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Abstract. We consider the following target monitoring problem: Given
a set of stationary targets T = {t1, · · · , tm} and a set V = {v1, · · · , vn}
of sensors, the target monitoring problem asks for generating a family of
subsets of sensors V1, · · · , Vs called the monitoring sets, such that each
Vi monitors all targets. In doing so, the objective of this problem is
to maximize z = s/k, where k=maxvj∈V |{i : vj ∈ Vi}|. Maximizing z
has direct impact in prolonging the lifetime of sensor networks. For this
problem, we present a simple localized algorithm which requires each
node to know only its 2-hop neighborhood. Nodes do not need to know
their geographic positions. It is shown that the algorithm achieves an
optimum result in special cases. We prove that the size of a monitoring
set is at most a constant times the size of a minimum monitoring set when
the number of targets is a constant. We present extensive simulation
results to evaluate the performance of the algorithm.

1 Introduction

In this paper, we study the target monitoring problem. Given a set of stationary
targets T = {t1, · · · , tm} and a set V = {v1, · · · , vn} of sensors, the target moni-
toring problem asks for generating a set of subsets of sensors V1, V2, · · · , Vs called
the monitoring sets such that each Vi monitors all targets. The idea is that only
one such set is active (only active sensors monitor the targets) for any certain
period of time and after that time period another set becomes active and so on,
thus providing continuous monitoring. The objective of this problem is to max-
imize z = s/k, where k=maxu∈V |{i : u ∈ Vi}|. Considering each i (1 ≤ i ≤ s)
as a round, we activate the sensors in Vi in round i to monitor all targets, while
keeping V \ Vi in the energy-efficient sleep mode. We use ‘sensor’ and ‘node’
interchangeably in what follows. We define an algorithm as p-localized if each
node u is allowed to exchange messages with its neighbors which are at most
p−hops away and take decisions accordingly based on this information. To solve
the target monitoring problem, we propose a 2-localized algorithm. Furthermore,
the nodes do not need to know their geographic positions. They only need to
know the ids and the connectivity information of their 2-hop neighborhood.

The rest of the paper is organized as follows. In Section 2 we describe re-
lated work. In Section 3 we provide definitions and assumptions that are used



throughout the paper. The localized algorithm is presented in Section 4 and a
theoretical analysis of the algorithm follows in Section 5. Experimental results
are presented in Section 6. We conclude in Section 7.

2 Related Work

Coverage (also called monitoring) has been one of the important topics in sensor
networks and has received a lot of attention during the past several years [2–
7]. The main goal of almost all the research on average is to devise scheduling
algorithms such that individual sensors in the network are assigned rounds which
indicate to them during which rounds they will be active and during which
rounds they will be in the sleep mode. When a set of sensors monitors a certain
area or a target, it is generally possible to monitor the area or the target by
a small subset of them. So, it is redundant to make all the sensors active at
the same for the monitoring instead of using the small subset. This observation
leads researchers to devise efficient algorithms such that at any time only a few
sensors are set as active to monitor the area or the targets. A recent result related
to our problem is described in [1], where the authors consider the monitoring

schedule problem: Given a set of sensors and a set of targets it is required to find
a partition of the sensor set such that each part can monitor all targets. Each
part of the partition is used for one unit of time and the goal is to maximize
the number of parts in the partition. They present a randomized distributed
algorithm which generates at least (1 − ε) ∗ opt parts, with high probability,
where opt is the maximum number of parts in the partition and 0 < ε < 1.
However, they make the assumption that the sensors must know their geographic
positions. The authors also show that by modifying their algorithm they can find
a constant approximation factor for the problem and the sensors do not need
to know their geographic positions. Our work is related to theirs in the sense
that we maximize the number of parts while trying to reduce the use of the
same nodes in these parts. Besides, ours is a deterministic algorithm as opposed
to their randomized one and we exclude the assumption that the sensors know
their positions.

3 Definitions and Problem Formulation

The sensor network is modelled as a graph G = (V, E), where V denotes the
sensors and E represents the links (u, v) ∈ E between u, v ∈ V if they are within
their transmission range, TR. A sensor monitors a target that falls within its
sensing range, SR. For a node u, N(u) defines its neighborhood, i.e., N(u) =
{v|(u, v) ∈ E, u 6= v} and N [u] = N(u) ∪ {u}. By Nf (u) we mean the set
of nodes which are at most f hops away from u. We use N(u) = N1(u). Let
T (u) represent the set of targets monitored by u. For u and t ∈ T (u), let Tt(u)
represent the set of sensors in N2[u] that monitors the target t (i.e., Tt(u) =
{t|t ∈ T (u) ∩ T (v), v ∈ N2[u]}). Node u maintains an ordered pair at each
round i (initially i = 1), pi(u) =≺ (cti(u), id(u)) �, where cti(u) (also called



the counter) denotes the number of monitoring sets in which u has already
participated. Initially, ct1(u) = 0 and then for i > 1, cti(u) = cti−1(u) + 1 if u
participates in the monitoring set Vi−1 in round i − 1. The rank r(X(u)) of u
w.r.t X is the index of u in the lexicographically sorted nodes of X .

We formulate the target monitoring problem in the following way. Given a
set of targets T = {t1, · · · , tm} and a set sensors V = {v1, · · · , vn} (both) ran-
domly and uniformly deployed in the plane such that for each target there is
at least one sensor that monitors it, we would like to find a family V of subsets
V1, · · · , Vs such that

i) ∀i, Vi monitors all targets in T ,
ii) z = s/k is maximized, where k=maxvj∈V |{i : vj ∈ Vi}|.

4 The Algorithm

We present a 2-localized algorithm for the target monitoring problem (assuming
now TR = SR). Our algorithm works in rounds and at round i = 1, node u first
forms T (u). Then u sends T (u) and an ordered pair pi(u) =≺ (cti(u), id(u)) �
to v ∈ N2(u) and receives T (v) and pi(v) from v ∈ N2(u). After obtaining T (v)
and pi(v), u forms Ta(u) for each target a ∈ T (u). Then for each set Ta(u), u
computes its rank r(Ta(u)) in that round. If u is the smallest ranked node in
any set Ta(u), then it becomes active to monitor a, otherwise it goes into the
sleep mode. All active nodes in round i are represented by Vi which monitor all
the targets. If u becomes active in round i only then its counter is incremented
(cti+1(u) = cti(u) + 1). Node u then sends pi+1(u) =≺ (cti+1(u), id(u)) � to,
and receives pi+1(v) from v ∈ N2(u) and a new round i+1 starts. The algorithm
is given in Figure 1.

4.1 A Problem with Locality

For a subset Xt of nodes that monitor the same target t in some round, it is
supposed that the nodes will be in close proximity (due to the spatial correla-
tion). However, the nodes in Xt, although they monitor the same target, can
have arbitrarily long hop distance between each other, while the Euclidean dis-
tance maybe slightly more than their transmission range. We call this situation
the Locality Effect, where the monitoring nodes for a certain target do not know
about each other about their monitoring.

5 Theoretical Analysis

In this section we give an overview of the theoretical analysis of the algorithm.
Consider a target t ∈ T and let Xt be the set of sensors that monitors it in some
round. For a node u ∈ Xt, u knows only whether other nodes, which are within



Input: A connected graph G = (V, E) and a set of targets T s. t. each target is
monitored by at least one sensor.

Output: A set of subsets of sensors V1, · · · , Vs s.t. each Vi monitors all targets in T .

1: i = 1, send pi(u), T (u) to v ∈ N2(u) and receive pi(v), T (v)
2: Compute Ta(u) = {a|a ∈ T (u) ∩ T (v), v ∈ N2(u)}, ∀a ∈ T (u)
3: For round i, compute r(Ta(u)), ∀a ∈ T (u)
4: If ∃a ∈ T (u) s.t. r(Ta(u)) < r(Ta(v)), v ∈ N2(u) Then

5: u becomes active Endif

6: i = i + 1, If u is active Then cti(u) = cti−1(u) + 1 Endif

7: If cti(u) 6= cti−1(u) Then Send pi(u) to v ∈ N2(u) Endif

8: Receive pi(v) from v ∈ N2(u)
9: Endfor

Fig. 1. A 2-Localized algorithm for the target monitoring problem

its 2-hop neighborhood (i.e., N2[u]), can monitor t and therefore chooses exactly
one among N2([u]) for the monitoring. However, due to the locality effect there
can be two nodes u, v ∈ Xt such that v /∈ N2(u), both u and v monitor t and u
does not have any clue about v. We would like to determine an upper bound on
how many sensors can monitor a target while none of them is aware of the other.
We show that at any round at most five sensors can simultaneously monitor a
target, none of which is within the 2-hop neighborhood of the other.

Lemma 1. For any target t ∈ T , at most five sensors are set as active.

Proof. Let Xt be the set of sensors that monitors a target t ∈ T in some round.
Suppose for the sake of contradiction that |Xt| > 5 and no two nodes u, v ∈ Xt

are within the 2-hop neighborhood of the other. As t is monitored by all sensors
in Xt, the Euclidean distance between t and any node w ∈ Xt must be at most
SR. Consider a disk D centered at t with radius equal to SR. Therefore, all the
nodes in Xt must be within the disk D. Since |Xt| > 5 and nodes of Xt are in
D, there will be at least two nodes u′, v′ ∈ Xt whose Euclidean distance must be
smaller than TR (since SR = TR, we can consider TR the radius of D instead
of SR). Then u′ and v′ are direct neighbors to each other, a contradiction. ut

Then we derive the corollary from the above lemma.

Corollary 1. If V ∗
i denotes the minimal set of sensors monitoring targets at

round i then |Vi| ≤ 5m|V ∗
i |, where m = |T | is the number of targets given. ut

An implication of the above corollary is that if we have a constant number
of targets (|T | = m ≤ c, c is a constant) then we have i.e., |Vi| ≤ 5c|V ∗

i |. So the
size of any monitoring set is at most a constant times the size of the minimal
monitoring set. Now we show how the algorithm performs towards maximizing



the value of z = s/k. Denote by zopt the optimal value of z and zopt > 0, i.e.,
zopt ≥ z = s/k for all possible values of s and k. If zalg denotes the value of z
obtained by the algorithm then we have the following lemma. (Due to the space
limitation, please see all the proofs and details in [8])

Lemma 2. zopt ≤ |Xp| and zalg ≥ 1. Hence zopt is at most |Xp| times the value

of zalg. ut

For the following results we assume that the transmission range of a sensor
is twice its sensing range, TR = 2 ∗ SR.

Lemma 3. With TR = 2 ∗ SR, for any target t ∈ T , exactly one sensor is set

as active. ut

We obtain the following corollary from the above lemma.

Corollary 2. If V ∗
i denotes the minimal set of sensors monitoring targets at

round i then |Vi| ≤ m ∗ |V ∗
i |, where m = |T | is the number of targets. ut

Now we show that the algorithm obtains the optimal result for maximizing z
in special cases. Let X1, X2, · · · , Xm be the subsets of sensors that monitor the
targets t1, t2, · · · , tm respectively in some round, where Xi ⊆ V . If Xi ∩Xj = φ,
i 6= j then we have the following.

Lemma 4. With the above assumption and TR = 2 ∗ SR, we have zalg = zopt.

ut

6 Simulation

We conducted extensive simulations on random networks to study the perfor-
mance of the algorithm. We provide and analyze experimental results regarding
(i) maximizing z = s/k and (ii) the size of monitoring sets |Vi|. We distribute a
set of m ∈ {10, 20, 30, 40, 50} targets randomly in a field of 400m x 400m. Then
we generate a random graph G by placing n ∈ {100, 200, 300, 400, 500} nodes
uniformly and randomly.

Experiments are done using our own simulator in Java. Setting both SR and
TR to 60m, we apply the algorithm with n = 100, m = 10 and compute the
minimum cardinality set Xp and generate V1, V2, · · · , V|Xp|. In the experiments,
we set zopt = s/k = |Xp|/1, since the optimal algorithm can generate at most
|Xp| monitoring sets. For zalg we derive the maximum frequency k of a node in
Xp in these monitoring sets and obtain zalg = |Xp|/k. We generate 100 random
graphs successively with the same number (m = 10) of randomly distributed
targets and for each graph we compute the size of the minimum cardinality set
|Xp|, maximum frequency k of a node in the monitoring sets and hence obtain
zopt and zalg . Finally we obtain the average values of zopt and zalg . Keeping m =
10, we increment the value of n by 100 each time and repeat the whole procedure
until n = 500. For each pair of m ∈ {20, 30, 40, 50} and n = {200, 300, 400, 500},
we run the above experiment 100 times and find the averages of the zopt and
zalg. The results are plotted in Figure 2, where the x-axis shows the number of
targets in the field and the y-axis represents the average values of zopt and zalg .
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Fig. 2. Average z values (optimal zopt values by solid lines and zalg by dashed
lines) for (a) 100 (b) 200 (c) 300 (d) and (e) 500 sensors.

7 Conclusions

In this paper, we have presented a simple 2-localized algorithm to compute a
family of monitoring sets such that each set monitors all the targets. We provide
theoretical results about the size of monitoring sets, determine bounds on the
value of z(z = s/k) when the transmission range is equal to and twice the sensing
range. Although the worst-case bound we prove is not appealing (this is because
of the fact that the nodes only have very limited information about the topology
of the network), we believe it can be improved if nodes have more knowledge
about the global topology. We provide simulation results that show much better
results than the theoretical bound established in the paper.
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