Slo be supervisors for the high and the low level. Let ΣHI = ΣH ∪ ΣI and
ΣLI = ΣL ∪ ΣI . The natural projections from Σ∗ to Σ∗

I , Σ∗
HI and Σ∗

LI are denoted PI , PHI
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and PLI , respectively. Let

H = P−1
HI (L(Shi/Ghi)), Hm = P−1

HI (Lm(Shi/Ghi)),

L = P−1
LI (L(Slo/Glo)), Lm = P−1

LI (Lm(Slo/Glo)),

I = P−1
I (L(GI)), Im = P−1

I (Lm(GI)),

L = P−1
LI (L(Glo)), LS = P−1

LI (L(Slo)),

H = P−1
HI (L(Ghi)) and HS = P−1

HI (L(Shi)).

A system is called serial interface consistent if the following properties hold:

1. the high level and the low level only share interface events;

2. the FSM GI is a command-pair interface;

3. the high level must always accept an answer event if it is eligible in the interface;

4. the low level must always accept a request event if it is eligible in the interface;

5. immediately after a request event occurs, in the low level there exist strings that reach
all answer events eligible for the request and

6. every string marked by the interface can be extended by a low-level string such that it
is marked in both the interface and the low level.

A system is called serial level-wise non-blocking if H∩I = Hm ∩ Im and L∩I = Lm ∩ Im.
In other words, the high and low levels restricted by the interface are independently non-
blocking. If a system is serial interface consistent and serial level-wise non-blocking, then the
complete system G = Ghi‖Glo‖GI is non-blocking.

The hierarchical specification given by Shi and Slo is called serial level-wise controllable
if the following holds:

1. the alphabets for Shi and Slo are ΣHI and ΣLI , respectively;

2. {sσ|s ∈ LS ∩I, σ ∈ Σuc, sσ ∈ L} ⊆ LS ∩I, i.e., the low-level specification together with
the interface is controllable with respect to the low-level system and

3. {sσ|s ∈ HS , σ ∈ Σuc, sσ ∈ H ∩ I} ⊆ HS , i.e., the high-level specification is controllable
with respect to the high-level system together with the interface.

If a system is serial interface consistent and serial level-wise controllable, then the combined
specification Shi‖Slo is controllable with respect to the complete system G.

The above discussion can be extended to the case when there are multiple low-level sub-
systems working in parallel and interacting with the high level via separate interfaces (see
Fig. 11). Let n be the number of low-level subsystems and i ∈ {1, . . . , n}. Then, the alphabet
Σ is partitioned into the disjunct alphabets ΣH , ΣLi

, ΣRi
and ΣAi

and ΣIi
= ΣRi

∪ ΣAi
.

Similarly, Gloi
, GIi

and Sloi
are the low-level subsystems, the corresponding interfaces and

their supervisors, respectively.
Since every low-level subsystem and its interface do not share events with other subsystems

and interfaces, they can be considered separately. Thus, serial system extraction can be
defined. The jth serial system extraction is:

Ghi(j) = Ghi‖GI1‖ . . . ‖GIj−1
‖GIj+1

‖ . . . ‖GIn
,

Glo(j) = Gloj
, GI(j) = GIj

,
Σ(j) = Σ \⋃i={1,...,n}\{j} ΣLi

,

ΣH(j) = ΣH ∪⋃i={1,...,n}\{j} ΣIi
,

ΣL(j) = ΣLj
, ΣR(j) = ΣRj

, ΣA(j) = ΣAj
,

Shi(j) = Shi and Slo(j) = Sloj
.
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Ghi

GI1
Glo1

GIn
Glon

. . .

Figure 11: An interface-based hierarchical system with multiple parallel subsystems.

In other words, the jth serial extraction restricts the low level system to the jth low-level
subsystem and the interfaces of the other subsystems are considered as a part of the high
level.

A system is called interface consistent if every serial extraction is serial interface consis-
tent. Similarly, it is level-wise non-blocking and the hierarchical specification is level-wise
controllable if every serial extraction is serial level-wise non-blocking and the corresponding
hierarchical specification is serial level-wise controllable. As before, if a system is interface
consistent, level-wise non-blocking and the specification is level-wise controllable, the com-
plete system is non-blocking and the specification is controllable.

In [26], algorithms for the verification of serial interface consistency, serial level-wise non-
blocking and serial level-wise controllability are presented. Mostly, a combination of standard
procedures from the CTCT software [12] are used. The author does not provide analytical
complexity results for the algorithms, instead relying on experimental estimates. Let n be
the greatest state size of the components of the hierarchical system. Then, the estimated
complexity of the combined algorithm (for all verifications) is O(n3). For a system with
m parallel low-level subsystems, the algorithm has to be repeated m times, thus resulting
in a linear increase with the addition of parallel subsystems. However, in systems with
parallel subsystems, the verification requires the construction of the parallel composition of
the high level Ghi with all the interfaces GIi

. Thus, comparing this to a monolithic system
G = Ghi‖Glo1

‖ . . . ‖Glon
, one can see that there is a computational advantage only if the state

size of each interface is orders of magnitude smaller than the state size of the corresponding
low-level subsystem.
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2.4.2 Discussion

The interface-based approach to hierarchical control is recent research and so far is limited
to work done by Leduc et al.. The main novelty is in the introduction of interface-based de-
coupling of levels in hierarchical DESs. This allows for the independent level-wise verification
of the non-blocking and controllability properties. This convenience comes at a cost. The
architectural constraints posed on the hierarchical systems, the requirement for interfacing,
limits the interaction of levels. Thus, the resulting supervisory control may be sub-optimal
compared to the supervisory control for a hierarchical system where levels interact directly.
Another drawback in the current research is that algorithms for the verification of the prop-
erties of interest are presented only. There are no “constructive” algorithms, i.e., algorithms
that can synthesize non-blocking and controllable supervisors given the hierarchical system
and specification.

While there are definitely things that need to be improved or advanced in the interface-
based approach, I see this work as a big accomplishment with respect to making complex
hierarchical DESs more comprehensible and modular. The encapsulation of subsystems guar-
antees a large degree of maintainability and reusability of the components. This is a very
important trait since the real-world complexity of systems renders monolithic approaches
inapplicable. Furthermore, the way components are designed fits well with the concepts of
object-oriented programming. I believe that this makes the interface-based approach natu-
rally much more intuitive to work with. As with object-oriented programming, modulariza-
tion and ease are benefits out-weighting the drawback of suboptimal solutions.

3 Other hierarchical approaches

Other research dealing with hierarchical DESs can be found for example in [10, 8].

In [10], Lin extends their previous work on FSMs with parameters [9] to propose a way
of obtaining a high-level abstraction from a detailed system (the low-level). Finite-state
machines with parameters are standard FSMs enhanced with a discrete parameter space P
and the state of the machine is given by a state in Q together with a vector in P . Transitions
occur based on events and the fulfillment of “guarding” predicates on P . Furthermore, upon
occurrence, the transitions can modify the parameter vectors. A hierarchical FSM with
parameters consists of two levels, where the low level is the original (detailed) system, while
the high level is an aggregate of the low level: strings are aggregated by the use of a special
type of output function (a set of low-level strings are represented by a high-level event) and
the parameter vectors are aggregated by the use of a transformation function (for example,
the outputs of two machines can be summed-up). This hierarchical approach appears to
be interesting since the parametrization of the state space allows for a very compact and
convenient representation of complex DESs where the dynamics can be functionally well-
defined. However, the work does not go beyond proposing a modeling framework and does
not discuss DES control at all. Thus, this approach needs to be extended significantly in
order to reach the level of other research currently underway.

In [8], the authors model DESs using the condition/event automata paradigm and then
propose a state aggregation method which preserves the input/output functionality of the
system. Condition/event automata are FSMs where transitions are enabled by condition
signals and are enforced by the event signals. Upon the occurrence of a transition, event

30



and condition signals may be generated. Condition and event signals may be used within
the FSM, however, there may be some which are expected from the environment (input)
and some which are emitted to the environment (output). Two systems are input/output
equivalent if they generate the same output sequences for equivalent input sequences. The
authors propose a state aggregation method which results in input/output-equivalent systems.
However, following the example provided in the paper, I discovered a problem with the
algorithm. After contacting the authors, they proposed a modification in which transitions
with no inputs or outputs are replaced by ǫ-transitions in the beginning of the algorithm.

4 Discussion and conclusion

In this paper I presented an overview of the current research on hierarchical control of discrete-
event systems. Four major approaches were identified and described: bottom-up design, top-
down design, state aggregation, and interface-based design. Of these, bottom-up design is
the most mature approach. Recent work on the top-down approach [32] advances the theory
for this paradigm significantly. Interface-based design is the most recent approach and thus
is only in the initial stage of research. However, it has very big potential.

All the different approaches to hierarchical control of DESs were grouped into sections.
However, the structure of this paper should be taken only as a general guideline. There
are very few direct relations between the articles discussed here. Each work differs signifi-
cantly from the others, either in content or in presentation. I encountered great difficulty
in producing a somewhat coherent discussion of the different methodologies and in deciding
on a grouping criterion for the articles. Sometimes it was necessary to alter significantly
the identifiers and terms used in some articles in order to achieve a more consistent naming
convention throughout this paper. At other times, it remains unclear without an in-depth
theoretical investigation if two similar terms from two different paper are equivalent (for ex-
ample, hierarchical consistency is a frequently used term but it is not always clear whether it
implies the same concept). In my opinion, the fact that almost all research is so disparate in
terminology points to an immature research field. This is further confirmed by the abundance
of algorithms to achieve similar tasks and the lack of corresponding complexity analysis. The
complexity analysis provided usually concerns the proposed algorithm and does not discuss
any boundaries on the complexity of the problems. Indeed, as discussed throughout the paper,
much more research on the theoretical aspects of hierarchical control of DESs is needed.

The motivation for this paper was to examine the different approaches to hierarchical
control of DESs with an eye on their implications for the usability of the models. As mentioned
in many publications, e.g., [35], hierarchical models help in understanding complex systems.
However, I encountered very little work done outside of the purely theoretical aspect of
hierarchical control. Most of the usability discussion consists of short descriptions of how
different modules can be composed within the particular frameworks. The lack of good
software tools within the DES area is notorious, however, this is true even more so for
hierarchical DES models. This is very unfortunate because, without good and efficient tools,
the DES control paradigms will remain as a purely academic research topic. Most existing
tools, e.g., [12, 45], offer only rudimentary interfaces. In [52], Wood discusses a new highly-
visual DES modeling package with emphasis on usability. However, the current version does
not support hierarchical modeling.

Unfortunately, what most researchers in the field fail to address is the fact that the formal
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methods they propose work flawlessly only when everything is cast in the formal framework.
It is relatively safe to assume that a formal model of an existing system can be produced.
However, the specifications for the controlled behavior of a system are always given in an
informal way: it is people who come up with ideas of what restrictions should be imposed
on the system. Sometimes it is very simple to translate the requirements into a formal
definition. However, frequently it is the case that the designer “makes a guess” of how a
verbal specification can be spelled out formally. It is my belief that no matter how advanced
are the theories in the field of discrete-event system control, they will remain unusable unless
people can cast their wishes in the proper form and then interpret the results correctly.
Hierarchical modeling is a small step forward in usability, however, I do not believe this is
nearly sufficient for an easy and intuitive use of DESs for system control purposes. The
groundwork for a usable interface between humans and formal DES models is still to be laid.
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