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Abstract
We consider the following target monitoring problem: Given a set of stationary targets 7" = {¢1,---,tm} ad a
set V = {v1,---,v,} of sensors, the target monitoring problem asks for generating a family of subsets of sensors

Vi, -+, Vs called monitoring sets, such that each V; monitors al targets. In doing so, the objective of this problem
isto maximize z = s/k, where k=max,,cv[{i : v; € V;}|. Maximizing z means generating a large number of
monitoring sets and minimizing the number of frequencies of a sensor (or node) in these sets. As energy isone of the
mainissues of wireless sensor networks and sensing consumes energy, maximizing z hasadirect impact in prolonging
the lifetime of sensor networks. Thisis because by maximizing z, we distribute the monitoring responsibilities to al
sensors as equally as possible and at the same time, reduce the participations of individual nodes in these monitoring
sets. Towards achieving this goal, we present alocalized agorithm. The algorithm is simple and requires each node
to know only its 2-hop neighborhood. Furthermore, nodes do not need to know their geographic positions. In short,
the main ideaisthat each node maintains arecord (counter, ID), where counter isthe number of previous monitoring
setsin which the node has been selected to monitor the targets. To select sensors for the next monitoring set, for each
target, the lexicographically smallest sensor covering it, is selected. We provide special instances where the algorithm
obtains an optimum result. As aby-product of the algorithm, it is shown that the size of a monitoring set is at most a
constant times the size of a minimum monitoring set when the number of targetsis a constant. We present extensive
simulation results to evaluate the performance of the algorithm in randomly generated graphs.

1 Introduction

Sensors deployed in the plane are expected to provide us with relevant information depending upon the applications
they are used for. Every sensor is equipped with a sensing and transmission device. A sensor can sense targets or other
sensors if they are within its sensing range and similarly it can transmit to and receive from a sensor if the two sensors
are within their respective transmission ranges. After deployment, sensors form an ad hoc wireless network among
themselves by establishing virtual links if two sensors are within each other’s transmission range. It is assumed that
the network is connected. Throughout the paper the sensing range of a sensor is equal to its transmission range unless
otherwise specified.

Consider Figure 1 where a network of six sensors is shown. Sensors u, w are within their transmission range and
can sense a target (shown as a rectangle) as it falls in their sensing range. Sensor v can also sense the target but none
of w or w is v’s neighbor. After the ad hoc network is formed, sensors begin sensing the environment and depending
on the application, such as target tracking, target monitoring, disaster-relief alarm, area coverage, and so on, they
cooperate by sending and receiving sensed information among them. The goal of such applications is achieved when
relevant and timely information generated from the collaboration of sensors is relayed to a central base station to take
appropriate action.

As wireless sensors have limited battery power, one critical aspect of such networks is energy consumption which
is caused by sensing and transmission activities by individual sensors. The more a sensor engages in sensing and
transmitting, the more energy it consumes. Although in most applications a sensor’s energy cannot be replenished, it
is generally expected that the sensor will continue to provide information for a long period of time. This raises the



Fig. 1: A sensor network in which three sensors can sense a target which falls in their sensing range.

need to judicially utilize the sensors to obtain required information from the sensing field, since otherwise sensors
will quickly drain their energy and be unable to function any longer. Therefore, an algorithm for a wireless sensor
network should be energy-efficient in the sense that it ensures the careful use of sensors to reduce energy consumption
for sensing and transmission, and at the same time meets the expected standard of quality in the solutions provided by
them. If a sensor is engaged in sensing (and /or transmitting) call it active in which case it consumes energy, otherwise
the sensor is in the sleep mode in which case it does not loose energy. We use ‘sensor’ and ‘node’ interchangeably in
what follows.

In this paper we study the target monitoring problem. Given a set of stationary targets " = {¢1, - - -, t,,,} and a set
V = {vy,---,v,} Of sensors, the target monitoring problem asks for generating a large family of subsets of sensors
Vi, -+ -, Vs called monitoring sets, such that each V; monitors all targets. The idea is that only one such set is active for

any certain period of time and after that time period another set becomes active and so on, thus providing continuous
monitoring. However, the objective of this problem is to maximize z = s/k, where k=max,cv|{i : v € V;}|. Itis
assumed that a large number of sensors are deployed in the plane which are in close proximity of the targets, such that
for every target there is at least a sensor to monitor it. Considering each ¢ (1 < ¢ < s) as a round, we activate the
sensors in V; in round ¢ to monitor all targets, while all other sensors V' \ V; are put in the energy-efficient sleep mode.

Maximizing z, that is, generating a large number of monitoring sets (in other words maximizing s) and at the
same time minimizing the number of frequencies of a sensor in these sets (i.e., minimizing k) has a direct impact in
prolonging the lifetime of sensor networks. By the lifetime of a sensor network we mean the elapsed time between
the deployment of the sensors and the time when the first sensor runs out of energy. By maximizing z, we distribute
the monitoring responsibilities among the sensors in a more balanced way. That is, by having a large number of
monitoring sets we increase the chance of selecting all sensors in the network in these sets, and by minimizing the
number of participations of individual nodes in these sets, we reduce the possibility of selecting the same nodes.
Therefore, as nodes in the network are put in the active and the energy-efficient sleep mode alternatively, the lifetime
of individual nodes is prolonged and hence the lifetime of the network.

Another important aspect of sensor networks is the issue of scalability. Since hundreds or even thousands of sensors
may sometimes be deployed to accomplish certain tasks, it is generally expected that the algorithms for such networks
be distributed (or more preferably localized) rather than centralized. This is because in a centralized system all sensors
have to relay their information (such as id, neighborhood information, etc.) to the central base station which then
executes the algorithm and returns the results to the sensors. As this maybe infeasible for large networks, an algorithm
of a distributed nature is more acceptable in such cases, which relieves the nodes from sending their information to the
central base station. In a distributed system the sensors run the same algorithm individually based on local knowledge
of the network. This makes distributed algorithms suitable for large networks. However, a preferred approach is to use
a localized system in which each sensor is allowed to know only a constant neighborhood of information to execute
its algorithm and make decisions. Define an algorithm as p-localized if each node w is allowed to exchange messages
with its neighbors v at most p—hops away and take decisions accordingly based on this information.



In order to solve the target monitoring problem we propose a 2-localized algorithm and therefore, a sensor is
restricted to know only the 2-hop neighborhood. Another salient feature of the algorithm is that the sensors do not
need to know their geographic positions. They only need to know the ids and the connectivity information of their
2-hop neighborhood.

The rest of the paper is organized as follows. In Section 2 we describe related work. In Section 3 we provide
definitions and assumptions that are used throughout the paper. The localized algorithm is presented in Section 4
and a theoretical analysis of the algorithm follows in Section 5. Experimental results are presented in Section 6. We
conclude in Section 7.

2 Related Work

Coverage (also called monitoring) has been one of the important topics in sensor networks and has received a lot of
attention during the past several years [2, 4, 5, 6, 9, 8, 11, 13, 14]. The main goal of most of the is to devise scheduling
algorithms such that individual sensors in the network are assigned rounds which indicate to them during which rounds
they will be active and during which rounds they will be in the sleep mode. When a set of sensors monitors a certain
area or a target, it is generally possible to monitor the area or the target by a small subset of them. So, it is redundant
to make all the sensors active at the same time for the monitoring instead of using the small subset. This observation
leads researchers to devise efficient algorithms such that at any time only a small number of sensors are set as active
to monitor the area or the targets.

In [2] the authors consider the target coverage problem with the goal to minimize energy consumption. Given a
set of targets, they propose an energy-efficient centralized scheme to provide coverage to all the targets by disjoint
sets of sensors. They divide the sensor set into disjoint subsets and activate each set to perform the covering task.
Basically, their main idea is to generate as many disjoint sets of sensors as possible such that each set covers all the
targets. However, the algorithm is centralized and does not scale for larger networks. In [12] the authors address the
area coverage problem where their algorithm works in two phases. In the first phase the algorithm determines how
many different sensors cover the different parts of the monitored area. Like the algorithm in [2], the second phase
allocates sensors into mutually independent sets where each set is active at any time to provide the area coverage. The
algorithm is also centralized and the authors do not provide any theoretical results regarding the performance of their
algorithm. Simulation results show that the algorithm achieves significant power savings (by generating more disjoint
sets of sensors) in performing area coverage.

The work relevant to ours is [3] where the authors consider the target coverage problem by a set of subsets of
sensors while the subsets do not need to be disjoint. They call this the maximum set covers (MSC) problem and
present two centralized algorithms, one based on linear programming and the other is a greedy algorithm. They do
not provide any theoretical analysis of their algorithms and give simulation results to verify their approaches. In this
paper, we consider a target monitoring problem where we focus on generating a large number of monitoring sets and
at the same time reducing the number of participations of each node in these generated set.

A recent result related to our problem is described in [1], where the authors consider the monitoring schedule
problem: Given a set of sensors and a set of targets it is required to find a partition of the sensor set such that each
part can monitor all targets. Each part of the partition is used for one unit of time and the goal is to maximize the
number of parts in the partition. They present a randomized distributed algorithm which generates at least (1 —e) * opt
(0 < e < 1) parts, with high probability, where opt is the maximum number of parts in the partition. However, they
make the assumption that the sensors must know their geographic positions.

The authors also show that by modifying their algorithm they can find a constant approximation factor for the
problem and the sensors do not need to know their geographic positions. Our work is related to theirs in the sense that
we maximize the number of parts while trying to reduce the use of the same nodes in these parts. Besides, ours is a
deterministic algorithm as opposed to their randomized one and the assumption that the sensors know their positions
is excluded.



3 Model and Definitions

We assume that sensors are deployed in the plane and model the underlying sensor network by an undirected graph
G = (V, E), where the vertex set V' denotes the set of sensors and E represents the links (u,v) € E between two
nodes u,v € V if they are within their transmission range, T'R. A sensor is equipped with a sensing device that can
monitor a target if it falls inside its sensing range, S R. There are a number of reasonable assumptions relating 7'R and
SR and we study two popular ones [1, 7]. In dealing with the target monitoring problem, we consider two situations
() TR=SRand (i) TR=2x*SR.

Define the neighbor sets N(u) and N[u] of node w as N(u) = {v|(u,v) € E,u # v} and N[u] = N(u) U {u}.
By Ny(u) we mean the set of nodes from v which are at most f hops away. For simplicity we use N(u) = Nq(u).
The degree deg(u) of a node is the number of neighbors it has, i.e., deg(u) = |N(u)|. Each node w is identified by
a unique index denoted as id(u). When a shortest path between two nodes u, v € V' is referred we mean the shortest
hop distance between them and denote it by d(u, v).

The target set is denoted as 7' = {¢1,---, ¢}, Where ¢; is a target. The set of targets monitored by node w is
referred to as T'(u). For w and t € T'(u), T¢(u) represents the set of sensors in Na[u] that monitors the target ¢ (i.e.,
Ti(u) = {t|t € T(u) N T(v),v € Nafu]}).

Each node « maintains an ordered pair at each round 4 (initially s = 1), p;(u) =< (ct;(u), id(u)) >, where the first
element ct;(u) (also called the counter) denotes the number of monitoring sets in which « has already participated.
Initially, ct1 (u) = 0, Vu € V, and this is incremented by one (ct;(u) = ct;(u) + 1) each time u participates in some
monitoring set. For a subset X, and two nodes u, v € X, we say that node u is lexicographically smaller than node v
atround i if p;(u) < p;(v), i.e., either ct; (u) < ct;(v) or ct;(u) = ct;(v) and id(u) < id(v). The rank of node u with
respect to X, denoted by (X (u)), is the index of « in the lexicographically sorted (ascending order) nodes of X.

3.1 Problem Formulation

We formulate the target monitoring problem in the following way. Given a set of m targets 7' = {¢1,---,t,,} and a
set of n sensors V' = {vy, - - -, v, } (both) randomly deployed in the plane such that for each target in 7" there is at least
one sensor that monitors it, we would like to find a family V of subsets V1, - - -, V such that

i) Vi, V; monitors all targets in 7,
i) z = s/k is maximized, where k=max,,cv |{i : v; € V;}|.

4  The Algorithm

In this section we present a 2-localized algorithm for the target monitoring problem and discuss some problems related
to the myopic view of localization. We assume that the transmission range T'R is equal to the sensing range SR. As
individual nodes execute the same algorithm, we describe what happens to an arbitrary node w in the network.

Our algorithm works in rounds starting from round 1. At the first round (¢ = 1), node « forms its monitored target
list T'(w) by sensing (or monitoring) the targets in its sensing range. Then u sends two items to all its neighbors which
are at most 2-hops away. It sends its list 7'(u) and an ordered pair p;(u) == (ct;(u),id(u)) > to v € No(u). Note
that initially ct1(u) = 0. Similarly u receives such information (7'(v) and p;(v)) from all its neighbors v € Na(u).
Thus u knows the targets that are monitored by its one and two hop neighbors.

After obtaining 7'(v) and p;(v) from all its one and two hop neighbors, « forms the set T, (u) for each of its
monitored target « € T'(u) (recall that T, (u) = {ala € T'(u) N T(v),v € Nz[u]}). In other words, the set T, (u)
refers to the sensors monitoring target a that are at most 2-hops away from u. Then for each 7', (u), © computes its rank
(T, (w)) in this round. If u is the smallest ranked node in any T, (u), then it becomes active to monitor a, otherwise it
goes into the sleep mode. According to the notation, all active nodes in round 7 are represented by V; which monitor
all the targets. For example, if sensors w1, us,us (assume the subscript denotes the respective id) monitor target b
(see Figure 2) then |Tp(u1)| = 3. Atround 1, u; becomes active by being the smallest ranked node for monitoring b
while the other two nodes can go into the sleep mode, then at rounds 2 and 3, us and ug take their turn to be active



by becoming the smallest ranked node, respectively. Thus the monitoring sets in round 1,2, and 3 are V7 = {u1},
Vo = {us} and V5 = {us}, respectively.

If « becomes active in round ¢ then its counter is incremented by one (ct;+1(u) = ct;(u) + 1), otherwise the
counter value remains the same. Node « then sends its p; 1 (u) =< (cti+1(u),4d(u)) > to, and receives p; 11 (v) from
v € Na(u) and a new round ¢ + 1 begins. As before u computes its rank (since p;41(.) values are updated) for each
target a € T'(u). The smallest ranked node for a target a becomes active and starts monitoring a. All smallest ranked
nodes in the network form the monitoring set V;; which monitors all targets in 7" and so on. The algorithm is given
in Figure 3.

4.1 A Problem with Locality

In general, it is assumed that sensors which are in close proximity in the plane sense or observe the same data due to
the spatial correlation. For a subset X; of nodes that monitor the same target ¢ in some round, it is supposed that the
nodes will be in close proximity. However, the nodes in X, although they monitor the same target, can have arbitrarily
long hop distance between each other, while the Euclidean distance maybe slightly more than their transmission range.
We call this situation the Locality Effect, where the monitoring nodes for a certain target do not know about each other
about their monitoring.

In Figure 1, the Euclidean distance between « and v is TR + ¢ (recall that 0 < ¢ < 1) and they both monitor the
same target (shown as a rectangle) whereas their shortest path d(u,v) (in terms of hop distances) can be arbitrarily
long.

Fig. 2: Nodes u1, u2, and uz monitor target b and the monitoring sets are V; = {u;}, Vi

5 Theoretical Analysis

In this section we give an overview of the theoretical analysis of the algorithm. Consider a target t € 7" and let X; be
the set of sensors that monitors it in some round. For any node v € X, u knows only whether other nodes, which are
within its 2-hop neighborhood (i.e., N2[u]), can monitor ¢ and therefore chooses exactly one among Nz([u]) for the
monitoring. However, due to the locality effect there can be two nodes u, v € X such that v ¢ N»(u) and both « and
v monitor ¢ and « does not have any clue about v. We would like to determine an upper bound on how many sensors
can monitor a target while none of them is aware of the other.

First, we have the following simple observation from our algorithm.

Observation 5.1 The set V; of all active nodes monitors all targets in 7" at round i.

As one of the main results, we show that at any round at most five sensors can simultaneously monitor a target,
none of which is within the 2-hop neighborhood of the other. In the following, we assume that TR = SR.

Lemma5.2 For any target ¢t € 7', at most five sensors are set as active.



Input: A connected graph G = (V, E') and a set of targets
T such that each target is monitored by at least one sensor.

Output: A family of subsets of sensors Vi, ---, V5 such
that each V; monitors all targets in 7.

lii=1

2: Broadcast p;(u) and T'(u) to v € Na(u)

3: Receive p;(v) and T'(v) from v € Na(u)

4: Compute T,(u) = {ala € T(u) NT(v),v € Na(u)},
Va € T'(u)

5: I*T,(u) represents the set of sensors that monitor a*/
6: For each round i

7:  Compute rank (T, (u)), Va € T'(u)

8: If Ja € T'(u) such that

9: r(Ty(u)) < r(T,(v)),v € Na(u) Then

10: /*Selects the smallest ranked node for each target*/
11: u becomes active

12:  Endif

13: i=i+1

14: 1f w is active Then

16:  cti(u) = cti—1(u) +1

17: Endif

18: If cti(u) # cti—1(u) Then

19:  Send p;(u) tov € Na(u)

20: Endif
21: Receive p;(v) from v € Ny(u)
22: Endfor

Fig. 3: A 2-Localized algorithm for the target monitoring problem

Proof Assume X to be the set of sensors that monitors a target ¢ € T in some round. Suppose for the sake of
contradiction that | X;| > 5 and no two nodes u,v € X, are within the 2-hop neighborhood of the other. As ¢ is
monitored by all sensors in X, the Euclidean distance between ¢ and any node w € X; must be at most S R. Consider
a disk D centered at ¢ with radius equal to SR. Therefore, all the nodes in X; must be within the disk D. Since
|X:| > 5 and nodes of X are in D, there will be at least two nodes ', v" € X, whose Euclidean distance must be
smaller than T'R (we can consider T'R the radius of D instead of SR, since SR = T R). Then «" and v’ are direct
neighbors to each other, a contradiction. |

A tight example of the above lemma is shown in Figure 4, where five sensors are put on the vertices of a regular
pentagon with side T'R + . They can all monitor any target ¢ in the striped region S which is the intersection of their
respective sensing disks. Note that for any u;, u; ¢ Na[u;] (i # jand 4, j € {1,2,3,4,5}).

Then we derive the corollary from the above lemma.

Coroallary 5.3 If V;* denotes the minimal set of sensors monitoring targets at round ¢, then |V;| < 5m|V;*|, where
m = |T| is the number of targets given. |

An implication of the above corollary is that if we have a constant number of targets (|7'| = m < ¢, ¢ is a constant)
to be monitored then, at any round, the number of sensors becomes active by the algorithm is within a constant factor
of the optimal, i.e., |V;| < 5¢|V;*|.

Now we show how the algorithm performs towards maximizing the value of z = s/k. First we need some
notation. Let Xy, Xo, -+, X,,, be the subsets of sensors (X; C V, 1 < ¢ < m) that monitor the targets ¢y, ta, - - - , t,
respectively, in some round. Let X, be the minimum cardinality subset among all .X;’s (ties are broken arbitrarily).



Fig. 4: For a target in the striped region (intersection of the five disks) we set as active at most five sensors whereas
only one sensor suffices.

Now we divide each X; (X; monitors target 7) in the following way. Due to the locality effect we can have at most
five subsets X; (1), X;(i2), X;(i3), Xi(i4) and X;(i5) of X; (i.e., X;(is) C X;, 1 < a < 5,1 <4 < m) such that
no node in one subset knows whether any nodes in other subsets are monitoring 7. In other words, there is no node
u e Xi(l'a) such that v € Xl(lb), a 7é bandv € NQ[U] Let X*=min1§i§m71§a§5|Xi(ia)|. Note that |X*| > 1.

Denote by z,,; the optimal value of z and z,,: > 0, that is, z.,: > 2z = s/k for all possible values of s and k. If
zalg denotes the value of z obtained by our algorithm then we have the following lemma:

Lemmab.4 z,, = |X,| and z,, > 1. Hence z,, is at most | X | times the value of z,,.

Proof First we derive the value of z,,,. In order to compute the value z,,,, notice that there can be |X,| monitoring
sets Vi, Va, - -+, V|x,| such that each node in X, can participate in these monitoring sets exactly once. It is easy to
see that for the optimal algorithm to generate the | X, + 1-st monitoring set, V|x, |1, there will be at least one node
in X, such that the number of participations of the node in V1, Va,- -+, Vix |, V|x, +1 is at least two (because of the
Pigeonhole Principle). Thus z,,; = s/k = |X,|, where s = | X, (i.e., | X, | monitoring sets V1, Va, -+, V|x,|) and
k=1

We now analyze the behavior of the algorithm to find z,;,. With each node participating exactly once, the algorithm
can generate X * monitoring sets V1, V5, - - -, Vi, since only one node is selected in each iteration from X *. Hence
Zalg > | X*| > 1. Hence z,,, is at most | X, | times the value of z,;5. |

51 TR=2xSR

In this section we assume that the transmission range of a sensor is twice its sensing range, 7R = 2 « SR. In the
previous subsection it is shown that we can achieve a good approximation factor (a constant factor) for the size of
each of the monitoring sets. However, when the number of targets is a constant, the approximation factor is much
worse towards minimizing the value of k. This is because of the very limited information of the 2-hop neighborhood
available to individual sensors and we assumed that the transmission range is equal to the sensing range of a sensor.
Here we investigate whether the value of k£ can be improved by assuming TR = 2 % SR. This is a very reasonable
assumption in the context of coverage (monitoring) problems in sensor networks [7]. However, we use this assumption
and obtain some useful results for the target monitoring problem.

Observation 5.5 Letnode v € V monitor T'(u) C T targets. If thereisanodev € V, v # usuch that T'(u)NT (v) #
¢, thenv € N(u).



Proof Suppose for contradiction, v ¢ N (u). Since T'(u) N T'(v) # ¢, that means v can monitor a target which « can
monitor. In this case the Euclidean distance between « and v can be at most twice their sensing range (see Figure 5,
where dotted and solid circles represent the transmission and the sensing ranges, respectively) contradicting the fact
that v is not a direct neighbor of u.  |j
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Fig. 5: If T'(u) N T'(v) # ¢ then v € N(u).

The above observation implies that if « monitors ¢ then « knows exactly which other nodes are also monitoring ¢
and moreover, all such nodes are u’s direct neighbors.

Lemma 5.6 Under the assumption that TR = 2 « SR, for any target ¢ € T', exactly one sensor is set as active.

Proof The proof is similar to the proof of Lemma 5.2. Consider a target ¢ € T" and let X, be the subset of sensors that
monitors it. There is no locality effect as evident from Observation 5.5. So each node in X; knows whether all other
nodes in X; are monitoring ¢. Hence the node with the smallest rank in X will be active to monitor¢. |

We obtain the following directly from the above lemma:

Corollary 5.7 If V;* denotes the minimal set of sensors monitoring targets at round i, then |V;| < m = |V;*|, where
m = |T'| is the number of targets given.  |J

As before, if the number of targets is a constant, the number of active sensors at each round will be within a
constant factor of the optimal number of active sensors, |V;| < ¢’ * |V;*|, where ¢’ is a constant.

In the following, we show that our algorithm obtains optimal results in special instances. Let X1, Xo,---, X, be
the subsets of sensors that monitor the targets ¢1, to, - - -, t,,, respectively, where X; C V in some round. Let X, be
the minimum cardinality subset among all X;’s (ties are broken arbitrarily). If X; N X; =¢,i # jand 1 <4,5 < m,
that is, a sensor exactly monitors one target, then we have the following lemma.

Lemma 5.8 With the above assumption and T'R = 2 * SR, we have zqy = Zopt

Proof Let X}, = {uy,uz,---,ux, } denote the subset of sensors that monitor p (recall that X, has minimum car-
dinality among | X;|’s). The optimal algorithm can produce | X,,| monitoring sets V1, Va, - - - V| x| with each node in
X, participating exactly once. Since X, has the smallest cardinality, for the optimal algorithm to produce the next
monitoring set V| x |1, at least one of the nodes in X, must be selected in Vi x| 41. SO, 2opt = | Xp|/1 > (| X,p]+1)/2.
Now we see how the algorithm behaves towards finding z,.,. Since there is no locality effect (all nodes w1, uz, - - -, u| x|
are aware of each other about monitoring p), the algorithm sets as active exactly one node from X, (say node u; is
selected in some round). Since X, N X; = ¢, fori # pand 1 < ¢ < X,,, no other nodes from X, will be se-
lected (active) in that round. Therefore, at any round exactly one node is set as active from X, and hence we have
Vi, Va, - V|x,| monitoring sets.
Now we show that any node u; € X, is exactly used once in V1, Va, - - - V] x,| monitoring sets.



Suppose for contradiction that a node w; is used in monitoring sets V,. and V,,, where 1 < r,w < | X,,| and r < w.
After being selected first in V., u;’s ct(u;) value is increased by one. If u; is selected (from X ) again in V,,, that
means its rank is smaller than other nodes in X,. Since w < | X,,| and exactly one node is selected from X, there is
at least some node in X, which has not been selected in previous monitoring sets Vi, Va, - - -, Viyr <. If this has not
been selected in previous monitoring sets its rank will be smaller than w;’s, a contradiction. The claim follows. |}

6 Simulation

We conducted extensive simulations on random networks to study the performance of our proposed 2-localized al-
gorithm. In this section, we provide and analyze experimental results regarding (i) maximizing z = s/k and (ii) the
size of monitoring sets V1, Va, - - -, Vi. In the experiments, first we distribute a set of m € {10, 20, 30,40, 50} targets
randomly and uniformly in a square field of size 400m x 400m. Then we generate a random graph G by placing
n € {100, 200, 300, 400, 500} nodes uniformly and randomly and test the connectivity of G. If the underlying graph
is connected then we apply the algorithm to construct monitoring sets for the targets and analyze its performance in in
terms of maximizing the value of z and the size of each V.

6.1 Experimental Results

Experiments are done using our own simulator in Java. Setting both the transmission and the sensing range to 60m for
all nodes, we apply the algorithm in a 400m x 400m square with n = 100, m = 10 and first compute the minimum
cardinality set X,,. Recall that given ¢, to, - - -, ¢,,, targets, X, is the minimum cardinality set among X, X, ---, Xp,
where X; C V denotes the set of sensors that monitors the target ¢;, (1 < ¢ < m). Then we generate the monitoring
sets V1, Va, - -+, Vix, |- Inthe experiments we set the optimal z value, z,,; = s/k = | X,,|/1 since the optimal algorithm
can generate at most |.X,,| monitoring sets with & = 1. In order to find the value of z,;, we figure out the maximum
frequency & of a node in X, in these monitoring sets and obtain z,;, = | X, |/k. We then generate 100 random graphs
successively with the same number (m = 10) of randomly distributed targets and for each graph we compute the size
of the minimum cardinality set | X, |, and maximum frequency % of a node in the monitoring sets and hence obtain
Zopt aNd zq14. Finally we obtain the average values of z,,; and zq.

Keeping m = 10, we increment the value of n by 100 each time and repeat the whole procedure until n = 500.
In this way we obtain averages of the parameters (z,,: and z,;4) for each value of n. Thereafter, for each value of
m € {20, 30,40, 50} for each value of n = {200, 300, 400, 500}, we run the above experiment 100 times and find the
averages of the z,,; and zq.

The results are plotted in Figure 6 where the x-axis shows the number of targets in the field and the y-axis represents
the average values of z,,¢ and z44. Optimal values z,,; are shown in solid lines and and the values z,;, by the
algorithm are shown in dashed lines. Interestingly, in these average graphs the experimental results are much better
than the theoretical bounds established in Lemma 5.8. Note that the average z;, values are within a small constant (at
most 3) of the optimal value average z,,: values. As it is obvious from the figures that the results are even better and
consistent in dense graphs (we assume, having 500 sensors in a square of 400m x 400m is denser than having 100 or
200 sensors in the same field). This is intuitive because having more sensors in small areas reduces the locality effect
and sensors are likely to be aware of other sensors monitoring the same object.

Finally, as a by product of the algorithm we also consider the sizes of the individual monitoring sets. We compute
the cardinality of each of the monitoring sets V;’s and compare it with the optimal size of the monitoring set V;*. To
find the optimal value |V;*| we have used the number of targets as the lower bound of [V*|, that is, |V*| > m. We
compute the size of each of the monitoring sets V; generated by the algorithm and we find that in average it is 3.16
times the size of V;*.

7 Conclusions

In this paper, we have presented a simple 2-localized algorithm to compute a family of monitoring sets such that each
set monitors all the targets given in some field. Generating a number of different monitoring sets with the purpose of
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minimizing the number of participations of a node in these sets increases the probability of prolonging the lifetime of
sensor networks. Our algorithm is simple and strictly localized, since each node only requires the knowledge of its two
hop neighborhood and thus it can be easily applicable to sensor networks. We provide theoretical results about the size
of monitoring sets, determine bounds on the value of z(z = s/k) when the transmission range is equal to and twice,
the sensing range, respectively. Although the worst-case bound we prove is not appealing (this is because of the fact
that the nodes only have very limited information about the topology of the network), we believe it can be improved if
nodes have more knowledge about the global network architecture. However, we provide extensive simulation results
to assess the performance of our algorithm where the experiments in average random graphs show much better results
than the theoretical bound established in the paper.
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