
Bidirectional typechecking

Joshua Dunfield

November 9, 2012

(These are lecture notes from McGill University COMP 302, March 2010, very slightly revised

November 2012.)

1 Introduction

A claimed advantage of SML and other languages with type systems in the Hindley-Milner tradition

is type inference: one doesn’t need to declare types, the compiler will figure them out. Actually, one

does need to write types in certain situations, such as module interfaces and some uses of refer-

ences. Moreover, there are drawbacks to not having to put in type annotations; programmers are

deprived of a form of high-grade documentation (“high-grade” because it is formal and machine-

checked, unlike English comments which are vague when not outright wrong). There’s also the

minor problem that more advanced, precise type systems—those that can statically check array

accesses, data structure invariants, etc., etc.—require (at least some) annotations, as type inference

is undecidable! Last but not least, without type annotations, there is no record of the programmer’s

intent except the declarations themselves, and so type error messages often fail to highlight the

genuine source of the error.

At the other extreme, we could require a type annotation on every variable declaration (as is

required in many mainstream languages). This is quite tedious, since the type must be written even

when completely obvious.

The technique of bidirectional typechecking lies between the extremes of type inference and

mainstream typechecking. Type annotations are required for some expressions, and therefore on

some declarations, particularly function declarations where the documentation aspect of type an-

notations is especially important. Unlike type inference, which works fine for type systems roughly

as powerful as SML’s but then “flames out”, bidirectional typechecking is a good foundation for

powerful, precise type systems that can check more program properties (such as, again, array ac-

cesses). It seems only a matter of time before it is widely used in practice, though as with so much

of academic programming languages research, the time involved may well be measured in decades.

2 Two directions of information

The basic idea is very simple. Instead of persisting in trying to figure out the type of an expression

on its own (knowing only the types of variables, and maybe not even all of those), as type inference

does, we alternate between figuring out or synthesizing types and checking expressions against types

already known.

In terms of judgments, bidirectionality replaces the standard typing judgment

Γ ⊢ e : τ “under assumptions in the context Γ , the expression e has type τ”

1



with two different judgments:

Γ ⊢ e ⇒ τ read “under assumptions in Γ , the expression e synthesizes type τ”

Γ ⊢ e ⇐ τ read “under assumptions in Γ , the expression e checks against type τ”

It looks like the only difference is in the direction of the arrow. . . The real difference is in which

parts of the judgment are inputs and which are outputs. When we want to derive Γ ⊢ e ⇒ τ, we

only know Γ and e: the point is to figure out the type τ from e, as in type inference. But when

deriving Γ ⊢ e ⇐ τ, we already know τ, and just need to make sure that e does conform to (check

against) the type τ.

3 Typing rules

In formulating the rules for deriving bidirectional typing judgments, we are guided by two obser-

vations:

(1) we can’t use information we don’t have;

(2) we should try to use information we do have.

The second observation leads to our first typing rule, for variables. First, we should define (as

a BNF grammar) the form of Γ , which represents contexts (sometimes called, confusingly, environ-

ments) of typing assumptions.

Γ ::= · Empty context

| Γ, x:τ Context Γ plus the assumption that variable x is of type τ

And now, the rule for typing variables. It says simply that if we know x is supposed to have type

τ, because x:τ is in the context of assumptions, then x synthesizes type τ.

Γ1, x:τ, Γ2 ⊢ x ⇒ τ
T-VAR

3.1 Functions

Now let’s look at functions. If we apply a function, we must have that function. But if we create a

function (by writing fn x => e), we don’t (yet) have the function. So the rule for applications e1 e2
can reasonably expect the function type to be synthesized from the function e1. On the other hand,

in the rule for fn x => e we don’t yet know what the domain or range of the function should be, so

(following observation (1)) we check fn x => e against a type that is (somehow) already known.

Γ ⊢ e1 ⇒ τ -> τ ′ Γ ⊢ e2 ⇐ τ

Γ ⊢ e1 e2 ⇒ τ ′
T-APP

Γ, x:τ ⊢ e ⇐ τ ′

Γ ⊢ (fn x => e) ⇐ (τ -> τ ′)
T-FN

These rules work well in most situations. When applying a function, if the function being applied

is just a variable, variables synthesize their type (rule T-VAR) so we can indeed synthesize the type

of the function e1 in T-APP. Or, if the function being applied is itself a function application, as in

(twice f) x

2



(where twice, which applies its first argument to its second argument twice, has type (int -> int) ->

int -> int) that also synthesizes its type (rule T-APP, applied to twice f), so again we can successfully

apply T-APP. We can also successfully type

(twice (fn y => y ∗ y)) x

because in T-APP, we check the argument e2 = fn y => y ∗ y against the domain τ = int -> int,

satisfiying T-FN which checks against a known type. Here is the derivation, where

Γ = twice:((int -> int) -> int -> int), x:int

Γ ⊢ twice ⇒ ((int -> int) -> int -> int)
T-VAR

...
Γ, y:int ⊢ y ∗ y ⇒ int

Γ, y:int ⊢ y ∗ y ⇐ int
T-SUB

Γ ⊢ fn y => y ∗ y ⇐ (int -> int)
T-FN

Γ ⊢ twice (fn y => y ∗ y) ⇒ (int -> int)
T-APP

Γ ⊢ x ⇒ int
T-VAR

Γ ⊢ (twice (fn y => y ∗ y)) x ⇒ int
T-APP

These rules don’t let us immediately apply a function; for example,

(fn y => y ∗ y) 5

won’t typecheck because T-APP demands that the function synthesize, and T-FN (our only rule for

fn y => y ∗ y) doesn’t synthesize:

· ⊢ fn y => y ∗ y 6⇒ . . .

· ⊢ (fn y => y ∗ y) 5 6⇒
T-APP

3.2 “Subsumption”

We actually need another rule for the example (twice f) x. When we check f against int -> int,

we need to derive the judgment f ⇐ int -> int. But our only rule for variables is T-VAR, which

(assuming f : int -> int) derives f ⇒ int -> int. So we need a rule that lets us show that an

expression checks against a type, provided the expression synthesizes the same type. For reasons

that will be made clear when we discuss subtyping, this rule is called subsumption and we write it

with an explicit comparison between τ, the type checked against, and the synthesized type τ ′.

Γ ⊢ e ⇒ τ ′ τ = τ ′

Γ ⊢ e ⇐ τ
T-SUB

3.3 Recursive expressions and typing annotations

Γ, f:τ ⊢ e ⇐ τ
Γ ⊢ (rec f : τ => e) ⇒ τ

T-REC
Γ ⊢ e ⇐ τ

Γ ⊢ (e : τ) ⇒ τ
T-ANNO

Annotations allow us to turn expressions that don’t synthesize a type into expressions that do,

by writing the type ourselves. Recall the expression (fn y => y ∗ y) 5, which doesn’t synthesize a

3



type because fn y => y ∗y doesn’t synthesize. Add an annotation and we can readily synthesize the

expression’s type:

y:int ⊢ y ∗ y ⇐ int

· ⊢ fn y => y ∗ y ⇐ int -> int
T-FN

· ⊢ (fn y => y ∗ y : int -> int) ⇒ int -> int
T-ANNO

· ⊢ 5 ⇒ int
T-NUM

· ⊢ 5 ⇐ int
T-SUB

· ⊢ ((fn y => y ∗ y) : int -> int) 5 ⇒ int
T-APP

3.4 Primitive operations

Here we assume a judgment op : τ -> τ ′ where, for example, < : int ∗ int -> bool.

The typing rules work similarly to the rules for T-APP. (In fact, instead of having special rules

for these operations, we could simply say they are part of a predefined context1 containing, for

example, < : (int ∗ int -> bool), and then use T-APP. However, that glosses over the way the binary

operations are written: as infix operators.)

op : τ1 ∗ τ2 -> τ Γ ⊢ e1 ⇐ τ1 Γ ⊢ e2 ⇐ τ2
Γ ⊢ e1 op e2 ⇒ τ

T-BINARY-PRIMOP

op : τ1 -> τ Γ ⊢ e1 ⇐ τ1
Γ ⊢ op e1 ⇒ τ

T-UNARY-PRIMOP

3.5 Booleans

Γ ⊢ true ⇒ bool
T-TRUE

Γ ⊢ false ⇒ bool
T-FALSE

Γ ⊢ e ⇐ bool Γ ⊢ e1 ⇐ τ Γ ⊢ e2 ⇐ τ

Γ ⊢ if e then e1 else e2 ⇐ τ
T-IF

3.6 Let-expressions and declarations

In the expression

let val x = fact 5 in (x, x) end

we should be able to figure out (assuming our context Γ contains the typing fact : int -> int) that x

has type int and therefore (x, x) has type int ∗ int. That is, the declaration

val x = fact 5

should produce the assumption x:int, which we then use to synthesize a type for the body (x, x).

The judgment for declarations will be

Γ ⊢ decs ⇒ Γ ′

read “under assumptions Γ , the declarations decs produce the assumptions Γ ′”. For the example

above, we would derive

Γ ⊢ (val x = fact 5) ⇒ (x:int)

1Predefined contexts go by many names: predefined environment, standard environment, standard basis, prelude,

built-in environment, . . .

4



The rules T-LET and T-LET-SYN use the judgment form for declarations in their premises. Here’s part

of the derivation for the above example.

Γ ⊢ (fact 5) ⇒ int

Γ ⊢ (val x = fact 5) ⇒ (x:int)
T-BY-VAL

Γ, x:int ⊢ (x, x) ⇒ int ∗ int

Γ ⊢ (let val x = fact 5 in (x, x) end) ⇒ (int ∗ int)
T-LET-SYN

Notice how the (x:int) produced from the declaration (val x = fact 5) is added to the assumptions

when we synthesize a type for (x, x). Also notice that the x:int is not somehow added to the

conclusion of T-LET-SYN—because x is not in scope outside the let-expression.

Γ ⊢ decs ⇒ Γ ′ Γ, Γ ′ ⊢ e ⇐ τ
Γ ⊢ let decs in e end ⇐ τ

T-LET
Γ ⊢ decs ⇒ Γ ′ Γ, Γ ′ ⊢ e ⇒ τ

Γ ⊢ let decs in e end ⇒ τ
T-LET-SYN

Γ ⊢ dec1 ⇒ Γ1 Γ, Γ1 ⊢ decs ⇒ Γ2
Γ ⊢ dec1 decs ⇒ Γ1, Γ2

T-DECS

Γ ⊢ e ⇒ τ
Γ ⊢ (val x = e) ⇒ (x : τ)

T-BY-VAL
Γ ⊢ e ⇒ τ

Γ ⊢ (name x = e) ⇒ (x : τ)
T-BY-NAME

Γ ⊢ e ⇒ (τ1 ∗ · · · ∗ τn)

Γ ⊢ (val (x1, . . . , xn) = e) ⇒ (x1 : τ1), . . . , (xn : τn)
T-BY-VAL-TUPLE

5



4 Summary of typing rules

Rules for expressions e

Γ1, x:τ, Γ2 ⊢ x ⇒ τ
T-VAR

Γ ⊢ e1 ⇒ τ -> τ ′ Γ ⊢ e2 ⇐ τ

Γ ⊢ e1 e2 ⇒ τ ′
T-APP

Γ, x:τ ⊢ e ⇐ τ ′

Γ ⊢ (fn x => e) ⇐ (τ -> τ ′)
T-FN

Γ ⊢ e1 ⇐ τ1 · · · Γ ⊢ en ⇐ τn
Γ ⊢ (e1, . . . , en) ⇐ (τ1 ∗ · · · ∗ τn)

T-TUPLE
Γ ⊢ e1 ⇒ τ1 · · · Γ ⊢ en ⇒ τn

Γ ⊢ (e1, . . . , en) ⇒ (τ1 ∗ · · · ∗ τn)
T-TUPLE-SYN

op : τ1 ∗ τ2 -> τ Γ ⊢ e1 ⇐ τ1 Γ ⊢ e2 ⇐ τ2
Γ ⊢ e1 op e2 ⇒ τ

T-BINARY-PRIMOP

· ⊢ n ⇒ int
T-NUM

op : τ1 -> τ Γ ⊢ e1 ⇐ τ1
Γ ⊢ op e1 ⇒ τ

T-UNARY-PRIMOP

Γ ⊢ true ⇒ bool
T-TRUE

Γ ⊢ false ⇒ bool
T-FALSE

Γ ⊢ e ⇐ bool Γ ⊢ e1 ⇐ τ Γ ⊢ e2 ⇐ τ

Γ ⊢ if e then e1 else e2 ⇐ τ
T-IF

Γ, f:τ ⊢ e ⇐ τ
Γ ⊢ (rec f : τ => e) ⇒ τ

T-REC
Γ ⊢ e ⇐ τ

Γ ⊢ (e : τ) ⇒ τ
T-ANNO

Γ ⊢ e ⇒ τ ′ τ = τ ′

Γ ⊢ e ⇐ τ
T-SUB

Γ ⊢ decs ⇒ Γ ′ Γ, Γ ′ ⊢ e ⇐ τ
Γ ⊢ let decs in e end ⇐ τ

T-LET
Γ ⊢ decs ⇒ Γ ′ Γ, Γ ′ ⊢ e ⇒ τ

Γ ⊢ let decs in e end ⇒ τ
T-LET-SYN

Rules for declarations

Γ ⊢ dec1 ⇒ Γ1 Γ, Γ1 ⊢ decs ⇒ Γ2
Γ ⊢ dec1 decs ⇒ Γ1, Γ2

T-DECS

Γ ⊢ e ⇒ τ
Γ ⊢ (val x = e) ⇒ (x : τ)

T-BY-VAL
Γ ⊢ e ⇒ τ

Γ ⊢ (name x = e) ⇒ (x : τ)
T-BY-NAME

Γ ⊢ e ⇒ (τ1 ∗ · · · ∗ τn)

Γ ⊢ (val (x1, . . . , xn) = e) ⇒ (x1 : τ1), . . . , (xn : τn)
T-BY-VAL-TUPLE

6


