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Abstract

We present a localized algorithm (LTCA) for topology
control in wireless sensor networks which has certain desir-
able properties. First, the algorithmis very simple, strictly
local (requires 1-hop information of neighbors) and fast, re-
quiring each node to communicate with its neighbors ex-
actly twice. Second, LTCA does not assume the underlying
graph to be a unit disk graph, and in fact works on general
graphs. Third, the most important feature of LTCA is that
it is completely independent of any location information of
nodes in the network graph; it relies only on the connec-
tivity information and the identities (ids) of the neighboring
nodes. Assuming sensor nodesare deployedinthe planeg, itis
shown that the resulting subgraph obtained by our algorithm
isconnected, symmetric and contains few edge crossings. We
provide simulation results and show that on random graphs
the resulting topology is spanner and the average degree of
the subgraph is low. Due to the simplicity of the algorithm,
LTCA can easily be implemented in ad hoc sensor networks.

1. Introduction

A wireless sensor network is composed of a set of sensors
which communicate with one another over wireless links.
Two sensors communicate with each other directly if they are
within their transmission ranges otherwise they rely on other
sensors to establish an indirect connection between them.
Unlike wired networks, sensors in a wireless networks do not
rely on a pre-existing communication infrastructure. Due to
the limited on-board energy of sensors, algorithms for sen-
sors networks are designed to cleverly utilize this valuable
energy to lengthen the lifetime of such networks. In order
to reduce the power consumption of the network and ex-
tend its lifetime, topology control algorithms, in general, deal
with finding a suitable structure (strictly speaking, a span-
ning subgraph) of the given graph. This resulting subgraph

is expected to have certain features (e.g., connectedness, pla-
narity, sparseness, bounded-degree, etc.) which facilitate
routing in the network. Formally, we can model a connected
sensor network as a graph G = (V, E) where the node set
V represents the sensors deployed in the plane and the set of
edges E contains all links (u,v) where u, v € V can directly
communicate to each other, topology control algorithms fo-
cus on constructing a subgraph G’ = (V, Er¢), Ere C E.
For transmission, longer links in the network consume more
power than shorter links since the power spent on a link for
a transmission is directly proportional to at least the square
of the Euclidean length of that link. That is why, the gen-
eral approach of topology control algorithms is to remove
longer links and retain shorter links which are supposed to
save energy in the long run for routing and thus help extend
the lifetime of the network. However, the disadvantage of
this idea is that if too many longer links are eliminated then
some paths may be unacceptably longer in terms of the num-
ber of hops. This increases the probability of message loss
and takes longer to deliver messages. Care must be taken to
design topology control algorithms to meet this challenge.

For any topology control algorithm, the first and foremost
requirement is that the subgraph G’ be connected. It is ex-
pected that G’ be symmetric, that is, for any two nodes u
and v, w is a neighbor of v if and only if v is a neighbor
of u. Among other properties, G’ should be planar because
certain algorithms (for example, GPSR [2]) utilize the pla-
narity property of graphs for successful routing. Another
common requirement is that G’ be sparse; that is, the number
of edges should be in the order of the number of nodes. Spar-
sity of a graph helps maintain simple neighborhood for indi-
vidual nodes. This is because the smaller the neighborhood,
the faster the information processing among the nodes in the
neighborhood. One of the important properties of G’ is that
it should be a spanner. This means that the cost of a shortest
path between any two nodes in G’ must be at most ¢ times the
cost of the shortest path between the same two nodes in G.
There are a number of cost metrics used in sensor networks.
The most often used cost functions are the Euclidean length



of links, the Euclidean length raised to a predefined power,
etc. The cost of a path is determined to be the sum of the
costs of all the links of the path.

The rest of the paper is organized as follows. In Section
2 we review previous works on topology control in ad hoc
sensor networks. In Section 3 we provide definitions and as-
sumptions that are used throughout the paper. Our localized
topology control algorithm (LT'C A) is presented in Section
4. An average-case analysis of the network graphs is pre-
sented in Section 5. We conclude in Section 6.

2. Related work

Topology control in sensor networks has been studied ex-
tensively, see for example [1, 8, 9, 13, 15, 17, 10, 18] where
authors propose centralized schemes as well as distributed
algorithms. Since the sensors can be modeled as a set of
points in the plane, many algorithms use some of the fun-
damental results of computational geometry to produce nice
structures from the underlying graph. These include the min-
imum spanning tree (MST) [13], the Delaunay triangulation
[4], a generalized version of the Gabriel graph [14], the rela-
tive neighborhood graph (RNG) [7], and so on. A Delaunay
triangulation based method to select edges from the underly-
ing graph is described in [4]. Using some heuristics the al-
gorithm selects edges in such a way that they form a regular
and uniform structure and the degrees of nodes are upper-
boundeded by some constant. In [13], the authors present
a centralized method that constructs a spanning tree from
the given graph where the goal is to minimize the maxi-
mum power of the network. The maximum power of a sen-
sor is defined as the power required to transmit a message
to the furthest neighbor of that sensor. However, they also
present two distributed algorithms that adjust the transmis-
sion power of individual sensors to reduce the power con-
sumption. The problem with their method is that the al-
gorithms do not ensure connectivity in all cases. However,
these algorithms [4, 13] may not be effectively applicable
to power constrained sensor networks since neither the De-
launay triangulation nor the MST can be computed locally
and hence require all the sensors to transmit their positions
to the base stations for centralized solutions, which is ob-
viously power-consuming. The Gabriel graph (GG) based
solution described in [14] is quite reasonable for sensor net-
works since GG can be locally computed and this graph is
symmetric and energy-spanner. The first distributed topol-
ogy control algorithm which achieves many of the proper-
ties described above is called CBTC (Cone-based Topology
Control Algorithm) [18]. The subgraph obtained by the al-
gorithm is an energy-spanner, is planar and sparse and can
be distributedly (but not locally) computed. Since then there
have been a number of algorithms [5, 6, 16] which have pro-
posed local algorithms to obtain these properties.

A locally constructed spanning subgraph known as the

low-weighted modified relative neighborhood graph (RNG)
is introduced in [7]. The idea is based on a simple modifi-
cation of the original RNG where the author shows that the
structure obtained by this algorithm is connected and planar.
He shows that the sum of all the edge lengths (Euclidean dis-
tance) of the subgraph is within a constant factor of that of
the MST. This method is local, uses only O(n) messages to
build such structures and every node uses only its two-hop
neighbor information. Although the total edge length of this
structure is within a constant factor of that of the M ST, the
energy consumption using this structure is not within some
constant of the optimum. Wattenhofer and Zollinger [19]
propose a simple topology control algorithm, called XTC,
that is independent of sensors’ specific coordinates in the
plane but assumes the distances among neighboring sensors
are available. As all the previous algorithms utilize the fact
that the location of individual sensors is known, this is the
first location-independent algorithm to produce a connected,
planar, and degree-bounded topology. XTC also works on
general graphs since it is not location dependent. Although
the subgraph is not a spanner, the authors provide simulation
results and show that the spanner property holds on average-
graphs. The only disadvantage of that algorithm is that a
small error in the estimated distance information may gen-
erate a disconnected subgraph. That is, exact distance infor-
mation is crucial for their algorithms to produce a connected
structure. Later to circumvent them problem, Kevin and Sri-
ram [11] came up with two randomized algorithms which
are a generalized version of [19] to produce a topology that
is guaranteed to be connected. These algorithms are robust
to distance error in the sense that they withstand a certain
amount of error in estimating distances between neighbors.
Although the resulting subgraph is planar and connected, one
of the algorithms cannot guarantee to yield a bounded de-
gree of the resulting topology. In fact, a node in the network
topology can have a logarithmic bound on the degree in the
original graph. The other randomized algorithm guarantees
to produce a subgraph which is bounded degree with high
probability.

2.1. Failure due to imprecise location infor-
mation

Providing each sensor with a global positioning system
(GPS) for obtaining exact location information is expensive
and prohibitive when thousands of sensors are deployed in
the plane. Moreover, these devices consume energy for their
operation and thus deplete the valuable on-board energy of
sensors. Even the sophisticated GPSs are assumed to have
certain measurement errors which make the reported geo-
graphic locations of nodes only an approximations of the
true location. Algorithms that depend on precise geographic
locations may produce disconnected graphs. We show two
location-based algorithms used for topology control in sensor



networks which can produce disconnected subgraphs if ei-
ther the precise location information is not available or there
is small error in the distance information between neighbors.
As mentioned before, a very simple and robust algorithm
for topology control (XTC) which achieves a number of
properties of graphs has been introduced in [19]. When the
underlying graph is modeled as a unit disk graph (that is, a
link between two sensors exists if the Euclidean distance be-
tween them is at most one), the technique [19] assumes exact
distance information between neighbors. The algorithm finds
a topology relying only on these distances and the ids of the
sensors in the graph. However, the approach suffers from the
problems of disconnectedness and unbounded degree. For a
clear exposition we briefly present the algorithm in [19]. The
XTC protocol consists of three steps: (i) Neighbor ordering
and neighbor order exchange and (iii) Edge selection. A to-
tal order <, is defined and used by each node « to order its
neighbors
v <y w < (|(u,v)], min{id(u),id(v) }, max{id(u), id(v)})
< (|(u, w)], min{id(u), id(w)}, max{id(u), id(w)}) (1),

where |(u, v)| is the Euclidean distance between « and v.
The neighbor orders of the XTC algorithm are based on
the lexicographic order of these link weights. « drops v
from its neighborhood if there exists w such that w <, v
and w <, wu and thus u forms an updated neighborhood
by removing such v’s. Finally, the output of the protocol,
that is, the spanning subgraph G = (V, Er) consists of
the edge set, £+ where Er = {(u,v)|lv € N(u)} where
N (u) is the set of neighbors of w. It is shown in [19] that
G is symmetric, connected, planar and bounded degree if
the underlying graph is connected. As mentioned before,
the performance depends on the correct distances of the
neighbors and it is sensitive to small perturbances in the
distances which produce different orderings. In order for
the understanding, we adopt the example mentioned in [11]
which shows that XTC becomes disconnected with a small
error in the distances of the neighbors. For a unit disk graph
shown in Figure 1 (a), assume 0 < e < 1 — 1/1+/2 and the
lengths of the edges are |(a,b)| = |(d,¢)] = (1 —€)/2 and
|(a,c)] = |(b,d)| = 1/2. The neighborhood orderings <
according to (1) are:

d=<sb<sc,c<pa=<pd,b=<.d=<.a,a<g5c<4b.
However, if b and ¢ estimate their distances (|(b, a)| and
|(c, d)], respectively) incorrectly,i.e., | (b,a)| = (1+¢€)/2and
|(e,d)| = (1 — €)/2, then we obtain the following orderings:
d=<sb=<gcc<pd=<pa,b=<.a=<.d,a<gc=<gb.
With this new orderings, when the XTC algorithm is ex-

ecuted the subgraph becomes disconnected as shown in Fig-
ure 1 (b). In the same paper [11], the authors also show in-

stances where nodes in G can have unbounded degree if
some nodes incorrectly estimate distance between them. For
details, the reader is referred to [11].

Here we show that due to a small error in the geographic
position of a node, GG can produce disconnected subgraphs.
Consider the Figure 1 (c). Suppose the exact positions of
nodes a and b are known and « incorrectly estimates the lo-
cation of ¢ to be ¢’. The absolute deviation can be made
smaller as it is evident from the figure. Assume edges (a, b)
and (b, ¢) belong to the given graph. According to the defini-
tion of GG, an edge between two nodes a and b exists if the
circle with the diameter ab does not contain any other node
inside the circle. However, due to the inaccurate location in-
formation of node ¢, the edge (a, b) does not exist anymore
in the GG. But it could exist if ¢’s position were precisely
determined. Thus the graph is disconnected and cannot be
used for useful purposes, particularly routing.

b b

Figure 1. XTC produces a disconnected graph
(b) with a small error in the distances among
nodes in the unit disk graph in (a). (c) If a in-
correctly estimates ¢'s actual position and as-
sumes it is inside the circle as ¢/ then GG can
be disconnected because the edge (a,b) gets
removed.

3. Preliminaries

A undirected graph consists of a finite set of nodes and a
set of edges, where each edge connects a pair of nodes. It
is assumed that the graph is connected, that is, there is at
least one path between any two nodes. A geometric graph is
a graph where the nodes are represented by a set of points
in the plane and the edges are line segments joining the
nodes. We model a sensor network (sensors are deployed
in the plane) by an undirected connected geometric graph
G = (V, E) where V denotes the set of sensors and the edge
set E represents all links (u,v) € E between u,v € V if u



and v can communicate directly to each other. We define the
neighbor set N (u) of uw as N(u) = {v|(u,v) € E} which
consists of nodes one hop away from u. A unit disk graph is
a geometric graph containing an edge (u, v) if the Euclidean
distance between « and v is at most one. Throughout, we
use (u, v) to represent an undirected edge between u and v.
Being equipped with a unique id, each node u (the id of u
denoted id(u)) contains an omnidirectional antenna which
is assumed to send identical power in every direction in the
plane. The cost of a link (u,v) in the network is defined
to be the amount of power required for sensor u to send
a message to sensor v Or vice versa assuming symmetric
links. Thus the cost of (u,v) is |(u,v)| for the Euclidean
metric and |(u, v)|* for the energy metric where o > 2. A
path pg(s,t) = (s = uy,ug,---,t = ug) in G from node
s to node ¢ is a sequence of edges (u;u;4+1) and the cost of
pa(s,t)) is the sum of the costs of all the edges in pi(s, t)).
We consider the spanner ratio of a graph G’ as:

t > [pa(u,v)°|/Ipa(u, v)°],

where ¢ is a constant called the spanner ratio and |pa (u, v)€|,
e > 1is the cost of a shortest path between « and v in G in
some metric. ¢ is called the Euclidean spanner ratio (resp.
energy-spanner ratio) for the Euclidean metric (resp. the en-
ergy metric).

4. L ocalized topology control algorithm (LTCA)

In this section, we present a deterministic localized topol-
ogy control algorithm (LT'C'A) for wireless sensor networks.
The assumption is that the sensors are deployed in the two di-
mensional plane and they do not have any information about
their position or distances to their neighbors. First we infor-
mally describe our algorithm. By transmitting to the max-
imum transmission power, sensors explore their neighbors,
that is, individual sensors learn the corresponding number of
neighbors and the ids of these neighbors. Through sending
"hello” messages, sensors transmit their ids and also receive
ids from their neighbors in the first two steps of LT'C A.
As the algorithm is executed at each node w, u starts re-
moving some of the neighbors from its neighbor list in or-
der to build a sparse graph in the next step. It checks ev-
ery pair of nodes k,m € N(u) to see whether they are
connected. If they are not connected or if « has only one
neighbor, then u retains the neighbors(s) and no removal
of neighbors from N (u) takes place. If they are neighbors
to each other, i.e., (k,m) € E, then u removes none if
id(u) = min{id(k), id(m),id(u)}. However, if (k,m) € E
andid(u) # min{id(k), id(m), id(u)}, then u removes from
N (u) the node that has the max{id(k), id(m)}. Removal of
some neighbor & from N (u) means the corresponding link
(u, k) is eliminated from the network. Thus w builds an up-
dated neighbor list N’ (u) C N (u) with the remaining neigh-

bors.
Our topology control algorithm (L7°'C A) which is exe-
cuted at each node u has the following steps:

Input: For any general connected graph, G = (V, E).
Output: A Spanning subgraph, Gr¢ = (V, Erc C E).

i) Each node v broadcasts its id(u) to all its neighbors
vE N(u).

ii) For each neighbor v € N (u), u receives their ids, id(v).

iii) For a node m € N(u) if there exists some node
k € N(u) such that id(k) < id(m) and id(k) < id(u)
then m is dropped from «’s list. Otherwise no neighbors
are deleted from N (u). The updated neighbor set of w is
denoted as N'(u) C N(u).

After the execution of LT'C'A, we find a subgraph Gr¢ =
(V, Erc) where Epe = {(u,v)|Vu : v € N'(u),u € V}.

In the following subsection, we provide an analysis of the
graph G¢ generated by LT C A.

4.1. Analysis of LTCA

The foremost property of any topology control algorithm
is that the resulting graph must be connected, i.e., there must
be at least one path between any two nodes in the sub-
graph. In this section, we show that the resulting graph
Gre = (V, Erc) generated by LT C A is connected. Un-
less otherwise mentioned, the given graph G = (V, E) is
assumed to be a general graph and not necessarily a unit disk
graph.

Theorem 4.1 Given a geometric graph G = (V, E), two
nodes v and v are connectedin Gr¢ = (V, Erc) if they are
connected in G.

Proof Suppose there are two nodes « and v connected in
G but not connected in G7¢. First assume that « are v are
neighbors in G, that is, (u,v) € Ein G. Ifv € N'(u) and
there is no m € N’'(u) such that m € N’(v) then u and v
forms a clique of size two and the algorithm does not discard
v from N (u). So (u,v) € Epc. If this is not the case then v
is connected to at least one neighbor m € N’(u) of » and so
the neighborhood of « forms a clique of at least three nodes.
Consider such a clique C of size p. So we can have p — 2
cliques of three nodes where « and v are fixed. According
to the construction, there are two ways « and v not to be
neighborsin Gr¢, namely id(u) # min{id(k) : k € C'} and
id(v) # min{id(k) : k € C}. Itis obvious that if any of  or
v has the smallest id among the nodes in C' then the adjacent
edges to the smallest id node are not removed (removing u



from v’s neighbor list implies removing the corresponding
edge, (u,v)). Thus if w or v has the minimum id in C' then
we are done. Suppose none of them has the minimum id.
Then it is easy to see that we could reach v from w via the
minimum id node in C. So if v is a neighbor of » in G and
u forms a clique C with v, then v is at most two hops away
fromu in Grc.

Suppose there is no edge (u,v) in G but there is a path
between them in G since G is connected. We will show that
between v and v there exists a path in Gr¢. We can prove
this part through induction. Suppose we have a path 7 =
(u = mi,ma,ms, -, my_1) from u to some node m;_1
in Gr¢. The base case which states that w = m can reach
v = Mg Via a path of at most two hops, is already established.
We need to consider whether there is a path between m;_;
and m,; where m; = v. We distinguish between two cases:

i) The node m, is such that there is no neighbor ¢’ €
N'(my—1) such that ¢’ € N’(m;). Then m, is not removed
from m;_1’s neighbor list because m;_; and m; form a
clique of size two and hence they are directly connected to
my—1.

ii) If m, is such that there are some neighbors ¢’ €
N'(my—1) such that ¢ € N’(m;). Then it forms a clique
of size at least three and we can reach m; from m;_; with at
most two hops.

Hence, all pairs of nodes are connected in Gre. |}

In the following, we prove that the edges in Gr¢ are sym-
metric, that is, if node « includes v as its neighbor in Gr¢,
then v includes u € N’(v). Having the subgraph symmetric
is an important characteristic, because asymmetric commu-
nication graphs make simple assumptions complicated and
are generally hard to realize in practical situations as investi-
gated in [12].

Theorem 4.2 Given a geometric graph G = (V, E), node
includes v in N'(u) if and only if v includes w in N'(v) in
GTC-

Proof First it is obvious from the last step of LT C A that
for any clique C of size |C| € {2, 3} in the neighborhood of
u, if id(u) = min{id(v) : v € C} then the edge (u,v) is
never removed because forany k € C, k # v id(k) > id(u)
(if such % exists). Now for the sake of contradiction assume
w includes v in N’(u) but v does not include u in N’(v).
As mentioned above, if v and v form a clique of size two
then we are done because according to step (iii) of LT'C A,
neither of them removes the other. If this is not the situa-
tion, then node w includes v in N'(u) since for any clique
C of three nodes u, v,k € C, id(k) > min{id(u),id(v)}.
Without loss of generality, assume id(v) > id(u), then
id(k) > id(u). Now consider the same neighborhood and
the clique C around v. Node v did not include u in N'(v)
since id(u) > min{id(v), id(k)} which is a contradiction be-
cause id(u) = min{id(v),id(k),id(u)}. Therefore, v must
include v in N'(v).

We show that the spanning subgraph generated by LT'C' A
contains few intersecting edges. We show that, in general,
all the intersections of a clique of any size can be eliminated.
This fact is obvious from the following observation. In a
clique C of size p, without loss of generality, let the node
with the smallest id be . According to LT'C' A (step (iii)),
any two nodes w, z € C, will remove the edge between them
since they both have ids greater than the id of w. This is true
for any two nodes in C' —{u}. Thus all the nodes in C'—w are
directly connected to « and there will be no edge between any
two nodes in C' — {u}. Therefore, in u’s neighborhood, we
have reduced the number of intersections from O(p?) to 0.
However, some nodes in ¢ € C'—{u} which are connected to
nodes d € V —C—{u} can intersect some edges (a, b) where
a,b € C. Elimination of such intersections is impossible
with only connectivity information and no geographic loca-
tion information or even lengths of edges among neighbors.
Situations like the one shown in Figure 2 where the graphs
2(b) and 2(c) are indistinguishable from each other (labels
indicate the corresponding ids of the nodes) and hence cross-
ings cannot be removed with only connectivity information.
However, as illustrated in Figure 2(a) (right) we can obtain
a planar subgraph from the clique shown of Figure 2(a)(left)
assuming u has the lowest id in the clique. Thus we have the
following lemma:

Lemma 4.3 Given a geometric graph G = (V, E), aclique
C of anysizeinthesubgraph Gr¢ = (V, Er¢) generated by
LTC A induces planarity in C' unless there are edges (¢, d),
c € Candd € V — C crossing some edges adjacent to the
nodesin C.

Theorem 4.4 Given a geometric graph G = (V, E), any
cycle in the the subgraph Gr¢ = (V, Er¢) generated by
LTC A haslength at least 4.

Proof For the sake of contradiction, assume there is a cy-
cle C through three nodes u,v and w, that is, edges (u,v),
(u,w) and (v, w) are in Gro = (V, Epc). Since the ids of
the nodes are unique there will be a node in the cycle which
has the smallest id of the three nodes in C. The algorithm
removes the edge between the two nodes which have larger
ids among the nodes in C. So the edge with the two larger
ids will not be in C' which contradicts to the assumption that
there is a cycle of length 3. ||

5. Analysisfor random graphs

In this section, we study and provide experimental results
regarding the sparseness and spanner properties of the topol-
ogy Gr¢. For simulation, we assume the underlying graph is
a unit disk graph in which the spanner and sparseness prop-
erties of Gr¢ are analyzed. For this purpose, we generate
unit disk graphs by placing nodes uniformly and randomly



R

@

w
u
(M
2 3
(b)

Figure 2. Situations like the one shown in (b)
and (c) are indistinguishable from each other
and hence crossings cannot be removed with
only connectivity information: labels indicate
the corresponding ids of the nodes. As illus-
trated in (a) (right) we can obtain a planar sub-
graph from a clique (left), assuming « has the
lowest id in the clique.
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on a given fixed square field and demonstrate that the span-
ner property for Gr¢ holds on these average graphs. For
the sparseness property of Gr¢, we show that the average
degree of the nodes of this graph is low for each randomly
generated unit disk graph, although the maximum degree of
G is not bounded. This low degree indicates that Gr¢ is
sparse in the average-case. In Figure 3 we show the unit disk
graph, the Gabriel graph and Gr¢ of 600 nodes placed ran-
domly and uniformly where the minimum distance between
any two nodes is at least 0.4 unit.

To evaluate the different properties of Gr¢, we compare
it with the Gabriel graph (GG). An edge (u, v) between two
nodes » and v in the GG exists if the circle with (u,v) as
the diameter does not contain any other nodes inside it. We
choose GG since it is one of the most prominent topology
control structures which is connected, planar, energy-spanner
and can be locally computed. Thus it is a good candidate for
comparison, specially with respect to energy-spanner prop-
erty. Although GG is not spanner in the Euclidean metric
(the cost of an edge (u, v) is the Euclidean distance |(u, v)|),
it is an optimal energy-spanner when the metric is an energy
metric (the cost of an edge (u, v) is some power of distance
|(u,v)|™ where « is in between 2 and 6).

5.1. Sparseness and spanner properties of
Gre

First we discuss the spanner property of Gr¢. In order to
study the spanner property of Gp¢ on randomly generated
graphs, we consider both the Euclidean spanner ratio and the
energy-spanner ratio of Gr¢ and GG:

t > |parc (u,0)|*/Ipa(u, )|

As mentioned before, ¢ is a constant called the spanner ra-
tio (Euclidean spanner ratio for Euclidean metric and energy-
spanner ratio for energy metric) |pg(u,v)]| is the cost of a
shortest path between v and v in G in some metricand e > 1
and the cost of a path under some metric is the sum of the
costs of all the edges between v and v. The smaller the value
of ¢, the better the spanner a subgraph is.

Network density, i.e., the number of nodes in a unit disk is
an important parameter which influences many of the prop-
erties [3] including the spanner property of the average case
network graphs. We consider a number of different den-
sity values starting from a low density where there are 4
nodes/unit disk, 6 nodes/unit disk, 12 nodes/unit disk, 25
nodes/unit disk. We consider both the Euclidean and energy-
spanner with these different network densities for GG and
Grc. For each network density mentioned above, we ran-
domly generate 1000 different network graphs of the same
size and for each such graph we randomly choose a pair
of nodes to compute the Euclidean and the energy-spanner
ratios in both GG and Gr¢. Then we compute the maxi-
mum and the average spanner ratios of all the 1000 graphs
for each network density. Figure 4(left) depicts the results of
the spanner ratios of GG and Gp¢ with respect to the Eu-
clidean metrics. The solid and the dashed lines represent the
spanner ratios of GG and Gr¢ respectively. Mean values
are plotted in black and max values in gray. It can be seen
from the figure that GG has a mean spanner ratio which is
slightly above 1.1 and the maximum value is around 1.35.
In the same Euclidean metric Gr¢ has a steady mean value
around 1.2. However, the maximum value is less stable than
the GG but stays below 7. We observe that the lower the
network density the better the spanner ratio in Gp¢.

The energy-spanner ratio is shown in Figure 4 (right)
where the solid and dashed lines denote the energy-spanner
ratios for GG and Gr¢ respectively. Since GG contains an
energy-minimal path between any pair of nodes its energy-
spanner ratio is exactly one (mean and max values are the
same). Gr¢ has a maximum energy-spanner ratio as high as
13, but it maintains an average energy-spanner ratio below
1.5 in all considered network densities. In total, we ran our
simulations on 10000 randomly generated graphs with dif-
ferent density values to come up with the above performance
results.

We also perform simulations to study the average-case



behavior of node degree in both GG and Grc. Figure 5
shows that the Gr¢ has a better average degree than that of
GG. For each of the random graphs with different number of
nodes the average degree of GG is always high (at least 3.5
and above) whereas the average degree of Gr¢ is always be-
low 3.4. Although they are not stable, the gap between them
is significant.

4.4

42 - ,

w
L
T T

~

w
)

w
\

Average Degree
w w
N S
|
|
/
!

N
©
~

N
o

100 200 300 400 500 600 700 800 900
Number of nodes

Figure 5. Average degree of GG and Gr¢ in
random graphs of different sizes. The dashed
and the solid lines denote the sparseness of
GG and Grc¢ respectively. As can be seen
from the figure, the average degree of Gr¢ is
always smaller than that of GG in all the in-
stances of different sizes of network graphs.

6. Conclusion

In this paper, we have presented a simple algorithm
LTCA for topology control in wireless sensor networks
which has certain properties. This one-hop localized algo-
rithm is very simple, requires the ids of the neighbors and
assumes no geometric information at all. Each node commu-
nicates with its neighbors only twice for sending and receiv-
ing ids and the algorithm terminates after two rounds. Unlike
most other techniques, LT'C A does not assume the graph to
be a unit disk graph. In fact it works for all connected graphs
since it does not use any geometric information. One funda-
mental property is that it always produces a connected span-
ning subgraph from the underlying graph. This property is
robust because many existing well-known topology control
protocols (such as the Gabriel graph, the Relative neighbor-
hood graph, the XTC-algorithm) fail to produce connected
subgraph if the exact location information of the nodes is
not known or there are errors in the estimation of distances
between nodes. In practical situations, providing precise lo-

cation information is expensive and even challenging and a
slight error in the geographic location of nodes results in a
disconnected subgraph. We show that the subgraph gener-
ated by LT'C A is symmetric and has few crossings. We pro-
vide extensive simulation results for the sparseness and span-
ner property in random network graphs. Comparing with the
well-known topology, Gabriel graph, it is shown that we can
obtain good results in terms of sparseness and spanner ratios
in average graphs.

References

(1]

(2]
(3]
(4]
(9]

(6]

(7]
(8]

(9]
(10]

(11]
(12]

(13]

(14]

(19]
(16]

(17]

(18]

(19]

M. Burkhart, P. Rickenbach, R. Wattenhofer, and
A. Zollinger. Does topology control reduce interference. In
Proc. Mobihoc, 2004.

B. Carp. Geographic routing for sensor networks. Ph.D the-
sis, Harvard University, 2000.

O. Doussg, P. Thiran, and M. Hasler. Connectivity in ad-hoc
and hybrid networks. In Proc. Infocom, 2002.

L. Hu. Topoogy control for multihop packet radio networks.
|EEE Transaction on Communication, 10(41), October 1993.
L. Jia, R. Rgjaraman, and C. Scheidler. On loca agorithms
for topology control and routing in ad hoc networks. In Proc.
SPAA, 2003.

L. Li, H. Halpern, V. Bahl, Y. Wang, and R. Wattenhofer.
Analysis of a cone-based distributed topology control algo-
rithms for wirel ess multihop networks. In Proc. PODC, 2001.
X. Li. Approximate mst for udg locally. In Proc. COCOON,
2003.

X. Li, G. Calinescu, and P. Wan. Distributed construction of
planar spanner and routing for ad hoc wireless networks. In
Proc. Infocom, 3, 2002.

X. Li, P.Wan, Y. Yang, and O. Frieder. Sparse power effi cient
topology for wireless networks. In Proc. ICCC, 2001.

X. Li, P Wan, Y. Yang, and O. Frieder. Localized low weight
graph and its applications in wireless ad hoc networks. In
Proc. Infocom, 2004.

K. Lillisand S. Pemmaraju. Topology control with limited
geometric information. In Proc. OPODI S, 2005.

R. Prakash. Undiectional links prove costly in wireless ad-
hoc networks. In Proc. DIAL-M, 1999.

R. Ramanathan and R. Rosales-Hain. Topology control of
multihop wirel ess networks using transmit power adjustment.
In Proc. Infocom, 2000.

V. Rodoplu and T. Meng. Minimum energy mobile wireless
networks. 1EEE J. Selected Areas in Communication, 8(17),
August 1999.

Y. Wang and X. Li. Geometric spanners for wireless ad hoc
networks. In Proc. ICDCS, 2002.

Y. Wang and X. Li. Localized construction of bounded degree
planar spanner. In Proc. DIALM-POMC, 2003.

Y. Wang, X. Li, and O. Frieder. Distributed spanner with
bounded degree for wireless networks. International Journal

of Computer Foundations of Computer Science, 2(14), 2003.

R. Wattenhofer, L. Li, P. Bahl, and Y. Wang. Distributed
topology control for power effi cient operation in multihop
wireless networks. In Proc. Infocom, 2001.

R. Wattenhofer and A. Zollinger. Xtc: A practical topology
control algorithm for ad hoc networks. In Proc. WMAN, 2004.



N SR
X

SNA

Ve ‘ N
plite: VK gu’

TRVAV.S A"A ] ‘AlngAg‘ '4
Q) o g i e < '4‘%!:“4
% 7 NS

AN
=y
e

' Y
SRR o
’A‘V‘E"“ AVAVAVA

Figure 3. The unit disk graph (left), the Gabriel graph (center) and Gr¢ of 600 nodes placed randomly
and uniformly are shown where the minimum distance between any two nodes is at least 0.4 unit.
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Figure 4. Spanner ratios of GG and Gr¢ w.r.t the Euclidean metric (left). The solid (resp. the dashed)
line represents the spanner ratio of GG (resp. Gr¢). Mean values are plotted in black and max values
in gray. Spanner ratios of GG and Gr¢ w.r.t the energy metric is shown (right). The solid (resp. the
dashed) line represents the energy-spanner ratio of GG (resp. Gr¢). Mean values are plotted in black
and max values in gray. Since GG contains an energy-minimal path between any pair of nodes its
energy-spanner ratio is one (as shown in solid line). So its max and mean values coincide.



