
Lemmas and Proofs for
“Complete and Easy Bidirectional Typechecking

for Higher-Rank Polymorphism”

Jana Dunfield Neelakantan R. Krishnaswami

June 2013∗

Contents

A Declarative Subtyping 6
A.1 Properties of Well-Formedness . 6

1 Proposition (Weakening) . 6
2 Proposition (Substitution) . 6

A.2 Reflexivity . 6
3 Lemma (Reflexivity of Declarative Subtyping) . 6

A.3 Subtyping Implies Well-Formedness . 6
4 Lemma (Well-Formedness) . 6

A.4 Substitution . 6
5 Lemma (Substitution) . 6

A.5 Transitivity . 6
6 Lemma (Transitivity of Declarative Subtyping) . 6

A.6 Invertibility of ≤∀R . 6
7 Lemma (Invertibility) . 6

A.7 Non-Circularity and Equality . 6
1 Definition (Subterm Occurrence) . 6
8 Lemma (Occurrence) . 6
9 Lemma (Monotype Equality) . 6
2 Definition (Contextual Size) . 6

B Type Assignment 7
10 Lemma (Well-Formedness) . 7
1 Theorem (Completeness of Bidirectional Typing) 7
11 Lemma (Subtyping Coercion) . 7
12 Lemma (Application Subtyping) . 7
2 Theorem (Soundness of Bidirectional Typing) . 7

C Robustness of Typing 7
13 Lemma (Type Substitution) . 7
3 Definition (Context Subtyping) . 7
14 Lemma (Subsumption) . 7
3 Theorem (Substitution) . 7
4 Theorem (Inverse Substitution) . 7
5 Theorem (Annotation Removal) . 8

∗Recompiled in 2021.

1

D Properties of Context Extension 8
D.1 Syntactic Properties . 8

15 Lemma (Declaration Preservation) . 8
16 Lemma (Declaration Order Preservation) . 8
17 Lemma (Reverse Declaration Order Preservation) 8
18 Lemma (Substitution Extension Invariance) . 8
19 Lemma (Extension Equality Preservation) . 8
20 Lemma (Reflexivity) . 8
21 Lemma (Transitivity) . 8
4 Definition (Softness) . 8
22 Lemma (Right Softness) . 8
23 Lemma (Evar Input) . 8
24 Lemma (Extension Order) . 8
25 Lemma (Extension Weakening) . 9
26 Lemma (Solution Admissibility for Extension) . 9
27 Lemma (Solved Variable Addition for Extension) 9
28 Lemma (Unsolved Variable Addition for Extension) 9
29 Lemma (Parallel Admissibility) . 9
30 Lemma (Parallel Extension Solution) . 9
31 Lemma (Parallel Variable Update) . 9

D.2 Instantiation Extends . 9
32 Lemma (Instantiation Extension) . 9

D.3 Subtyping Extends . 9
33 Lemma (Subtyping Extension) . 9

E Decidability of Instantiation 9
34 Lemma (Left Unsolvedness Preservation) . 9
35 Lemma (Left Free Variable Preservation) . 9
36 Lemma (Instantiation Size Preservation) . 9
7 Theorem (Decidability of Instantiation) . 9

F Decidability of Algorithmic Subtyping 10
F.1 Lemmas for Decidability of Subtyping . 10

37 Lemma (Monotypes Solve Variables) . 10
38 Lemma (Monotype Monotonicity) . 10
39 Lemma (Substitution Decreases Size) . 10
40 Lemma (Monotype Context Invariance) . 10

F.2 Decidability of Subtyping . 10
8 Theorem (Decidability of Subtyping) . 10

G Decidability of Typing 10
9 Theorem (Decidability of Typing) . 10

H Soundness of Subtyping 10
H.1 Lemmas for Soundness . 10

41 Lemma (Uvar Preservation) . 10
42 Lemma (Variable Preservation) . 10
43 Lemma (Substitution Typing) . 10
44 Lemma (Substitution for Well-Formedness) . 11
45 Lemma (Substitution Stability) . 11
46 Lemma (Context Partitioning) . 11
47 Lemma (Softness Goes Away) . 11
48 Lemma (Filling Completes) . 11
49 Lemma (Stability of Complete Contexts) . 11
50 Lemma (Finishing Types) . 11
51 Lemma (Finishing Completions) . 11

2

52 Lemma (Confluence of Completeness) . 11
H.2 Instantiation Soundness . 11

10 Theorem (Instantiation Soundness) . 11
H.3 Soundness of Subtyping . 11

11 Theorem (Soundness of Algorithmic Subtyping) . 11

I Typing Extension 11
54 Lemma (Typing Extension) . 11

J Soundness of Typing 11
12 Theorem (Soundness of Algorithmic Typing) . 11

K Completeness of Subtyping 12
K.1 Instantiation Completeness . 12

13 Theorem (Instantiation Completeness) . 12
K.2 Completeness of Subtyping . 12

14 Theorem (Generalized Completeness of Subtyping) 12

L Completeness of Typing 12
15 Theorem (Completeness of Algorithmic Typing) . 12

Proofs 13

A ′ Declarative Subtyping 13
1 Proof of Proposition (Weakening) . 13
2 Proof of Proposition (Substitution) . 13

A ′.1 Properties of Well-Formedness . 13
A ′.2 Reflexivity . 13

3 Proof of Lemma (Reflexivity of Declarative Subtyping) 13
A ′.3 Subtyping Implies Well-Formedness . 13

4 Proof of Lemma (Well-Formedness) . 13
A ′.4 Substitution . 13

5 Proof of Lemma (Substitution) . 13
A ′.5 Transitivity . 14

6 Proof of Lemma (Transitivity of Declarative Subtyping) 14
A ′.6 Invertibility of ≤∀R . 15

7 Proof of Lemma (Invertibility) . 15
A ′.7 Non-Circularity and Equality . 16

8 Proof of Lemma (Occurrence) . 16
9 Proof of Lemma (Monotype Equality) . 16

B ′ Type Assignment 17
10 Proof of Lemma (Well-Formedness) . 17
1 Proof of Theorem (Completeness of Bidirectional Typing) 17
11 Proof of Lemma (Subtyping Coercion) . 18
12 Proof of Lemma (Application Subtyping) . 19
2 Proof of Theorem (Soundness of Bidirectional Typing) 19

C ′ Robustness of Typing 21
13 Proof of Lemma (Type Substitution) . 21
14 Proof of Lemma (Subsumption) . 21
3 Proof of Theorem (Substitution) . 24
4 Proof of Theorem (Inverse Substitution) . 24
5 Proof of Theorem (Annotation Removal) . 26

3

D ′ Properties of Context Extension 27
D ′.1 Syntactic Properties . 27

15 Proof of Lemma (Declaration Preservation) . 27
16 Proof of Lemma (Declaration Order Preservation) 27
17 Proof of Lemma (Reverse Declaration Order Preservation) 28
18 Proof of Lemma (Substitution Extension Invariance) 29
19 Proof of Lemma (Extension Equality Preservation) 30
20 Proof of Lemma (Reflexivity) . 31
21 Proof of Lemma (Transitivity) . 31
22 Proof of Lemma (Right Softness) . 33
23 Proof of Lemma (Evar Input) . 33
24 Proof of Lemma (Extension Order) . 34
25 Proof of Lemma (Extension Weakening) . 36
26 Proof of Lemma (Solution Admissibility for Extension) 36
27 Proof of Lemma (Solved Variable Addition for Extension) 36
28 Proof of Lemma (Unsolved Variable Addition for Extension) 36
29 Proof of Lemma (Parallel Admissibility) . 36
30 Proof of Lemma (Parallel Extension Solution) . 37
31 Proof of Lemma (Parallel Variable Update) . 37

D ′.2 Instantiation Extends . 37
32 Proof of Lemma (Instantiation Extension) . 37

D ′.3 Subtyping Extends . 39
33 Proof of Lemma (Subtyping Extension) . 39

E ′ Decidability of Instantiation 39
34 Proof of Lemma (Left Unsolvedness Preservation) 39
35 Proof of Lemma (Left Free Variable Preservation) 40
36 Proof of Lemma (Instantiation Size Preservation) 42
7 Proof of Theorem (Decidability of Instantiation) . 43

F ′ Decidability of Algorithmic Subtyping 45
F ′.1 Lemmas for Decidability of Subtyping . 45

37 Proof of Lemma (Monotypes Solve Variables) . 45
38 Proof of Lemma (Monotype Monotonicity) . 46
39 Proof of Lemma (Substitution Decreases Size) . 46
40 Proof of Lemma (Monotype Context Invariance) . 47

F ′.2 Decidability of Subtyping . 47
8 Proof of Theorem (Decidability of Subtyping) . 47

G ′ Decidability of Typing 48
9 Proof of Theorem (Decidability of Typing) . 48

H ′ Soundness of Subtyping 49
H ′.1 Lemmas for Soundness . 49

42 Proof of Lemma (Variable Preservation) . 49
43 Proof of Lemma (Substitution Typing) . 49
44 Proof of Lemma (Substitution for Well-Formedness) 50
45 Proof of Lemma (Substitution Stability) . 51
46 Proof of Lemma (Context Partitioning) . 51
49 Proof of Lemma (Stability of Complete Contexts) 51
50 Proof of Lemma (Finishing Types) . 53
51 Proof of Lemma (Finishing Completions) . 53
52 Proof of Lemma (Confluence of Completeness) . 53

H ′.2 Instantiation Soundness . 53
10 Proof of Theorem (Instantiation Soundness) . 53

H ′.3 Soundness of Subtyping . 55

4

11 Proof of Theorem (Soundness of Algorithmic Subtyping) 55

I ′ Typing Extension 57
54 Proof of Lemma (Typing Extension) . 57

J ′ Soundness of Typing 58
12 Proof of Theorem (Soundness of Algorithmic Typing) 58

K ′ Completeness 63
K ′.1 Instantiation Completeness . 63

13 Proof of Theorem (Instantiation Completeness) . 63
K ′.2 Completeness of Subtyping . 66

14 Proof of Theorem (Generalized Completeness of Subtyping) 66

L ′ Completeness of Typing 71
15 Proof of Theorem (Completeness of Algorithmic Typing) 71

5

A Declarative Subtyping

A.1 Properties of Well-Formedness

Proposition 1 (Weakening). If Ψ ` A then Ψ,Ψ ′ ` A by a derivation of the same size.

Proposition 2 (Substitution). If Ψ ` A and Ψ,α,Ψ ′ ` B then Ψ,Ψ ′ ` [A/α]B.

A.2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if Ψ ` A then Ψ ` A ≤ A.

A.3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If Ψ ` A ≤ B then Ψ ` A and Ψ ` B.

A.4 Substitution

Lemma 5 (Substitution). If Ψ ` τ and Ψ,α,Ψ ′ ` A ≤ B then Ψ, [τ/α]Ψ ′ ` [τ/α]A ≤ [τ/α]B.

A.5 Transitivity

Lemma 6 (Transitivity of Declarative Subtyping). If Ψ ` A ≤ B and Ψ ` B ≤ C then Ψ ` A ≤ C.

A.6 Invertibility of ≤∀R
Lemma 7 (Invertibility).
If D derives Ψ ` A ≤ ∀β. B then D ′ derives Ψ,β ` A ≤ B where D ′ < D.

A.7 Non-Circularity and Equality

Definition 1 (Subterm Occurrence).
Let A � B iff A is a subterm of B.
Let A ≺ B iff A is a proper subterm of B (that is, A � B and A 6= B).
Let A ≺→ B iff A occurs in B inside an arrow, that is, there exist B1, B2 such that (B1→B2) � B and
A � Bk for some k ∈ {1, 2}.

Lemma 8 (Occurrence).

(i) If Ψ ` A ≤ τ then τ ≺6→ A.

(ii) If Ψ ` τ ≤ B then τ ≺6→ B.

Lemma 9 (Monotype Equality). If Ψ ` σ ≤ τ then σ = τ.

Definition 2 (Contextual Size). The size of A with respect to a context Γ , written |Γ `A|, is defined by

|Γ `α| = 1
|Γ [α̂] ` α̂| = 1
Γ [α̂ = τ] ` α̂	= 1+	Γ [α̂ = τ] ` τ		
Γ `∀α. A	= 1+	Γ, α `A		
Γ `A→ B	= 1+	Γ `A	+	Γ `B

6

B Type Assignment

Lemma 10 (Well-Formedness).
If Ψ ` e⇐ A or Ψ ` e⇒ A or Ψ ` A • e⇒⇒ C then Ψ ` A (and in the last case, Ψ ` C).

Theorem 1 (Completeness of Bidirectional Typing).
If Ψ ` e : A then there exists e ′ such that Ψ ` e ′ ⇒ A and |e ′| = e.

Lemma 11 (Subtyping Coercion). If Ψ ` A ≤ B then there exists f which is βη-equal to the identity such
that Ψ ` f : A→ B.

Lemma 12 (Application Subtyping). If Ψ ` A • e ⇒⇒ C then there exists B such that Ψ ` A ≤ B→ C
and Ψ ` e⇐ B by a smaller derivation.

Theorem 2 (Soundness of Bidirectional Typing). We have that:

• If Ψ ` e⇐ A, then there is an e ′ such that Ψ ` e ′ : A and e ′ =βη |e|.

• If Ψ ` e⇒ A, then there is an e ′ such that Ψ ` e ′ : A and e ′ =βη |e|.

C Robustness of Typing

Lemma 13 (Type Substitution).
Assume Ψ ` τ.

• If Ψ,α,Ψ ′ ` e ′ ⇐ C then Ψ, [τ/α]Ψ ′ ` [τ/α]e ′ ⇐ [τ/α]C.

• If Ψ,α,Ψ ′ ` e ′ ⇒ C then Ψ, [τ/α]Ψ ′ ` [τ/α]e ′ ⇒ [τ/α]C.

• If Ψ,α,Ψ ′ ` B • e ′ ⇒⇒ C then Ψ, [τ/α]Ψ ′ ` [τ/α]B • [τ/α]e ′ ⇒⇒ [A/α]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Definition 3 (Context Subtyping). We define the judgment Ψ ′ ≤ Ψ with the following rules:

· ≤ ·
CtxSubEmpty

Ψ ′ ≤ Ψ
Ψ ′, α ≤ Ψ,α

CtxSubUvar
Ψ ′ ≤ Ψ Ψ ` A ′ ≤ A
Ψ ′, x : A ′ ≤ Ψ, x : A

CtxSubVar

Lemma 14 (Subsumption). Suppose Ψ ′ ≤ Ψ. Then:

(i) If Ψ ` e⇐ A and Ψ ` A ≤ A ′ then Ψ ′ ` e⇐ A ′.

(ii) If Ψ ` e⇒ A then there exists A ′ such that Ψ ` A ′ ≤ A and Ψ ′ ` e⇒ A ′.

(iii) If Ψ ` C • e⇒⇒ A and Ψ ` C ′ ≤ C
then there exists A ′ such that Ψ ` A ′ ≤ A and Ψ ′ ` C ′ • e⇒⇒ A ′.

Theorem 3 (Substitution).
Assume Ψ ` e⇒ A.

(i) If Ψ, x : A ` e ′ ⇐ C then Ψ ` [e/x]e ′ ⇐ C.

(ii) If Ψ, x : A ` e ′ ⇒ C then Ψ ` [e/x]e ′ ⇒ C.

(iii) If Ψ, x : A ` B • e ′ ⇒⇒ C then Ψ ` B • [e/x]e ′ ⇒⇒ C.

Theorem 4 (Inverse Substitution).
Assume Ψ ` e⇐ A.

(i) If Ψ ` [(e : A)/x]e ′ ⇐ C then Ψ, x : A ` e ′ ⇐ C.

7

(ii) If Ψ ` [(e : A)/x]e ′ ⇒ C then Ψ, x : A ` e ′ ⇒ C.

(iii) If Ψ ` B • [(e : A)/x]e ′ ⇒⇒ C then Ψ, x : A ` B • e ′ ⇒⇒ C.

Theorem 5 (Annotation Removal). We have that:

• If Ψ `
(
(λx. e) : A

)⇐ C then Ψ ` λx. e⇐ C.

• If Ψ ` (() : A) ⇐ C then Ψ ` () ⇐ C.

• If Ψ ` e1 (e2 : A) ⇒ C then Ψ ` e1 e2 ⇒ C.

• If Ψ ` (x : A) ⇒ A then Ψ ` x⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(e1 e2) : A

)⇒ A then Ψ ` e1 e2 ⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(e : B) : A

)⇒ A then Ψ ` (e : B) ⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(λx. e) : σ→ τ

)⇒ σ→ τ then Ψ ` λx. e⇒ σ→ τ.

Theorem 6 (Soundness of Eta).
If Ψ ` λx. e x⇐ A and x 6∈ FV(e), then Ψ ` e⇐ A.

D Properties of Context Extension

D.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If Γ −→ ∆, and u is a variable or marker Iα̂ declared in Γ , then
u is declared in ∆.

Lemma 16 (Declaration Order Preservation). If Γ −→ ∆ and u is declared to the left of v in Γ , then u is
declared to the left of v in ∆.

Lemma 17 (Reverse Declaration Order Preservation). If Γ −→ ∆ and u and v are both declared in Γ and
u is declared to the left of v in ∆, then u is declared to the left of v in Γ .

Lemma 18 (Substitution Extension Invariance). If Θ ` A and Θ −→ Γ then [Γ]A = [Γ]([Θ]A) and
[Γ]A = [Θ]([Γ]A).

Lemma 19 (Extension Equality Preservation).
If Γ ` A and Γ ` B and [Γ]A = [Γ]B and Γ −→ ∆, then [∆]A = [∆]B.

Lemma 20 (Reflexivity). If Γ is well-formed, then Γ −→ Γ .

Lemma 21 (Transitivity). If Γ −→ ∆ and ∆ −→ Θ, then Γ −→ Θ.

Definition 4 (Softness). A context Θ is soft iff it consists only of α̂ and α̂ = τ declarations.

Lemma 22 (Right Softness). If Γ −→ ∆ and Θ is soft (and (∆,Θ) is well-formed) then Γ −→ ∆,Θ.

Lemma 23 (Evar Input).
If Γ, α̂ −→ ∆ then ∆ = (∆0, ∆α̂, Θ) where Γ −→ ∆0, and ∆α̂ is either α̂ or α̂ = τ, and Θ is soft.

Lemma 24 (Extension Order).

(i) If ΓL, α, ΓR −→ ∆ then ∆ = (∆L, α, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(ii) If ΓL,Iα̂, ΓR −→ ∆ then ∆ = (∆L,Iα̂, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(iii) If ΓL, α̂, ΓR −→ ∆ then ∆ = ∆L, Θ,∆R where ΓL −→ ∆L and Θ is either α̂ or α̂ = τ for some τ.

(iv) If ΓL, α̂ = τ, ΓR −→ ∆ then ∆ = ∆L, α̂ = τ ′, ∆R where ΓL −→ ∆L and [∆L]τ = [∆L]τ
′.

8

(v) If ΓL, x : A, ΓR −→ ∆ then ∆ = (∆L, x : A
′, ∆R) where ΓL −→ ∆L and [∆L]A = [∆L]A

′.
Moreover, ΓR is soft if and only if ∆R is soft.

Lemma 25 (Extension Weakening). If Γ ` A and Γ −→ ∆ then ∆ ` A.

Lemma 26 (Solution Admissibility for Extension). If ΓL ` τ then ΓL, α̂, ΓR −→ ΓL, α̂ = τ, ΓR.

Lemma 27 (Solved Variable Addition for Extension). If ΓL ` τ then ΓL, ΓR −→ ΓL, α̂ = τ, ΓR.

Lemma 28 (Unsolved Variable Addition for Extension). We have that ΓL, ΓR −→ ΓL, α̂, ΓR.

Lemma 29 (Parallel Admissibility).
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂, ΓR −→ ∆L, α̂, ∆R

(ii) If ∆L ` τ ′ then ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R.

(iii) If ΓL ` τ and ∆L ` τ ′ and [∆L]τ = [∆L]τ
′, then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Lemma 30 (Parallel Extension Solution).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R and ΓL ` τ and [∆L]τ = [∆L]τ

′ then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Lemma 31 (Parallel Variable Update).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ0, ∆R and ΓL ` τ1 and ∆L ` τ2 and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ = τ1, ΓR −→ ∆L, α̂ = τ2, ∆R.

D.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If Γ ` α̂ :=< τ a ∆ or Γ ` τ =<: α̂ a ∆ then Γ −→ ∆.

D.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If Γ ` A <: B a ∆ then Γ −→ ∆.

E Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< A a ∆ or Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` A =<: α̂ a ∆, and β̂ ∈ unsolved(Γ0), then β̂ ∈ unsolved(∆).

Lemma 35 (Left Free Variable Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ :=< A a ∆ or

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` A =<: α̂ a ∆, and

Γ ` B and α̂ /∈ FV([Γ]B) and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ]B), then β̂ /∈ FV([∆]B).

Lemma 36 (Instantiation Size Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ :=< A a ∆ or

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` A =<: α̂ a ∆, and

Γ ` B and α̂ /∈ FV([Γ]B), then |[Γ]B| = |[∆]B|, where |C| is the plain size of the term C.

This lemma lets us show decidability by taking the size of the type argument as the induction metric.

Theorem 7 (Decidability of Instantiation). If Γ = Γ0[α̂] and Γ ` A such that [Γ]A = A and α̂ /∈ FV(A),
then:

(1) Either there exists ∆ such that Γ0[α̂] ` α̂ :=< A a ∆, or not.

(2) Either there exists ∆ such that Γ0[α̂] ` A =<: α̂ a ∆, or not.

9

F Decidability of Algorithmic Subtyping

F.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If Γ ` α̂ :=< τ a ∆ or Γ ` τ =<: α̂ a ∆, then if [Γ]τ = τ and
α̂ /∈ FV([Γ]τ), then |unsolved(Γ)| = |unsolved(∆)|+ 1.

Lemma 38 (Monotype Monotonicity). If Γ ` τ1 <: τ2 a ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Lemma 39 (Substitution Decreases Size). If Γ ` A then |Γ ` [Γ]A| ≤ |Γ `A|.

Lemma 40 (Monotype Context Invariance).
If Γ ` τ <: τ ′ a ∆ where [Γ]τ = τ and [Γ]τ ′ = τ ′ and |unsolved(Γ)| = |unsolved(∆)| then Γ = ∆.

F.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ` A and Γ ` B and [Γ]A = A and [Γ]B = B, it is decidable
whether there exists ∆ such that Γ ` A <: B a ∆.

G Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ` e⇒ A a ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that Γ ` B,
it is decidable whether there is a context ∆ such that
Γ ` e⇐ B a ∆.

(iii) Application: Given a context Γ , a term e, and a type A such that Γ ` A,
it is decidable whether there exist a type C and a context ∆ such that
Γ ` A • e⇒⇒ C a ∆.

H Soundness of Subtyping

Definition 5 (Filling). The filling of a context |Γ | solves all unsolved variables:

|·| = ·
|Γ, x : A| = |Γ | , x : A
|Γ, α| = |Γ | , α
|Γ, α̂ = τ| = |Γ | , α̂ = τ
|Γ,Iα̂| = |Γ | ,Iα̂
|Γ, α̂| = |Γ | , α̂ = 1

H.1 Lemmas for Soundness

Lemma 41 (Uvar Preservation).
If α ∈ Ω and ∆ −→ Ω then α ∈ [Ω]∆.

Proof. By induction on Ω, following the definition of context application.

Lemma 42 (Variable Preservation).
If (x : A) ∈ ∆ or (x : A) ∈ Ω and ∆ −→ Ω then (x : [Ω]A) ∈ [Ω]∆.

Lemma 43 (Substitution Typing). If Γ ` A then Γ ` [Γ]A.

10

Lemma 44 (Substitution for Well-Formedness). If Ω ` A then [Ω]Ω ` [Ω]A.

Lemma 45 (Substitution Stability).
For any well-formed complete context (Ω,ΩZ), if Ω ` A then [Ω]A = [Ω,ΩZ]A.

Lemma 46 (Context Partitioning).
If ∆,Iα̂, Θ −→ Ω,Iα̂,ΩZ then there is a Ψ such that [Ω,Iα̂,ΩZ](∆,Iα̂, Θ) = [Ω]∆,Ψ.

Lemma 47 (Softness Goes Away).
If ∆,Θ −→ Ω,ΩZ where ∆ −→ Ω and Θ is soft, then [Ω,ΩZ](∆,Θ) = [Ω]∆.

Proof. By induction on Θ, following the definition of [Ω]Γ .

Lemma 48 (Filling Completes). If Γ −→ Ω and (Γ,Θ) is well-formed, then Γ,Θ −→ Ω, |Θ|.

Proof. By induction on Θ, following the definition of |−| and applying the rules for −→.

Lemma 49 (Stability of Complete Contexts).
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Lemma 50 (Finishing Types).
If Ω ` A and Ω −→ Ω ′ then [Ω]A = [Ω ′]A.

Lemma 51 (Finishing Completions).
If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Lemma 52 (Confluence of Completeness).
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

H.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ]B = B and α̂ /∈ FV(B):

(1) If Γ ` α̂ :=< B a ∆ then [Ω]∆ ` [Ω]α̂ ≤ [Ω]B.

(2) If Γ ` B =<: α̂ a ∆ then [Ω]∆ ` [Ω]B ≤ [Ω]α̂.

H.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ` A <: B a ∆ where [Γ]A = A and [Γ]B = B and ∆ −→ Ω then [Ω]∆ ` [Ω]A ≤ [Ω]B.

Corollary 53 (Soundness, Pretty Version). If Ψ ` A <: B a ∆, then Ψ ` A ≤ B.

I Typing Extension

Lemma 54 (Typing Extension).
If Γ ` e⇐ A a ∆ or Γ ` e⇒ A a ∆ or Γ ` A • e⇒⇒ C a ∆ then Γ −→ ∆.

J Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ` e⇐ A a ∆ then [Ω]∆ ` e⇐ [Ω]A.

(ii) If Γ ` e⇒ A a ∆ then [Ω]∆ ` e⇒ [Ω]A.

(iii) If Γ ` A • e⇒⇒ C a ∆ then [Ω]∆ ` [Ω]A • e⇒⇒ [Ω]C.

11

K Completeness of Subtyping

K.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given Γ −→ Ω and A = [Γ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):

(1) If [Ω]Γ ` [Ω]α̂ ≤ [Ω]A
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` α̂ :=< A a ∆.

(2) If [Ω]Γ ` [Ω]A ≤ [Ω]α̂
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` A =<: α̂ a ∆.

K.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If Γ −→ Ω and Γ ` A and Γ ` B and [Ω]Γ `
[Ω]A ≤ [Ω]B then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ]A <: [Γ]B a ∆.

Corollary 55 (Completeness of Subtyping). If Ψ ` A ≤ B then there is a ∆ such that Ψ ` A <: B a ∆.

L Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ` A:

(i) If [Ω]Γ ` e⇐ [Ω]A
then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` e⇐ [Γ]A a ∆.

(ii) If [Ω]Γ ` e⇒ A
then there exist ∆, Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` e⇒ A ′ a ∆ and A = [Ω ′]A ′.

(iii) If [Ω]Γ ` [Ω]A • e⇒⇒ C
then there exist ∆, Ω ′, and C ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ]A • e⇒⇒ C ′ a ∆ and C = [Ω ′]C ′.

12

Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A ′ Declarative Subtyping

Proposition 1 (Weakening). If Ψ ` A then Ψ,Ψ ′ ` A by a derivation of the same size.

Proposition 2 (Substitution). If Ψ ` A and Ψ,α,Ψ ′ ` B then Ψ,Ψ ′ ` [A/α]B.

The proofs of these two propositions are routine inductions.

A ′.1 Properties of Well-Formedness

A ′.2 Reflexivity

Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if Ψ ` A then Ψ ` A ≤ A.

Proof. By induction on A.

• Case A = 1: Apply rule ≤Unit.

• Case A = α: Apply rule ≤Var.

• Case A = A1 → A2:

Ψ ` A1 ≤ A1 By i.h.
Ψ ` A2 ≤ A2 By i.h.
Ψ ` A1 → A2 ≤ A1 → A2 By ≤→

• Case A = ∀α. A0:
Ψ,α ` A0 ≤ A0 By i.h.
Ψ,α ` α By DeclUvarWF
Ψ,α ` [α/α]A0 ≤ A0 By def. of substitution
Ψ,α ` ∀α. A0 ≤ A0 By ≤∀L
Ψ ` ∀α. A0 ≤ ∀α. A0 By ≤∀R

A ′.3 Subtyping Implies Well-Formedness

Lemma 4 (Well-Formedness). If Ψ ` A ≤ B then Ψ ` A and Ψ ` B.

Proof. By induction on the given derivation. All 5 cases are straightforward.

A ′.4 Substitution

Lemma 5 (Substitution). If Ψ ` τ and Ψ,α,Ψ ′ ` A ≤ B then Ψ, [τ/α]Ψ ′ ` [τ/α]A ≤ [τ/α]B.

Proof. By induction on the given derivation.

• Case β ∈ (Ψ,α,Ψ ′)

Ψ,α,Ψ ′ ` β ≤ β
≤Var

It is given that Ψ ` τ.
Either β = α or β 6= α. In the former case: We need to show Ψ,Ψ ′ ` [τ/α]α ≤ [τ/α]α, that is,
Ψ,Ψ ′ ` τ ≤ τ, which follows by Lemma 3 (Reflexivity of Declarative Subtyping). In the latter case:
We need to show Ψ,Ψ ′ ` [τ/α]β ≤ [τ/α]β, that is, Ψ,Ψ ′ ` β ≤ β. Since β ∈ (Ψ,α,Ψ ′) and β 6= α,
we have β ∈ (Ψ,Ψ ′), so applying ≤Var gives the result.

13

• Case

Ψ,α,Ψ ′ ` 1 ≤ 1
≤Unit

For all τ, substituting [τ/α]1 = 1, and applying ≤Unit gives the result.

• Case Ψ,α,Ψ ′ ` B1 ≤ A1 Ψ,α,Ψ ′ ` A2 ≤ B2
Ψ,α,Ψ ′ ` A1 → A2 ≤ B1 → B2

≤→
Ψ,α,Ψ ′ ` B1 ≤ A1 Subderivation
Ψ,Ψ ′ ` [τ/α]B1 ≤ [τ/α]A1 By i.h.

Ψ,α,Ψ ′ ` A2 ≤ B2 Subderivation
Ψ,Ψ ′ ` [τ/α]A2 ≤ [τ/α]B2 By i.h.

Ψ,Ψ ′ ` ([τ/α]A1) → ([τ/α]A2) ≤ ([τ/α]B1) → ([τ/α]B2) By ≤→
Z Ψ,Ψ ′ ` [τ/α](A1 → A2) ≤ [τ/α](B1 → B2) By definition of subst.

• Case Ψ,α,Ψ ′ ` σ Ψ,α,Ψ ′ ` [σ/β]A0 ≤ B
Ψ,α,Ψ ′ ` ∀β. A0 ≤ B

≤∀L

Ψ,α,Ψ ′ ` [σ/β]A0 ≤ B Subderivation
Ψ,Ψ ′ ` [τ/α][σ/β]A0 ≤ [τ/α]B By i.h.
Ψ,Ψ ′ `

[
[τ/α]σ /β

]
[τ/α]A0 ≤ [τ/α]B By distributivity of substitution

Ψ,α,Ψ ′ ` σ Premise
Ψ ` τ Given

Ψ,Ψ ′ ` [τ/α]σ By Proposition 2

Ψ,Ψ ′ ` ∀β. [τ/α]A0 ≤ [τ/α]B By ≤∀L
Z Ψ,Ψ ′ ` [τ/α]

(
∀β. A0

)
≤ [τ/α]B By definition of substitution

• Case Ψ,α,Ψ ′, β ` A ≤ B0
Ψ,α,Ψ ′ ` A ≤ ∀β. B0

≤∀R

Ψ,α,Ψ ′, β ` A ≤ B0 Subderivation
Ψ,Ψ ′, β ` [τ/α]A ≤ [τ/α]B0 By i.h.
Ψ,Ψ ′ ` [τ/α]A ≤ ∀β. [τ/α]B0 By ≤∀R

Z Ψ,Ψ ′ ` [τ/α]A ≤ [τ/α](∀β. B0) By definition of substitution

A ′.5 Transitivity

To prove transitivity, we use a metric that adapts ideas from a proof of cut elimination by Pfenning
(1995).

Lemma 6 (Transitivity of Declarative Subtyping). If Ψ ` A ≤ B and Ψ ` B ≤ C then Ψ ` A ≤ C.

Proof. By induction with the following metric:

〈#∀(B), D1 +D2〉

where 〈. . . 〉 denotes lexicographic order, the first part #∀(B) is the number of quantifiers in B, and the
second part is the (simultaneous) size of the derivations D1 :: Ψ ` A ≤ B and D2 :: Ψ ` B ≤ C. We need
to consider the number of quantifiers first in one case: when ≤∀R concluded D1 and ≤∀L concluded D2,
because in that case, the derivations on which the i.h. must be applied are not necessarily smaller.

• Case α ∈ Ψ
Ψ ` α ≤ α

≤Var
α ∈ Ψ

Ψ ` α ≤ α
≤Var

Apply rule ≤Var.

14

• Case ≤Unit / ≤Unit: Similar to the ≤Var / ≤Var case.

• Case Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→ Ψ ` C1 ≤ B1 Ψ ` B2 ≤ C2
Ψ ` B1 → B2 ≤ C1 → C2

≤→
By i.h. on the 3rd and 1st subderivations, Ψ ` C1 ≤ A1.
By i.h. on the 2nd and 4th subderivations, Ψ ` A2 ≤ C2.
By ≤→, Ψ ` A1 → A2 ≤ C1 → C2.

If ≤∀L concluded D1:

• Case Ψ ` τ Ψ ` [τ/α]A0 ≤ B
Ψ ` ∀α. A0 ≤ B

≤∀L

Ψ ` τ Premise
Ψ ` [τ/α]A0 ≤ B Subderivation
Ψ ` B ≤ C Given (D2)
Ψ ` [τ/α]A0 ≤ C By i.h.

Z Ψ ` ∀α. A0 ≤ C By ≤∀L

If ≤∀R concluded D2:

• Case Ψ,β ` B ≤ C
Ψ ` B ≤ ∀β. C

≤∀R

Ψ ` τ Premise
Ψ,β ` B ≤ C Subderivation
Ψ ` A ≤ B Given (D1)

Ψ,β ` A ≤ B By Proposition 1
Ψ,β ` A ≤ C By i.h.

Z Ψ ` A ≤ ∀β. C By ≤∀L

The only remaining possible case is ≤∀R / ≤∀L.

• Case Ψ,β ` A ≤ B0
Ψ ` A ≤ ∀β. B0

≤∀R
Ψ ` τ Ψ ` [τ/β]B0 ≤ C

Ψ ` ∀β. B0 ≤ C
≤∀L

Ψ,β ` A ≤ B0 Subderivation of D1
Ψ ` τ Premise of D2
Ψ ` [τ/β]A ≤ [τ/β]B0 By Lemma 5 (Substitution)

[τ/β]A = A β cannot appear in A
Ψ ` A ≤ [τ/β]B0 By above equality
Ψ ` [τ/β]B0 ≤ C Subderivation of D2

Z Ψ ` A ≤ C By i.h. (one less ∀ quantifier in B)

A ′.6 Invertibility of ≤∀R
Lemma 7 (Invertibility).
If D derives Ψ ` A ≤ ∀β. B then D ′ derives Ψ,β ` A ≤ B where D ′ < D.

Proof. By induction on the given derivation D.

• Cases ≤Var, ≤Unit, ≤→: Impossible: the supertype cannot have the form ∀β. B.

15

• Case Ψ,β ` A ≤ B
Ψ ` A ≤ ∀β. B

≤∀R

The subderivation is exactly what we need, and is strictly smaller than D.

• Case

Ψ ` τ
D0

Ψ ` [τ/α]A0 ≤ ∀β. B
Ψ ` ∀α. A0 ≤ ∀β. B

≤∀L

By i.h., D ′
0 derives Ψ,β ` [τ/α]A0 ≤ B where D ′

0 < D0.
By ≤∀L, D ′ derives Ψ,β ` ∀α. A0 ≤ B; since D ′

0 < D0, we have D ′ < D.

A ′.7 Non-Circularity and Equality

Lemma 8 (Occurrence).

(i) If Ψ ` A ≤ τ then τ ≺6→ A.

(ii) If Ψ ` τ ≤ B then τ ≺6→ B.

Proof. By induction on the given derivation.

• Cases ≤Var, ≤Unit: (i), (ii): Here A and B have no subterms at all, so the result is immediate.

• Case Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→
(i) Here, A = A1 → A2 and τ = B1 → B2.

B1 ≺6→ A1 By i.h. (ii)
B1 → B2 6�A1 Suppose B1 → B2 � A1. Then B1 ≺→ A1: contradiction.

B2 ≺6→ A2 By i.h. (i)
B1 → B2 6�A2 Similar

Suppose (for a contradiction) that B1 → B2 ≺→ A1 → A2.
Now B1 → B2 � A1 or B1 → B2 � A2.
But above, we showed that both were false: contradiction.

Therefore, B1 → B2 6≺ A1 → A2.
Therefore, B1 → B2 ≺6→ A1 → A2.

(ii) Here, A = τ and B = B1 → B2.
Symmetric to the previous case.

• Case Ψ ` τ ′ Ψ ` [τ ′/α]A0 ≤ τ
Ψ ` ∀α. A0 ≤ τ

≤∀L

In part (ii), this case cannot arise, so we prove part (i).

By i.h. (i), τ ≺6→ [τ ′/α]A0.
It follows from the definition of ≺→ that τ ≺6→ ∀α. A0.

• Case Ψ,β ` τ ≤ B0
Ψ ` τ ≤ ∀β. B0

≤∀R

In part (i), this case cannot arise, so we prove part (ii).

Similar to the ≤∀L case.

Lemma 9 (Monotype Equality). If Ψ ` σ ≤ τ then σ = τ.

16

Proof. By induction on the given derivation.

• Case ≤Var: Immediate.

• Case ≤Unit: Immediate.

• Case Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→
By i.h. on each subderivation, B1 = A1 and A2 = B2. Therefore A1 → A2 = B1 → B2.

• Case ≤∀L: Here σ = ∀α. A0, which is not a monotype, so this case is impossible.

• Case ≤∀R: Here τ = ∀β. B0, which is not a monotype, so this case is impossible.

B ′ Type Assignment

Lemma 10 (Well-Formedness).
If Ψ ` e⇐ A or Ψ ` e⇒ A or Ψ ` A • e⇒⇒ C then Ψ ` A (and in the last case, Ψ ` C).

Proof. By induction on the given derivation.
In all cases, we apply the induction hypothesis to all subderivations.

• In the DeclVar and Decl→I cases, we use our standard assumption that every context appearing in
a derivation is well-formed.

• In the Decl→I⇒ case, we use inversion on the Ψ ` σ→ τ premise.

• In the Decl∀App case, we use the property that if Ψ ` [τ/α]A0 then Ψ ` ∀α. A0.

• In the DeclAnno case, we use its premise.

Theorem 1 (Completeness of Bidirectional Typing).
If Ψ ` e : A then there exists e ′ such that Ψ ` e ′ ⇒ A and |e ′| = e.

Proof. By induction on the derivation of Ψ ` e : A.

• Case x : A ∈ Ψ
Ψ ` x : A

AVar

Immediate, by rule DeclVar.

• Case Ψ, x : A ` e : B
Ψ ` λx. e : A→ B

A→I

By inversion, we have Ψ, x : A ` e : B.
By induction, we have Ψ, x : A ` e ′ ⇒ B, where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ` B ≤ B.
By rule DeclSub, Ψ, x : A ` e ′ ⇐ B.
By rule Decl→I, Ψ ` λx. e ′ ⇐ A→ B.
By Lemma 10 (Well-Formedness), Ψ ` A→ B.
By rule DeclAnno, Ψ ` ((λx. e ′) : A→ B) ⇒ A→ B.
By definition, |((λx. e ′) : A→ B)| = |λx. e ′| = λx. |e ′| = λx. e.

17

• Case Ψ ` e1 : A→ B Ψ ` e2 : A
Ψ ` e1 e2 : B

A→E

By induction, Ψ ` e ′1 ⇒ A→ B and |e ′1| = e1.
By induction, Ψ ` e ′2 ⇒ A and |e ′2| = e2.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ` A ≤ A.
By rule DeclSub, Ψ ` e ′2 ⇐ A.
By rule Decl→App, Ψ ` A→ B • e ′2 ⇒⇒ B.
By rule Decl→E, Ψ ` e ′1 e ′2 ⇒ B.
By definition, |e ′1 e

′
2| = |e ′1| |e

′
2| = e1 e2.

• Case Ψ,α ` e : A
Ψ ` e : ∀α. A

A∀I

By induction, Ψ,α ` e ′ ⇒ A where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ,α ` A ≤ A.
By rule DeclSub, Ψ,α ` e ′ ⇐ A.
By rule Decl∀I, Ψ ` e ′ ⇐ ∀α. A.
By Lemma 10 (Well-Formedness), Ψ ` ∀α. A.
By rule DeclAnno, Ψ ` (e ′ : ∀α. A) ⇒ ∀α. A.
By definition, |e ′ : ∀α. A| = |e ′| = e.

• Case Ψ ` e : ∀α. A Ψ ` τ
Ψ ` e : [τ/α]A

A∀E

By induction, Ψ ` e ′ ⇒ ∀α. A where |e ′| = e.
By Lemma 3 (Reflexivity of Declarative Subtyping), Ψ ` [τ/α]A ≤ [τ/α]A.
By ≤∀L, Ψ ` ∀α. A ≤ [τ/α]A.
By rule DeclSub, Ψ ` e ′ ⇐ [τ/α]A.
By Lemma 10 (Well-Formedness), Ψ ` [τ/α]A.
By rule DeclAnno, Ψ ` (e ′ : [τ/α]A) ⇐ [τ/α]A.
By definition, |e ′ : [τ/α]A| = |e ′| = e.

Lemma 11 (Subtyping Coercion). If Ψ ` A ≤ B then there exists f which is βη-equal to the identity such
that Ψ ` f : A→ B.

Proof. By induction on the derivation of Ψ ` A ≤ B.

• Case α ∈ Ψ
Ψ ` α ≤ α

≤Var

Choose f = λx. x.
Clearly Ψ ` λx. x : α→ α.

• Case

Ψ ` 1 ≤ 1
≤Unit

Choose f = λx. x.
Clearly Ψ ` λx. x : 1 → 1.

• Case Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→
By induction, we have g : B1 → A1, which is βη-equal to the identity.
By induction, we have k : A2 → B2, which is βη-equal to the identity.
Let f be λh. k ◦ h ◦ g.
It is easy to verify that Ψ ` f : (A1 → A2) → (B1 → B2).
Since k and g are identities, f =βη λh. h.

18

• Case Ψ ` τ Ψ ` [τ/α]A ≤ B
Ψ ` ∀α. A ≤ B

≤∀L

By induction, g : [τ/α]A→ B.
Let f , λx. g x.
f is an eta-expansion of g, which is βη-equal to the identity. Hence f is too.
Also, λx. g x : (∀α. A) → B, using the Decl∀E rule on x.

• Case Ψ,β ` A ≤ B
Ψ ` A ≤ ∀β. B

≤∀R

By induction, we have g such that Ψ,β ` g : A→ B.
Let f , λx. g x.
Use the following derivation:

WEAKEN

...
Ψ,β ` g : A→ B

Ψ, x : A,β ` g : A→ B Ψ, x : A,β ` x : A
Ψ, x : A,β ` g x : B
Ψ, x : A ` g x : ∀β. B
Ψ ` λx. g x : A→ ∀β. B

Lemma 12 (Application Subtyping). If Ψ ` A • e ⇒⇒ C then there exists B such that Ψ ` A ≤ B→ C
and Ψ ` e⇐ B by a smaller derivation.

Proof. By induction on the given derivation D.

• Case Ψ ` e⇐ B

Ψ ` B→ C • e⇒⇒ C
Decl→App

Z D ′ :: Ψ ` e⇐ B Subderivation
Z D ′ < D D ′ is a subderivation of D
Z Ψ ` B→ C︸ ︷︷ ︸

A

≤ B→ C By Lemma 3 (Reflexivity of Declarative Subtyping)

• Case Ψ ` τ Ψ ` [τ/α]A0 • e⇒⇒ C

Ψ ` ∀α. A0 • e⇒⇒ C
Decl∀App

Ψ ` τ Subderivation
Ψ ` [τ/α]A0 • e⇒⇒ C Subderivation
Ψ ` [τ/α]A0 ≤ B→ C By i.h.

Z D ′ :: Ψ ` e⇐ B ′′

Z D ′ < D ′′

Z Ψ ` ∀α. A0 ≤ B→ C By ≤∀L

Theorem 2 (Soundness of Bidirectional Typing). We have that:

• If Ψ ` e⇐ A, then there is an e ′ such that Ψ ` e ′ : A and e ′ =βη |e|.

• If Ψ ` e⇒ A, then there is an e ′ such that Ψ ` e ′ : A and e ′ =βη |e|.

Proof. • Case (x : A) ∈ Ψ
Ψ ` x⇒ A

DeclVar

By rule AVar, Ψ ` x : A.
Note x =βη x.

19

• Case Ψ ` e⇒ A Ψ ` A ≤ B
Ψ ` e⇐ B

DeclSub

By induction, Ψ ` e ′ : A and e ′ =βη |e|.
By Lemma 11 (Subtyping Coercion), f : A→ B such that f =βη id.
By A→E, Ψ ` f e ′ : B.
Note f e ′ =βη id e ′ =βη e ′ =βη |e|.

• Case Ψ ` A Ψ ` e⇐ A

Ψ ` (e : A) ⇒ A
DeclAnno

By induction, Ψ ` e ′ : A such that e ′ =βη |e|.
Note e ′ =βη |e| = |e : A|.

• Case

Ψ ` () ⇐ 1
Decl1I

By AUnit, Ψ ` () : 1.
Note () =βη ().

• Case

Ψ ` () ⇒ 1
Decl1I⇒

By AUnit, Ψ ` () : 1.
Note () =βη ().

• Case Ψ,α ` e⇐ A

Ψ ` e⇐ ∀α. A Decl∀I

By induction, Ψ,α ` e ′ : A such that e ′ =βη |e|.
By rule A∀I, Ψ ` e ′ : ∀α. A.

• Case Ψ, x : A ` e⇐ B

Ψ ` λx. e⇐ A→ B
Decl→I

By induction, Ψ, x : A ` e ′ : B such that e ′ =βη |e|.
By A→I, Ψ ` λx. e ′ : A→ B.
Note λx. e ′ =βη λx. |e| = |λx. e|.

• Case Ψ ` σ→ τ Ψ, x : σ ` e⇐ τ

Ψ ` λx. e⇒ σ→ τ
Decl→I⇒

By induction, Ψ, x : σ ` e ′ : τ such that e ′ =βη |e|.
By A→I, Ψ ` λx. e ′ : σ→ τ.
Note λx. e ′ =βη λx. |e| = |λx. e|.

• Case Ψ ` e1 ⇒ A Ψ ` A • e2 ⇒⇒ C

Ψ ` e1 e2 ⇒ C
Decl→E

By induction, Ψ ` e ′1 : A such that e ′1 =βη |e1|.
By Lemma 12 (Application Subtyping), there is a B such that
1. Ψ ` A ≤ B→ C, and
2. Ψ ` e2 ⇐ B, which is no bigger than Ψ ` A • e2 ⇒⇒ C.
By Lemma 11 (Subtyping Coercion), we have f such that Ψ ` f : A→ B→ C and f =βη id.
By induction, we get Ψ ` e ′2 : B and e ′2 =βη |e2|.
By A→E twice, Ψ ` f e ′1 e ′2 : C.
Note f e ′1 e

′
2 =βη id e

′
1 e

′
2 =βη e

′
1 e

′
2 =βη |e1| e

′
2 =βη |e1| |e2| = |e1 e2|.

20

C ′ Robustness of Typing

Lemma 13 (Type Substitution).
Assume Ψ ` τ.

• If Ψ,α,Ψ ′ ` e ′ ⇐ C then Ψ, [τ/α]Ψ ′ ` [τ/α]e ′ ⇐ [τ/α]C.

• If Ψ,α,Ψ ′ ` e ′ ⇒ C then Ψ, [τ/α]Ψ ′ ` [τ/α]e ′ ⇒ [τ/α]C.

• If Ψ,α,Ψ ′ ` B • e ′ ⇒⇒ C then Ψ, [τ/α]Ψ ′ ` [τ/α]B • [τ/α]e ′ ⇒⇒ [A/α]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Proof. By induction on the given derivation.
In the DeclVar case, split on whether the variable being typed is in Ψ or Ψ ′; the former is immediate,

and in the latter, use the fact that (x : C) ∈ Ψ ′ implies (x : [τ/α]C) ∈ [τ/α]Ψ ′.
In the DeclSub case, use the i.h. and Lemma 5 (Substitution).
In the DeclAnno case, we are substituting in the annotation in the term, as well as in the type; we

also need Proposition 2.
In Decl→I, Decl→I⇒ and Decl∀I, we add to the context in the premise, which is why the statement is

generalized for nonempty Ψ ′.

Lemma 14 (Subsumption). Suppose Ψ ′ ≤ Ψ. Then:

(i) If Ψ ` e⇐ A and Ψ ` A ≤ A ′ then Ψ ′ ` e⇐ A ′.

(ii) If Ψ ` e⇒ A then there exists A ′ such that Ψ ` A ′ ≤ A and Ψ ′ ` e⇒ A ′.

(iii) If Ψ ` C • e⇒⇒ A and Ψ ` C ′ ≤ C
then there exists A ′ such that Ψ ` A ′ ≤ A and Ψ ′ ` C ′ • e⇒⇒ A ′.

Proof. By mutual induction: in (i), by lexicographic induction on the derivation of the checking judg-
ment, then of the subtyping judgment; in (ii), by induction on the derivation of the synthesis judgment;
in (iii), by lexicographic induction on the derivation of the application judgment, then of the subtyping
judgment.

For part (i), checking:

• Case Ψ ` e⇒ B Ψ ` B ≤ A
Ψ ` e⇐ A

DeclSub

Ψ ` e⇒ B Subderivation
Ψ ′ ` e⇒ B ′ By i.h.
Ψ ` B ′ ≤ B ′′

Ψ ` B ≤ A Subderivation
Ψ ` A ≤ A ′ Given
Ψ ` B ′ ≤ A ′ By Lemma 6 (Transitivity of Declarative Subtyping) (twice)
Ψ ′ ` B ′ ≤ A ′ By weakening

Z Ψ ′ ` e⇐ A ′ By DeclSub

• Case

Ψ ` () ⇐ 1
Decl1I

Ψ ′ ` () ⇒ 1 By Decl1I⇒
Ψ ` 1 ≤ A ′ Given
Ψ ′ ` 1 ≤ A ′ By weakening

Z Ψ ′ ` () ⇐ A ′ By DeclSub

21

• Case Ψ,α ` e⇐ A0

Ψ ` e⇐ ∀α. A0 Decl∀I

We consider cases of Ψ ` ∀α. A0 ≤ A ′:

– Case Ψ,β ` ∀α. A0 ≤ B
Ψ ` ∀α. A0 ≤ ∀β. B

≤∀R

Ψ,β ` ∀α. A0 ≤ B Subderivation
Ψ ` e⇐ ∀α. A0 Given
Ψ ′ ` e⇐ B By i.h. (i)

Z Ψ ′ ` e⇐ ∀β. B︸ ︷︷ ︸
A ′

By Decl∀I

– Case Ψ ` τ Ψ ` [τ/α]A0 ≤ A ′

Ψ ` ∀α. A0 ≤ A ′ ≤∀L

Ψ,α ` e⇐ A0 Subderivation
Ψ ` e⇐ [τ/α]A0 By Lemma 13 (Type Substitution)
Ψ ` [τ/α]A0 ≤ A ′ Subderivation

Z Ψ ′ ` e⇐ A ′ By i.h. (i)

• Case Ψ, x : A1 ` e0 ⇐ A2

Ψ ` λx. e0 ⇐ A1 → A2
Decl→I

We consider cases of Ψ ` A1 → A2 ≤ A ′:

– Case Ψ ` B1 ≤ A1 Ψ ` A2 ≤ B2
Ψ ` A1 → A2 ≤ B1 → B2

≤→
Ψ ≤ Ψ ′ Given
Ψ ` B1 ≤ A1 Subderivation

Ψ ′, x : B1 ≤ Ψ, x : A1 By CtxSubVar
Ψ ′, x : B1 ` e0 ⇐ B2 By i.h. (i)

Z Ψ ′ ` λx. e0 ⇐ B1 → B2 By Decl→I

– Case Ψ,β ` A1 → A2 ≤ B ′

Ψ ` A1 → A2 ≤ ∀β. B ′ ≤∀R

Ψ,β ` A1 → A2 ≤ B ′ Subderivation
Ψ,β ` λx. e0 ⇐ A1 → A2 By weakening
Ψ ′, β ` λx. e0 ⇐ B ′ By i.h. (i)

Z Ψ ′ ` λx. e0 ⇐ ∀β. B ′ By Decl∀I

For part (ii), synthesis:

• Case (x : A) ∈ Ψ
Ψ ` x⇒ A

DeclVar

By inversion on Ψ ′ ≤ Ψ, we have (x : A ′) ∈ Ψ ′ where Ψ ` A ′ ≤ A.
By DeclVar, Ψ ′ ` x⇒ A ′.

• Case Ψ ` A Ψ ` e0 ⇐ A

Ψ ` (e0 : A) ⇒ A
DeclAnno

22

Let A ′ = A.
Ψ ` A Subderivation
Ψ ′ ` A By weakening

Ψ ` e0 ⇐ A Subderivation
Ψ ′ ` e0 ⇐ A By i.h.

Z Ψ ′ ` (e0 : A) ⇒ A ′ By DeclAnno and A ′ = A

Z Ψ ` A ′ ≤ A By Lemma 3 (Reflexivity of Declarative Subtyping)

• Case

Ψ ` () ⇒ 1
Decl1I⇒

Let A ′ = 1.
Z Ψ ′ ` () ⇒ 1 By Decl1I⇒
Z Ψ ` 1 ≤ 1 By ≤Unit

• Case Ψ ` σ→ τ Ψ, x : σ ` e0 ⇐ τ

Ψ ` λx. e0 ⇒ σ→ τ
Decl→I⇒

Let A ′ = σ→ τ.
Ψ ′ ≤ Ψ Given
Ψ ` σ ≤ σ By Lemma 3 (Reflexivity of Declarative Subtyping)

Ψ ′, x : σ ≤ Ψ, x : σ By CtxSubVar
Ψ, x : σ ` e0 ⇐ τ Subderivation

Ψ ` τ ≤ τ By Lemma 3 (Reflexivity of Declarative Subtyping)
Ψ ′, x : σ ` e0 ⇐ τ By i.h. (i) with τ

Z Ψ ` A ′ ≤ σ→ τ By Lemma 3 (Reflexivity of Declarative Subtyping)
Z Ψ ′ ` λx. e0 ⇒ A ′ By Decl→I⇒

• Case Ψ ` e1 ⇒ C Ψ ` C • e2 ⇒⇒ A

Ψ ` e1 e2 ⇒ A
Decl→E

Ψ ` e1 ⇒ C Subderivation
Ψ ′ ` e1 ⇒ C ′ By i.h. (ii)
Ψ ` C ′ ≤ C ′′

Ψ ` C • e2 ⇒⇒ A Subderivation
Z Ψ ` A ′ ≤ A By i.h. (iii)

Ψ ′ ` C ′ • e2 ⇒⇒ A ′ ′′

Z Ψ ′ ` e1 e2 ⇒ A ′ By Decl→E

For part (iii), application:

• Case Ψ ` τ Ψ ` [τ/α]C0 • e⇒⇒ A

Ψ ` ∀α. C0 • e⇒⇒ A
Decl∀App

Ψ ` C ′ ≤ ∀α. C0 Given
Ψ,α ` C ′ ≤ C0 By Lemma 7 (Invertibility)
Ψ ` [τ/α]C ′ ≤ [τ/α]C0 By Lemma 5 (Substitution)
Ψ ` C ′ ≤ [τ/α]C0 α cannot appear in C ′

Ψ ` [τ/α]C0 • e⇒⇒ A Subderivation
Z Ψ ′ ` C ′ • e⇒⇒ A ′ By i.h. (iii)
Z Ψ ′ ` A ′ ≤ A ′′

23

• Case Ψ ` e⇐ C0

Ψ ` C0 → A • e⇒⇒ A
Decl→App

Ψ ` C ′ ≤ C0 → A Given

– Case Ψ ` C0 ≤ C ′
1 Ψ ` C ′

2 ≤ A
Ψ ` C ′

1 → C ′
2 ≤ C0 → A

≤→
Let A ′ = C ′

2.
Ψ ` e⇐ C0 Subderivation
Ψ ` C0 ≤ C ′

1 Subderivation
Ψ ′ ` e⇐ C ′

1 By i.h.
Ψ ′ ` C ′

1 → C ′
2 • e⇒⇒ C ′

2 By Decl→App
Z Ψ ′ ` C ′

1 → A ′ • e⇒⇒ A ′ A ′ = C ′
2

Ψ ` C ′
2 ≤ A Subderivation

Z Ψ ` A ′ ≤ A A ′ = C ′
2

– Case Ψ ` τ Ψ ` [τ/β]B ≤ C0 → A

Ψ ` ∀β. B ≤ C0 → A
≤∀L

Ψ ` [τ/β]B ≤ C0 → A Subderivation
Ψ ′ ` [τ/β]B • e⇒⇒ A ′ By i.h. (iii)

Z Ψ ` A ′ ≤ A ′′

Ψ ` τ Subderivation
Ψ ′ ` τ By weakening

Z Ψ ′ ` ∀β. B • e⇒⇒ A ′ By Decl∀App

Theorem 3 (Substitution).
Assume Ψ ` e⇒ A.

(i) If Ψ, x : A ` e ′ ⇐ C then Ψ ` [e/x]e ′ ⇐ C.

(ii) If Ψ, x : A ` e ′ ⇒ C then Ψ ` [e/x]e ′ ⇒ C.

(iii) If Ψ, x : A ` B • e ′ ⇒⇒ C then Ψ ` B • [e/x]e ′ ⇒⇒ C.

Proof. By a straightforward mutual induction on the given derivation.

Theorem 4 (Inverse Substitution).
Assume Ψ ` e⇐ A.

(i) If Ψ ` [(e : A)/x]e ′ ⇐ C then Ψ, x : A ` e ′ ⇐ C.

(ii) If Ψ ` [(e : A)/x]e ′ ⇒ C then Ψ, x : A ` e ′ ⇒ C.

(iii) If Ψ ` B • [(e : A)/x]e ′ ⇒⇒ C then Ψ, x : A ` B • e ′ ⇒⇒ C.

Proof. By mutual induction on the given derivation.

(i) We have Ψ ` [(e : A)/x]e ′ ⇐ C.

• Case Ψ ` [(e : A)/x]e ′ ⇒ B Ψ ` B ≤ C
Ψ ` [(e : A)/x]e ′ ⇐ C

DeclSub

By i.h. (ii), Ψ, x : A ` e ′ ⇒ B.
By DeclSub, Ψ, x : A ` e ′ ⇐ C.

• Case

Ψ ` () ⇐ 1︸︷︷︸
C

Decl1I

We have [(e : A)/x]e ′ = (). Therefore e ′ = (), and the result follows by Decl1I.

24

• Case Ψ,α ` [(e : A)/x]e ′ ⇐ C ′

Ψ ` [(e : A)/x]e ′ ⇐ ∀α. C ′ Decl∀I

By i.h. (i), Ψ,α, x : A ` e ′ ⇐ C ′.
By exchange, Ψ, x : A,α ` e ′ ⇐ C ′.
By Decl∀I, Ψ, x : A ` e ′ ⇐ ∀α. C ′.

• Case Ψ, y : C1 ` e ′′ ⇐ C2

Ψ ` λy. e ′′ ⇐ C1 → C2
Decl→I

We have [(e : A)/x]e ′ = λy. e ′′.
By the definition of substitution, e ′ = λy. e0 and e ′′ = [(e : A)/x]e0.

Ψ, y : C1 ` e ′′ ⇐ C2 Subderivation
Ψ, y : C1 ` [(e : A)/x]e0 ⇐ C2 By above equality

Ψ, y : C1, x : A ` e0 ⇐ C2 By i.h. (i)
Ψ, x : A,y : C1 ` e0 ⇐ C2 By exchange

Z Ψ, x : A ` λy. e0︸ ︷︷ ︸
e ′

⇐ C1 → C2︸ ︷︷ ︸
C

By Decl→I

(ii) We have Ψ ` [(e : A)/x]e ′ ⇒ C.

• Case e ′ = x:
Note [(e : A)/x]x = (e : A).
Hence Ψ ` (e : A) ⇒ C; by inversion, C = A.
By Lemma 10 (Well-Formedness), Ψ ` C, which is Ψ ` A.
By DeclAnno, Ψ ` (e : A) ⇒ A.
By DeclVar, Ψ, x : A ` x︸︷︷︸

e ′

⇒ A.

• Case e ′ 6= x:
We now proceed by cases on the derivation of Ψ ` [(e : A)/x]e ′ ⇒ C.

– Case (y : C) ∈ Ψ
Ψ ` y⇒ C

DeclVar

Since [(e : A)/x]e ′ = y, we know that e ′ = y.
By DeclVar, Ψ, x : A ` y⇒ C.

– Case Ψ ` e ′′ ⇐ C

Ψ ` (e ′′ : C)︸ ︷︷ ︸
[(e:A)/x]e ′

⇒ C
DeclAnno

We know [(e : A)/x]e ′ = (e ′′ : C) and e ′ 6= x.
Hence there is e0 such that e ′ = (e0 : C) and [(e : A)/x]e0 = e

′′.

Ψ ` e ′′ ⇐ C Subderivation
Ψ ` [(e : A)/x]e0 ⇐ C By above equality

Ψ, x : A ` e0 ⇐ C By i.h. (i)
Ψ, x : A ` C By Lemma 10 (Well-Formedness)
Ψ, x : A ` (e0 : C) ⇒ C By DeclAnno

Z Ψ, x : A ` e ′ ⇒ C By above equality

– Case

Ψ ` () ⇒ 1
Decl1I⇒

Since [(e : A)/x]e ′ = (), it follows that e ′ = ().
By Decl1I⇒, Ψ, x : A ` () ⇒ 1.

25

– Case Ψ ` σ→ τ Ψ, y : σ ` e ′′ ⇐ τ

Ψ ` λy. e ′′ ⇒ σ→ τ
Decl→I⇒

We have [(e : A)/x]e ′ = λy. e ′′.
By definition of substitution, there exists e0 such that e ′ = λy. e0 and e ′′ = [(e : A)/x]e0.
So Ψ, y : σ ` [(e : A)/x]e0 ⇐ τ.
By i.h. (i), Ψ, y : σ, x : A ` e0 ⇐ τ.
By exchange and Decl→I, Ψ, x : A ` λy. e0 ⇐ σ→ τ.
Hence Decl→I⇒, Ψ, x : A ` e ′ ⇒ σ→ τ.

– Case Ψ ` e1 ⇒ B Ψ ` B • e2 ⇒⇒ C

Ψ ` e1 e2︸ ︷︷ ︸
[(e:A)/x]e ′

⇒ C
Decl→E

Note that [(e : A)/x]e ′ = e1 e2.
So there exist e ′1, e

′
2 such that e ′ = e ′1 e

′
2 and [(e : A)/x]e ′k = ek for k ∈ {1, 2}.

Applying these equalities to each subderivation gives

Ψ ` [(e : A)/x]e ′1 ⇒ B and Ψ ` B • [(e : A)/x]e ′2 ⇒⇒ C

By i.h. (ii) and (iii), Ψ, x : A ` e ′1 ⇒ B and Ψ, x : A ` B • e ′2 ⇒⇒ C.
By Decl→E, Ψ, x : A ` e ′1 e ′2 ⇒ C, which is Ψ, x : A ` e ′ ⇒ C.

(iii) We have Ψ ` [(e : A)/x]e ′ • A⇒⇒ C.

• Case Ψ ` τ Ψ ` [τ/α]B • [(e : A)/x]e ′ ⇒⇒ C

Ψ ` ∀α. B • [(e : A)/x]e ′ ⇒⇒ C
Decl∀App

Follows by i.h. (iii) and Decl∀App.

• Case Ψ ` [(e : A)/x]e ′ ⇐ B

Ψ ` B→ C • [(e : A)/x]e ′ ⇒⇒ C
Decl→App

Follows by i.h. (i) and Decl→App.

Theorem 5 (Annotation Removal). We have that:

• If Ψ `
(
(λx. e) : A

)⇐ C then Ψ ` λx. e⇐ C.

• If Ψ ` (() : A) ⇐ C then Ψ ` () ⇐ C.

• If Ψ ` e1 (e2 : A) ⇒ C then Ψ ` e1 e2 ⇒ C.

• If Ψ ` (x : A) ⇒ A then Ψ ` x⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(e1 e2) : A

)⇒ A then Ψ ` e1 e2 ⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(e : B) : A

)⇒ A then Ψ ` (e : B) ⇒ B and Ψ ` B ≤ A.

• If Ψ `
(
(λx. e) : σ→ τ

)⇒ σ→ τ then Ψ ` λx. e⇒ σ→ τ.

Proof. All of these follow directly from inversion and Lemma 14 (Subsumption). The one exception is
the third, which additionally requires a small induction on the application judgment.

Theorem 6 (Soundness of Eta).
If Ψ ` λx. e x⇐ A and x 6∈ FV(e), then Ψ ` e⇐ A.

Proof. By induction on the derivation of Ψ ` λx. e x⇐ A. There are three non-impossible cases:

26

• Case Ψ, x : B ` e x⇐ C

Ψ ` λx. e x⇐ B→ C
Decl→I

We have Ψ, x : B ` e x⇐ C.
By inversion on DeclSub, we get Ψ, x : B ` e x⇒ C ′ and Ψ ` C ′ ≤ C.
By inversion on Decl→E, we get Ψ, x : B ` e⇒ A ′ and Ψ, x : B ` A ′ • x⇒⇒ C ′.
By thinning, we know that Ψ ` e⇒ A ′.
By Lemma 12 (Application Subtyping), we get B ′ so Ψ, x : B ` A ′ ≤ B ′ → C ′ and Ψ, x : B ` x ⇐
B ′.
By inversion, we know that Ψ, x : B ` x⇒ B and Ψ ` B ≤ B ′.
By ≤→, Ψ, x : B ` B ′ → C ′ ≤ B→ C.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ, x : B ` A ′ ≤ B→ C.
Hence Ψ ` A ′ ≤ B→ C.
By DeclSub, Ψ ` e⇐ B→ C.

• Case Ψ,α ` λx. e x⇐ B

Ψ ` λx. e x⇐ ∀α. B Decl∀I

By induction, Ψ,α ` λx. e x⇐ B.
By Decl∀I, Ψ ` λx. e x⇐ ∀α. B.

• Case Ψ ` λx. e x⇒ B Ψ ` B ≤ A
Ψ ` λx. e x⇐ A

DeclSub

We have Ψ ` λx. e x⇒ B and Ψ ` B ≤ A.
By inversion on Decl→I⇒, Ψ, x : σ ` e x⇐ τ and B = σ→ τ.
By inversion on DeclSub, we get Ψ, x : σ ` e x⇒ C2 and Ψ ` C2 ≤ τ.
By inversion on Decl→E, we get Ψ, x : σ ` e⇒ C and Ψ, x : σ ` C • x⇒⇒ C2.
By thinning, we know that Ψ ` e⇒ C.
By Lemma 12 (Application Subtyping), we get C1 such that Ψ, x : σ ` C ≤ C1 → C2 and Ψ, x : σ `
x⇐ C1.
By inversion on DeclSub, Ψ, x : σ ` x⇒ σ and Ψ ` σ ≤ C1.
By ≤→, Ψ, x : σ ` C1 → C2 ≤ σ→ τ.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ, x : σ ` C ≤ σ→ τ.
Hence Ψ ` C ≤ σ→ τ.
Hence by Lemma 6 (Transitivity of Declarative Subtyping), Ψ ` C ≤ A.
By DeclSub, Ψ ` e⇐ A.

D ′ Properties of Context Extension

D ′.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If Γ −→ ∆, and u is a variable or marker Iα̂ declared in Γ , then
u is declared in ∆.

Proof. By a routine induction on Γ −→ ∆.

Lemma 16 (Declaration Order Preservation). If Γ −→ ∆ and u is declared to the left of v in Γ , then u is
declared to the left of v in ∆.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

· −→ · −→ID

This case is impossible.

27

• Case Γ −→ ∆

Γ, x : A −→ ∆, x : A
−→Var

There are two cases, depending on whether or not v = x.

– Case v = x:
Since u is declared to the left of v, u is declared in Γ .
By Lemma 15 (Declaration Preservation), u is declared in ∆.
Hence u is declared to the left of x in ∆, x : A.

– Case v 6= x:
Then v is declared in Γ , and u is declared to the left of v in Γ .
By induction, u is declared to the left of v in ∆.
Hence u is declared to the left of v in ∆, x : A.

• Case Γ −→ ∆

Γ, α −→ ∆,α
−→Uvar

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved

This case is similar to the −→Var case.

• Case Γ −→ ∆ [∆]τ = [∆]τ ′

Γ, α̂ = τ −→ ∆, α̂ = τ ′
−→Solved

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ,Iα̂ −→ ∆,Iα̂
−→Marker

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂ = τ
−→Solve

This case is similar to the −→Var case.

• Case Γ −→ ∆

Γ −→ ∆, α̂
−→Add

By induction, u is declared to the left of v in ∆.
Therefore u is declared to the left of v in ∆, α̂.

• Case Γ −→ ∆

Γ −→ ∆, α̂ = τ
−→AddSolved

By induction, u is declared to the left of v in ∆.
Therefore u is declared to the left of v in ∆, α̂ = τ.

Lemma 17 (Reverse Declaration Order Preservation). If Γ −→ ∆ and u and v are both declared in Γ and
u is declared to the left of v in ∆, then u is declared to the left of v in Γ .

Proof. It is given that u and v are declared in Γ . Either u is declared to the left of v in Γ , or v is declared
to the left of u. Suppose the latter (for a contradiction). By Lemma 16 (Declaration Order Preservation),
v is declared to the left of u in ∆. But we know that u is declared to the left of v in ∆: contradiction.
Therefore u is declared to the left of v in Γ .

28

Lemma 18 (Substitution Extension Invariance). If Θ ` A and Θ −→ Γ then [Γ]A = [Γ]([Θ]A) and
[Γ]A = [Θ]([Γ]A).

Proof. To show that [Γ]A = [Θ][Γ]A, observe that Θ ` A, and that by definition of Θ −→ Γ , every solved
variable in Θ is solved in Γ . Therefore [Θ]([Γ]A) = [Γ]A, since unsolved([Γ]A) contains no variables that
Θ solves.

To show that [Γ]A = [Γ][Θ]A, we proceed by induction on |Γ `A|.

• Case α ∈ Θ
Θ ` α

Note that [Γ]α = α = [Θ]α, so [Γ]α = [Γ][Θ]α.

• Case Θ ` A Θ ` B
Θ ` A→ B

By induction, [Γ]A = [Γ][Θ]A.
By induction, [Γ]B = [Γ][Θ]B.
Then

[Γ](A→ B) = [Γ]A→ [Γ]B By definition of substitution
= [Γ][Θ]A→ [Γ][Θ]B By induction hypothesis (twice)
= [Γ]([Θ]A→ [Θ]B) By definition of substitution
= [Γ][Θ](A→ B) By definition of substitution

• Case Θ,α ` A
Θ ` ∀α. A

By inversion, we have Θ,α ` A.
By rule −→Uvar, Θ,α −→ Γ, α.
By induction, [Γ, α]A = [Γ, α][Θ,α]A.
By definition, [Γ]A = [Γ][Θ]A.
Then

[Γ]∀α. A = ∀α. [Γ]A By definition
= ∀α. [Γ][Θ]A By conclusion above
= [Γ](∀α. [Θ]A) By definition
= [Γ][Θ](∀α. A) By definition
= [Γ, α][Θ,α](∀α. A) By definition

• Case

Θ0, α̂, Θ1︸ ︷︷ ︸
Θ

` α̂

Note that [Θ]α̂ = α̂.
Hence [Γ][Θ]α̂ = [Γ]α̂.

• Case

Θ0, α̂ = τ,Θ1 ` α̂
From Θ −→ Γ , By a nested induction we get Γ = Γ0, α̂ = τ ′, Γ1, and [Γ]τ ′ = [Γ]τ.
Note that |Θ ` τ| < |Θ ` α̂|.
By induction, [Γ]τ = [Γ][Θ]τ.
Hence

[Γ]α̂ = [Γ]τ ′ By definition
= [Γ]τ From the extension judgment
= [Γ][Θ]τ From the induction hypothesis
= [Γ][Θ]α̂ By definition

29

Lemma 19 (Extension Equality Preservation).
If Γ ` A and Γ ` B and [Γ]A = [Γ]B and Γ −→ ∆, then [∆]A = [∆]B.

Proof. By induction on the derivation of Γ −→ ∆.

• Case

·︸︷︷︸
Γ

−→ ·︸︷︷︸
∆

−→ID

We have [Γ]A = [Γ]B, but Γ = ∆, so [∆]A = [∆]B.

• Case Γ ′ −→ ∆ ′

Γ ′, x : C −→ ∆ ′, x : C
−→Var

We have [Γ ′, x : C]A = [Γ ′, x : C]B.
By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′]A = [∆ ′]B.
By definition of substitution, [∆ ′, x : C]A = [∆ ′, x : C]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α −→ ∆ ′, α
−→Uvar

We have [Γ ′, α]A = [Γ ′, α]B.
By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′]A = [∆ ′]B.
By definition of substitution, [∆ ′, α]A = [∆ ′, α]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

Similar to the −→Uvar case.

• Case Γ ′ −→ ∆ ′

Γ ′,Iα̂ −→ ∆ ′,Iα̂
−→Marker

Similar to the −→Uvar case.

• Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

We have [Γ]A = [Γ]B.
By i.h., [∆ ′]A = [∆ ′]B.
By definition of substitution, [∆ ′, α̂]A = [∆ ′, α̂]B.

• Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂ = τ
−→AddSolved

We have [Γ]A = [Γ]B.
By i.h., [∆ ′]A = [∆ ′]B.
We implicitly assume that ∆ is well-formed, so α̂ /∈ dom(∆ ′).
Since Γ −→ ∆ ′ and α̂ /∈ dom(∆ ′), it follows that α̂ /∈ dom(Γ).
We have Γ ` A and Γ ` B, so α̂ /∈ (FV(A) ∪ FV(B)).
Therefore, by definition of substitution, [∆ ′, α̂ = τ]A = [∆ ′, α̂ = τ]B.

30

• Case Γ ′ −→ ∆ ′ [∆ ′]τ = [∆ ′]τ ′

Γ ′, α̂ = τ −→ ∆ ′, α̂ = τ ′
−→Solved

We have [Γ ′, α̂ = τ]A = [Γ ′, α̂ = τ]B.

By definition, [Γ ′, α̂ = τ]A = [Γ ′, α̂ = τ]τ, but we implicitly assume that Γ is well-formed, so
α̂ /∈ FV(τ), so actually [Γ ′, α̂ = τ]A = [Γ ′]τ.
Combined with similar reasoning for B, we get

[Γ ′][τ/α̂]A = [Γ ′][τ/α̂]B

By i.h., [∆ ′][τ/α̂]A = [∆ ′][τ/α̂]B.
By distributivity of substitution,

[
[∆ ′]τ/α̂

]
[∆ ′]A =

[
[∆ ′]τ/α̂

]
[∆ ′]B.

Using the premise [∆ ′]τ = [∆ ′]τ ′, we get [[∆ ′]τ ′/α̂][∆ ′]A = [[∆ ′]τ ′/α̂][∆ ′]B.
By distributivity of substitution (in the other direction), [∆ ′][τ ′/α̂]A = [∆ ′][τ ′/α̂]B.
It follows from the definition of substitution that [∆ ′, α̂ = τ ′]A = [∆ ′, α̂ = τ ′]B.

• Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂ = τ
−→Solve

We have [Γ ′, α̂]A = [Γ ′, α̂]B.
By definition of substitution, [Γ ′]A = [Γ ′]B.
By i.h., [∆ ′][τ/α̂]A = [∆ ′][τ/α̂]B.
It follows from the definition of substitution that [∆ ′, α̂ = τ]A = [∆ ′, α̂ = τ]B.

Lemma 20 (Reflexivity). If Γ is well-formed, then Γ −→ Γ .

Proof. By induction on the structure of Γ .

• Case Γ = ·: Apply rule −→ID.

• Case Γ = (Γ ′, α): By i.h., Γ ′ −→ Γ ′. By rule −→Uvar, we get Γ ′, α −→ Γ ′, α.

• Case Γ = (Γ ′, α̂): By i.h., Γ ′ −→ Γ ′. By rule −→Unsolved, we get Γ ′, α̂ −→ Γ ′, α̂.

• Case Γ = (Γ ′, α̂ = τ):

By i.h., Γ ′ −→ Γ ′.
Clearly, [Γ ′]τ = [Γ ′]τ, so we can apply −→Solved to get Γ ′, α̂ = τ −→ Γ ′, α̂ = τ.

• Case Γ = (Γ ′,Iα̂): By i.h., Γ ′ −→ Γ ′. By rule −→Marker, we get Γ ′,Iα̂ −→ Γ ′,Iα̂.

Lemma 21 (Transitivity). If Γ −→ ∆ and ∆ −→ Θ, then Γ −→ Θ.

Proof. By induction on the derivation of ∆ −→ Θ.

• Case −→ID:

In this case Θ = ∆.
Hence Γ −→ ∆ suffices.

• Case ∆ ′ −→ Θ ′

∆ ′, α −→ Θ ′, α
−→Uvar

We have ∆ = (∆ ′, α) and Θ = (Θ ′, α).
By inversion on Γ −→ ∆, we have Γ = (Γ ′, α) and Γ ′ −→ ∆ ′.
By i.h., Γ ′ −→ Θ ′.
Applying rule −→Uvar gives Γ ′, α −→ Θ ′, α.

31

• Case ∆ ′ −→ Θ ′

∆ ′, α̂ −→ Θ ′, α̂
−→Uvar

We have ∆ = (∆ ′, α̂) and Θ = (Θ ′, α̂).
Either of two rules could have derived Γ −→ ∆:

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

Here we have Γ = (Γ ′, α̂) and Γ ′ −→ ∆ ′.
By i.h., Γ ′ −→ Θ ′.
Applying rule −→Unsolved gives Γ ′, α̂ −→ Θ ′, α̂.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

By i.h., Γ −→ Θ ′.
By rule −→Add, we get Γ −→ Θ ′, α̂.

• Case ∆ ′ −→ Θ ′ [Θ ′]τ1 = [Θ ′]τ2

∆ ′, α̂ = τ1 −→ Θ ′, α̂ = τ2
−→Solved

In this case ∆ = (∆ ′, α̂ = τ1) and Θ = (Θ ′, α̂ = τ2).
One of three rules must have derived Γ −→ ∆ ′, α̂ = τ:

– Case Γ ′ −→ ∆ ′ [∆ ′]τ0 = [∆ ′]τ1

Γ ′, α̂ = τ0 −→ ∆ ′, α̂ = τ1
−→Solved

Here, Γ = (Γ ′, α̂ = τ0) and ∆ = (∆ ′, α̂ = τ1).
By i.h., we have Γ ′ −→ Θ ′.
The premises of the respective −→ derivations give us [∆ ′]τ0 = [∆ ′]τ1 and [Θ ′]τ1 = [Θ ′]τ2.
We know that Γ ′ ` τ0 and ∆ ′ ` τ1 and Θ ′ ` τ2.
By extension weakening (Lemma 25 (Extension Weakening)), Θ ′ ` τ0.
By extension weakening (Lemma 25 (Extension Weakening)), Θ ′ ` τ1.
Since [∆ ′]τ0 = [∆ ′]τ1, we know that [Θ ′][∆ ′]τ0 = [Θ ′][∆ ′]τ1.
By Lemma 18 (Substitution Extension Invariance), [Θ ′][∆ ′]τ0 = [Θ ′]τ0.
By Lemma 18 (Substitution Extension Invariance), [Θ ′][∆ ′]τ1 = [Θ ′]τ1.
So [Θ ′]τ0 = [Θ ′]τ1.

Hence by transitivity of equality, [Θ ′]τ0 = [Θ ′]τ1 = [Θ ′]τ2.
By rule −→Solved, Γ ′, α̂ = τ −→ Θ ′, α̂ = τ2.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂ = τ1
−→AddSolved

By induction, we have Γ −→ Θ ′.
By rule −→AddSolved, we get Γ −→ Θ ′, α̂ = τ2.

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂ = τ1
−→Solve

We have Γ = (Γ ′, α̂).
By induction, Γ ′ −→ Θ ′.
By rule −→Solve, we get Γ ′, α̂ −→ Θ ′, α̂ = τ2.

32

• Case ∆ ′ −→ Θ ′

∆ ′,Iα̂ −→ Θ ′,Iα̂
−→Marker

In this case we know ∆ = (∆ ′,Iα̂) and Θ = (Θ ′,Iα̂).
Since ∆ = (∆ ′,Iα̂), only −→Marker could derive Γ −→ ∆, so by inversion, Γ = (Γ ′,Iα̂) and
Γ ′ −→ ∆ ′.
By induction, we have Γ ′ −→ Θ ′.
Applying rule −→Marker gives Γ ′,Iα̂ −→ Θ ′,Iα̂.

• Case ∆ −→ Θ ′

∆ −→ Θ ′, α̂
−→Add

In this case, we have Θ = (Θ ′, α̂).
By induction, we get Γ −→ Θ ′.
By rule −→Add, we get Γ −→ Θ ′, α̂.

• Case ∆ −→ Θ ′

∆ −→ Θ ′, α̂ = τ
−→AddSolved

In this case, we have Θ = (Θ ′, α̂ = τ).
By induction, we get Γ −→ Θ ′.
By rule −→AddSolved, we get Γ −→ Θ ′, α̂ = τ.

• Case ∆ ′ −→ Θ ′

∆ ′, α̂ −→ Θ ′, α̂ = τ
−→Solve

In this case, we have ∆ = (∆ ′, α̂) and Θ = (Θ ′, α̂ = τ).
One of two rules could have derived Γ −→ ∆ ′, α̂:

– Case Γ ′ −→ ∆ ′

Γ ′, α̂ −→ ∆ ′, α̂
−→Unsolved

In this case, we have Γ = (Γ ′, α̂) and Γ ′ −→ ∆ ′ and ∆ ′ −→ Θ ′.
By induction, we have Γ ′ −→ Θ ′.
By rule −→Solve, we get Γ ′, α̂ −→ Θ ′, α̂ = τ.

– Case Γ −→ ∆ ′

Γ −→ ∆ ′, α̂
−→Add

In this case, we have Γ −→ ∆ ′ and ∆ ′ −→ Θ ′.
By induction, we have Γ −→ Θ ′.
By rule −→Solve, we get Γ −→ Θ ′, α̂ = τ.

Lemma 22 (Right Softness). If Γ −→ ∆ and Θ is soft (and (∆,Θ) is well-formed) then Γ −→ ∆,Θ.

Proof. By induction on Θ, applying rules −→Add and −→AddSolved as needed.

Lemma 23 (Evar Input).
If Γ, α̂ −→ ∆ then ∆ = (∆0, ∆α̂, Θ) where Γ −→ ∆0, and ∆α̂ is either α̂ or α̂ = τ, and Θ is soft.

Proof. By induction on the given derivation.

• Cases −→ID, −→Var, −→Uvar, −→Solved, −→Marker:
Impossible: the left-hand context cannot have the form Γ, α̂.

33

• Case Γ −→ ∆0

Γ, α̂ −→ ∆0, α̂︸ ︷︷ ︸
∆

−→Unsolved

Let Θ = ·, which is vacuously soft. Therefore ∆ = (∆0, α̂) = (∆0, α̂, Θ); the subderivation is the
rest of the result.

• Case Γ −→ ∆0

Γ, α̂ −→ ∆0, α̂ = τ︸ ︷︷ ︸
∆

−→Solve

Let Θ = ·, which is vacuously soft. Therefore ∆ = (∆0, α̂) = (∆0, α̂ = τ,Θ); the subderivation is
the rest of the result.

• Case Γ, α̂ −→ ∆0

Γ, α̂ −→ ∆0, β̂︸ ︷︷ ︸
∆

−→Add

Suppose β̂ = α̂.
We have Γ, α̂ −→ ∆0. By Lemma 15 (Declaration Preservation), α̂ is declared in ∆0.
But then (∆0, β̂) = (∆0, α̂) with multiple α̂ declarations,
which violates the implicit assumption that ∆ is well-formed. Contradiction.

Therefore β̂ 6= α̂.

By i.h., ∆ ′ = (∆0, ∆α̂, Θ
′) where Γ −→ ∆0 and Θ ′ is soft.

LetΘ = (Θ ′, β̂). Therefore (∆ ′, β̂) = (∆0, ∆α̂, Θ
′, β̂). AsΘ ′ is soft, (Θ ′, β̂) is soft. Since ∆ = (∆ ′, β̂),

this gives ∆ = (∆0, ∆α̂, Θ).

• Case −→AddSolved: Similar to the case for −→Add.

Lemma 24 (Extension Order).

(i) If ΓL, α, ΓR −→ ∆ then ∆ = (∆L, α, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(ii) If ΓL,Iα̂, ΓR −→ ∆ then ∆ = (∆L,Iα̂, ∆R) where ΓL −→ ∆L.
Moreover, if ΓR is soft then ∆R is soft.

(iii) If ΓL, α̂, ΓR −→ ∆ then ∆ = ∆L, Θ,∆R where ΓL −→ ∆L and Θ is either α̂ or α̂ = τ for some τ.

(iv) If ΓL, α̂ = τ, ΓR −→ ∆ then ∆ = ∆L, α̂ = τ ′, ∆R where ΓL −→ ∆L and [∆L]τ = [∆L]τ
′.

(v) If ΓL, x : A, ΓR −→ ∆ then ∆ = (∆L, x : A
′, ∆R) where ΓL −→ ∆L and [∆L]A = [∆L]A

′.
Moreover, ΓR is soft if and only if ∆R is soft.

Proof. (i) By induction on the derivation of ΓL, α, ΓR −→ ∆.

• Case

· −→ · −→ID

This case is impossible since (ΓL, α, ΓR) cannot have the form ·.
• Cases −→Uvar:

We have two cases, depending on whether or not the rightmost variable is α.

– Case Γ −→ ∆ ′

Γ, α −→ ∆ ′, α
−→Uvar

Let ∆L = ∆ ′, and let ∆R = · (which is soft).
We have Γ −→ ∆ ′, which is ΓL −→ ∆L.

34

– Case ΓL, α, Γ
′
R −→ ∆ ′

ΓL, α, Γ
′
R, β︸ ︷︷ ︸
ΓR

−→ ∆ ′, β︸ ︷︷ ︸
∆

−→Uvar

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R, β).

(Since β ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′
R −→ ∆ ′

ΓL, α, Γ
′
R, x : A︸ ︷︷ ︸
ΓR

−→ ∆ ′, x : A︸ ︷︷ ︸
∆

−→Var

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R, x : A).

(Since x : A ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′
R −→ ∆ ′

ΓL, α, Γ
′
R, α̂︸ ︷︷ ︸
ΓR

−→ ∆ ′, α̂︸ ︷︷ ︸
∆

−→Unsolved

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R, α̂).

(If ΓR is soft, by i.h. ∆ ′
R is soft, so ∆R = (∆ ′

R, α̂) is soft.)

• Case ΓL, α, Γ
′
R −→ ∆ ′

ΓL, α, Γ
′
R,Iβ̂︸ ︷︷ ︸
Γ ′
R

−→ ∆ ′,Iβ̂︸ ︷︷ ︸
∆

−→Marker

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R,Iβ̂).

(Since Iβ̂ ∈ ΓR, it cannot be the case that ΓR is soft.)

• Case ΓL, α, Γ
′
R −→ ∆ ′ [∆ ′]τ = [∆ ′]τ ′

ΓL, α, Γ
′
R, α̂ = τ︸ ︷︷ ︸
ΓR

−→ ∆ ′, α̂ = τ ′︸ ︷︷ ︸
∆ ′

−→Solved

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R, α̂ = τ ′).

(If ΓR is soft, by i.h. ∆ ′
R is soft, so ∆R = (∆ ′

R, α̂ = τ) is soft.)

• Case ΓL, α, Γ
′
R −→ ∆ ′

ΓL, α, Γ
′
R, α̂︸ ︷︷ ︸
ΓR

−→ ∆ ′, α̂ = τ ′︸ ︷︷ ︸
∆

−→Solve

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Therefore ∆ = (∆L, α, ∆R, α̂ = τ).
(If ΓR is soft, by i.h. ∆ ′

R is soft, so ∆R = (∆ ′
R, α̂ = τ) is soft.)

• Case ΓL, α, ΓR −→ ∆ ′

ΓL, α, ΓR −→ ∆ ′, α̂︸ ︷︷ ︸
∆

−→Add

By i.h., ∆ ′ = (∆L, α, ∆
′
R) where ΓL −→ ∆L.

Therefore ∆ = (∆L, α, ∆
′
R, α̂).

(If ΓR is soft, by i.h. ∆ ′
R is soft, so ∆R = (∆ ′

R, α̂) is soft.)

• Case ΓL, α, ΓR −→ ∆ ′

ΓL, α, ΓR −→ ∆ ′, α̂ = τ
−→AddSolved

35

In this case, we know that ∆ = (∆ ′, α̂ = τ).
By i.h., ∆ ′ = (∆L, α, ∆

′
R) where ΓL −→ ∆L.

Hence ∆ = (∆L, α, ∆
′
R, α̂ = τ).

(If ΓR is soft, by i.h. ∆ ′
R is soft, so ∆R = (∆ ′

R, α̂ = τ) is soft.)

(ii) Similar to the proof of (i), except that the −→Marker and −→Uvar cases are swapped.

(iii) Similar to (i), with Θ = α̂ in the −→Unsolved case and Θ = (α̂ = τ) in the −→Solve case.

(iv) Similar to (iii).

(v) Similar to (i), but using the equality premise of −→Var.

Lemma 25 (Extension Weakening). If Γ ` A and Γ −→ ∆ then ∆ ` A.

Proof. By a straightforward induction on Γ ` A.
In the UvarWF case, we use Lemma 24 (Extension Order) (i). In the EvarWF case, use Lemma 24

(Extension Order) (iii). In the SolvedEvarWF case, use Lemma 24 (Extension Order) (iv).
In the other cases, apply the i.h. to all subderivations, then apply the rule.

Lemma 26 (Solution Admissibility for Extension). If ΓL ` τ then ΓL, α̂, ΓR −→ ΓL, α̂ = τ, ΓR.

Proof. By induction on ΓR.

• Case ΓR = ·:
By Lemma 20 (Reflexivity) (reflexivity), ΓL −→ ΓL.
Applying rule −→Solve gives ΓL, α̂ −→ ΓL, α̂ = τ.

• Case ΓR = (Γ ′
R, x : A):

By i.h., ΓL, α̂, Γ ′
R −→ ΓL, α̂ = τ, Γ ′

R.
Applying rule −→Var gives ΓL, α̂, Γ ′

R, x : A −→ ΓL, α̂ = τ, Γ ′
R, x : A.

• Case ΓR = (Γ ′
R, α): By i.h. and rule −→Uvar.

• Case ΓR = (Γ ′
R, β̂): By i.h. and rule −→Add.

• Case ΓR = (Γ ′
R, β̂ = τ ′): By i.h. and rule −→AddSolved.

• Case ΓR = (Γ ′
R,Iβ̂): By i.h. and rule −→Marker.

Lemma 27 (Solved Variable Addition for Extension). If ΓL ` τ then ΓL, ΓR −→ ΓL, α̂ = τ, ΓR.

Proof. By induction on ΓR. The proof is exactly the same as the proof of Lemma 26 (Solution Admissibility
for Extension), except that in the ΓR = ·, we apply rule −→AddSolved instead of −→Solve.

Lemma 28 (Unsolved Variable Addition for Extension). We have that ΓL, ΓR −→ ΓL, α̂, ΓR.

Proof. By induction on ΓR. The proof is exactly the same as the proof of Lemma 26 (Solution Admissibility
for Extension), except that in the ΓR = · case, we apply rule −→Add instead of −→Solve.

Lemma 29 (Parallel Admissibility).
If ΓL −→ ∆L and ΓL, ΓR −→ ∆L, ∆R then:

(i) ΓL, α̂, ΓR −→ ∆L, α̂, ∆R

(ii) If ∆L ` τ ′ then ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R.

(iii) If ΓL ` τ and ∆L ` τ ′ and [∆L]τ = [∆L]τ
′, then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Proof. By induction on ∆R. As always, we assume that all contexts mentioned in the statement of the
lemma are well-formed. Hence, α̂ /∈ dom(ΓL) ∪ dom(ΓR) ∪ dom(∆L) ∪ dom(∆R).

36

(i) We proceed by cases of ∆R. Observe that in all the extension rules, the right-hand context gets
smaller, so as we enter subderivations of ΓL, ΓR −→ ∆L, ∆R, the context ∆R becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need ΓL −→ ∆L. So we need to make
sure that as we drop items from the right of ΓR and ∆R, we don’t go too far and start decomposing
ΓL or ∆L! It’s easy to avoid decomposing ∆L: when ∆R = ·, we don’t need to apply the i.h. any-
way. To avoid decomposing ΓL, we need to reason by contradiction, using Lemma 15 (Declaration
Preservation).

• Case ∆R = ·:
We have ΓL −→ ∆L. Applying −→Unsolved to that derivation gives the result.

• Case ∆R = (∆ ′
R, β̂): We have β̂ 6= α̂ by the well-formedness assumption.

The concluding rule of ΓL, ΓR −→ ∆L, ∆
′
R, β̂ must have been −→Unsolved or −→Add. In both

cases, the result follows by i.h. and applying −→Unsolved or −→Add.
Note: In −→Add, the left-hand context doesn’t change, so we clearly maintain ΓL −→ ∆L. In
−→Unsolved, we can correctly apply the i.h. because ΓR 6= ·. Suppose, for a contradiction, that
ΓR = ·. Then ΓL = (Γ ′

L, β̂). It was given that ΓL −→ ∆L, that is, Γ ′
L, β̂ −→ ∆L. By Lemma

15 (Declaration Preservation), ∆L has a declaration of β̂. But then ∆ = (∆L, ∆
′
R, β̂) is not

well-formed: contradiction. Therefore ΓR 6= ·.
• Case ∆R = (∆ ′

R, β̂ = τ): We have β̂ 6= α̂ by the well-formedness assumption.
The concluding rule must have been −→Solved, −→Solve or −→AddSolved. In each case,
apply the i.h. and then the corresponding rule. (In −→Solved and −→Solve, use Lemma 15
(Declaration Preservation) to show ΓR 6= ·.)

• Case ∆R = (∆ ′
R, α): The concluding rule must have been −→Uvar. The result follows by i.h.

and applying −→Uvar.

• Case ∆R = (∆ ′
R,Iβ̂): Similar to the previous case, with rule −→Marker.

• Case ∆R = (∆ ′
R, x : A): Similar to the previous case, with rule −→Var.

(ii) Similar to part (i), except that when ∆R = ·, apply rule −→Solve.

(iii) Similar to part (i), except that when ∆R = ·, apply rule−→Solved, using the given equality to satisfy
the second premise.

Lemma 30 (Parallel Extension Solution).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ ′, ∆R and ΓL ` τ and [∆L]τ = [∆L]τ

′ then ΓL, α̂ = τ, ΓR −→ ∆L, α̂ = τ ′, ∆R.

Proof. By induction on ∆R.
In the case where ∆R = (∆ ′

R, α̂ = τ ′), we know that rule −→Solve must have concluded the derivation
(we can use Lemma 15 (Declaration Preservation) to get a contradiction that rules out −→AddSolved);
then we have a subderivation ΓL −→ ∆L, to which we can apply −→Solved.

Lemma 31 (Parallel Variable Update).
If ΓL, α̂, ΓR −→ ∆L, α̂ = τ0, ∆R and ΓL ` τ1 and ∆L ` τ2 and [∆L]τ0 = [∆L]τ1 = [∆L]τ2
then ΓL, α̂ = τ1, ΓR −→ ∆L, α̂ = τ2, ∆R.

Proof. By induction on ∆R. Similar to the proof of Lemma 30 (Parallel Extension Solution), but applying
−→Solved at the end.

D ′.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
If Γ ` α̂ :=< τ a ∆ or Γ ` τ =<: α̂ a ∆ then Γ −→ ∆.

Proof. By induction on the given instantiation derivation.

37

• Case Γ ` τ
Γ, α̂, Γ ′ ` α̂ :=< τ a Γ, α̂ = τ, Γ ′ InstLSolve

By Lemma 26 (Solution Admissibility for Extension), Γ, α̂, Γ ′ −→ Γ, α̂ = τ, Γ ′.

• Case

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]
InstLReach

Γ [α̂][β̂] = Γ0, α̂, Γ1, β̂, Γ2 for some Γ0, Γ1, Γ2.
By the definition of well-formedness, Γ0, α̂, Γ1 ` α̂.
Therefore, by Lemma 26 (Solution Admissibility for Extension), Γ0, α̂, Γ1, β̂, Γ2 −→ Γ0, α̂, Γ1, β̂ = α̂, Γ2.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` A1 =<: α̂1 a Γ ′ Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆

Γ [α̂] ` α̂ :=< A1 → A2 a ∆
InstLArr

By Lemma 28 (Unsolved Variable Addition for Extension), we can insert an (unsolved) α̂2, giving
Γ [α̂] −→ Γ [α̂2, α̂].
By Lemma 28 (Unsolved Variable Addition for Extension) again, Γ [α̂2, α̂] −→ Γ [α̂2, α̂1, α̂].
By Lemma 26 (Solution Admissibility for Extension), we can solve α̂, giving Γ [α̂2, α̂1, α̂] −→
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2].
Then by transitivity (Lemma 21 (Transitivity)), Γ [α̂] −→ Γ [α̂2, α̂1, α̂ = α̂1 → α̂2].
By i.h. on the first subderivation, Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ Γ ′.
By i.h. on the second subderivation, Γ ′ −→ ∆.
By transitivity (Lemma 21 (Transitivity)), Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ ∆.
By transitivity (Lemma 21 (Transitivity)), Γ [α̂] −→ ∆.

• Case
Γ [α̂], β ` α̂ :=< B a ∆,β,∆ ′

Γ [α̂] ` α̂ :=< ∀β. B a ∆
InstLAllR

By induction, Γ [α̂], β −→ ∆,β,∆ ′.
By Lemma 24 (Extension Order) (i), we have Γ [α̂] −→ ∆.

• Case Γ ` τ
Γ, α̂, Γ ′ ` τ =<: α̂ a Γ, α̂ = τ, Γ ′ InstRSolve

By Lemma 26 (Solution Admissibility for Extension), we can solve α̂, giving Γ, α̂, Γ ′ −→ Γ, α̂ = τ, Γ ′.

• Case

Γ [α̂][β̂] ` β̂ =<: α̂ a Γ [α̂][β̂ = α̂]
InstRReach

Γ [α̂][β̂] = Γ0, α̂, Γ1, β̂, Γ2 for some Γ0, Γ1, Γ2.
By the definition of well-formedness, Γ0, α̂, Γ1 ` α̂.
Hence by Lemma 26 (Solution Admissibility for Extension), we can solve β̂, giving Γ0, α̂, Γ1, β̂, Γ2 −→
Γ0, α̂, Γ1, β̂ = α̂, Γ2.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` α̂1 :=< A1 a Γ ′ Γ ′ ` [Γ ′]A2 =<: α̂2 a ∆

Γ [α̂] ` A1 → A2 =<: α̂ a ∆
InstRArr

Because the contexts here are the same as in InstLArr, this is the same as the InstLArr case.

• Case
Γ [α̂],Iβ̂, β̂ ` [β̂/β]B =<: α̂ a ∆,Iβ̂, ∆

′

Γ [α̂] ` ∀β. B =<: α̂ a ∆
InstRAllL

By i.h., Γ [α̂],Iβ̂, β̂ −→ ∆,Iβ̂, ∆
′.

By Lemma 24 (Extension Order) (ii), Γ [α̂] −→ ∆.

38

D ′.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
If Γ ` A <: B a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.
For cases <:Var, <:Unit, <:Exvar, we have ∆ = Γ , so Lemma 20 (Reflexivity) suffices.

• Case Γ ` B1 <: A1 a Θ Θ ` [Ω]A2 <: [Ω]B2 a ∆
Γ ` A1 → A2 <: B1 → B2 a ∆

<:→
By IH on each subderivation, Γ −→ Θ and Θ −→ ∆.

By Lemma 21 (Transitivity) (transitivity), Γ −→ ∆, which was to be shown.

• Case Γ,Iα̂, α̂ ` [α̂/α]A <: B a ∆,Iα̂, Θ
Γ ` ∀α. A <: B a ∆

<:∀L

By IH, Γ,Iα̂, α̂ −→ ∆,Iα̂, Θ.

By Lemma 24 (Extension Order) (ii) with ΓL = Γ and Γ ′
L = ∆ and ΓR = α̂ and Γ ′

R = Θ, we obtain

Γ −→ ∆

• Case Γ, β ` A <: B a ∆,β,Θ
Γ ` A <: ∀β. B a ∆

<:∀R

By IH, we have Γ, β −→ ∆,β,Θ.

By Lemma 24 (Extension Order) (i), we obtain Γ −→ ∆, which was to be shown.

• Cases <:InstantiateL, <:InstantiateR: In each of these rules, the premise has the same input and
output contexts as the conclusion, so Lemma 32 (Instantiation Extension) suffices.

E ′ Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
If Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< A a ∆ or Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` A =<: α̂ a ∆, and β̂ ∈ unsolved(Γ0), then β̂ ∈ unsolved(∆).

Proof. By induction on the given derivation.

• Case Γ0 ` τ
Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< τ a Γ0, α̂ = τ, Γ1
InstLSolve

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]
InstLReach

Immediate, since to the left of α̂, the contexts ∆ and Γ are the same.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` A1 =<: α̂1 a Γ ′ Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆

Γ [α̂] ` α̂ :=< A1 → A2 a ∆
InstLArr

39

We have β̂ ∈ unsolved(Γ0). Therefore β̂ ∈ unsolved(Γ0, α̂2).
Clearly, α̂2 ∈ unsolved(Γ0, α̂2).
We have two subderivations:

Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ` A1 =<: α̂1 a Γ ′ (1)

Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆ (2)

By induction on (1), β̂ ∈ unsolved(Γ ′).
Also by induction on (1), with α̂2 playing the role of β̂, we get α̂2 ∈ unsolved(Γ ′).
Since β̂ ∈ Γ0, it is declared to the left of α̂2 in Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1.
Hence by Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of α̂2 in Γ ′. That is,
Γ ′ = (Γ ′

0, α̂2, Γ
′
1), where β̂ ∈ unsolved(Γ ′

0).
By induction on (2), β̂ ∈ unsolved(∆).

• Case
Γ0, α̂, Γ1, β ` α̂ :=< B a ∆,β,∆ ′

Γ0, α̂, Γ1 ` α̂ :=< ∀β. B a ∆
InstLAllR

We have β̂ ∈ unsolved(Γ0).
By induction, β̂ ∈ unsolved(∆,β,∆ ′).
Note that β̂ is declared to the left of β in Γ0, α̂, Γ1, β.
By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of β in (∆,β,∆ ′), that is,
in ∆. Since β̂ ∈ unsolved(∆,β,∆ ′), we have β̂ ∈ unsolved(∆).

• Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` α̂1 :=< A1 a Γ ′ Γ ′ ` [Γ ′]A2 =<: α̂2 a ∆

Γ [α̂] ` A1 → A2 =<: α̂ a ∆
InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],Iγ̂, γ̂ ` [γ̂/β]B =<: α̂ a ∆,Iγ̂, ∆ ′

Γ [α̂] ` ∀β. B =<: α̂ a ∆
InstRAllL

We have β̂ ∈ unsolved(Γ0).
By induction, β̂ ∈ unsolved(∆,Iγ̂, ∆

′).
Note that β̂ is declared to the left of Iγ̂ in Γ0, α̂, Γ1,Iγ̂, γ̂.
By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of Iγ̂ in ∆,Iγ̂, ∆ ′.
Hence β̂ is declared in ∆, and we know it is in unsolved(∆,Iγ̂, ∆

′), so β̂ ∈ unsolved(∆).

Lemma 35 (Left Free Variable Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ :=< A a ∆ or

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` A =<: α̂ a ∆, and

Γ ` B and α̂ /∈ FV([Γ]B) and β̂ ∈ unsolved(Γ0) and β̂ /∈ FV([Γ]B), then β̂ /∈ FV([∆]B).

Proof. By induction on the given instantiation derivation.

• Case Γ0 ` τ
Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< τ a Γ0, α̂ = τ, Γ1︸ ︷︷ ︸
∆

InstLSolve

We have α̂ /∈ FV([Γ]B). Since ∆ differs from Γ only in α̂, it must be the case that [Γ]B = [∆]B. It is
given that β̂ /∈ FV([Γ]B), so β̂ /∈ FV([∆]B).

• Case

Γ ′[α̂][γ̂]︸ ︷︷ ︸
Γ

` α̂ :=< γ̂ a Γ ′[α̂][γ̂ = α̂]︸ ︷︷ ︸
∆

InstLReach

Since ∆ differs from Γ only in solving γ̂ to α̂, applying ∆ to a type will not introduce a β̂. We have
β̂ /∈ FV([Γ]B), so β̂ /∈ FV([∆]B).

40

• Case Γ0 ` τ
Γ0, α̂, Γ1 ` τ =<: α̂ a Γ0, α̂ = τ, Γ1

InstRSolve

Similar to the InstLSolve case.

• Case

Γ ′[α̂][γ̂] ` γ̂ =<: α̂ a Γ ′[α̂][γ̂ = α̂]
InstRReach

Similar to the InstLReach case.

• Case Γ ′︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ` A1 =<: α̂1 a ∆ ∆ ` α̂2 :=< [∆]A2 a ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` α̂ :=< A1 → A2 a ∆
InstLArr

We have Γ ` B and α̂ /∈ FV([Γ]B) and β̂ /∈ FV([Γ]B).
By weakening, we get Γ ′ ` B; since α̂ /∈ FV([Γ]B) and Γ ′ only adds a solution for α̂, it follows that
[Γ ′]B = [Γ]B.
Therefore α̂1 /∈ FV([Γ ′]B) and α̂2 /∈ FV([Γ ′]B) and β̂ /∈ FV([Γ ′]B).
Since we have β̂ ∈ Γ0, we also have β̂ ∈ (Γ0, α̂2).
By induction on the first premise, β̂ /∈ FV([∆]B).
Also by induction on the first premise, with α̂2 playing the role of β̂, we have α̂2 /∈ FV([∆]B).
Note that α̂2 ∈ unsolved(Γ0, α̂2).
By Lemma 34 (Left Unsolvedness Preservation), α̂2 ∈ unsolved(∆).
Therefore ∆ has the form (∆0, α̂2, ∆1).
Since β̂ 6= α̂2, we know that β̂ is declared to the left of α̂2 in Γ0, α̂2, so by Lemma 16 (Declaration
Order Preservation), β̂ is declared to the left of α̂2 in ∆. Hence β̂ ∈ ∆0.
Furthermore, by Lemma 32 (Instantiation Extension), we have Γ ′ −→ ∆.
Then by Lemma 25 (Extension Weakening), we have ∆ ` B. Using induction on the second
premise, β̂ /∈ FV([∆]B).

• Case
Γ0, α̂, Γ1, γ ` α̂ :=< C a ∆, γ,∆ ′

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` α̂ :=< ∀γ. C a ∆
InstLAllR

We have Γ ` B and α̂ /∈ FV([Γ]B) and β̂ ∈ Γ0 and β̂ /∈ FV([Γ]B).
By weakening, Γ, γ ` B; by the definition of substitution, [Γ, γ]B = [Γ]B.
Substituting equals for equals, α̂ /∈ FV([Γ, γ]B) and β̂ /∈ FV([Γ, γ]B).
By induction, β̂ /∈ FV([∆, γ,∆ ′]B).
Since β̂ is declared to the left of γ in (Γ, γ), we can use Lemma 16 (Declaration Order Preservation)
to show that β̂ is declared to the left of γ in (∆, γ,∆ ′), that is, in ∆.
We have Γ ` B, so γ /∈ FV(B). Thus each free variable u in B is in Γ , to the left of γ in (Γ, γ).
Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in ∆.
Therefore [∆, γ,∆ ′]B = [∆]B.
Earlier, we obtained β̂ /∈ FV([∆, γ,∆ ′]B), so substituting equals for equals, β̂ /∈ FV([∆]B).

• Case
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ` α̂1 :=< A1 a ∆ Γ ′ ` [∆]A2 =<: α̂2 a ∆

Γ0, α̂, Γ1 ` A1 → A2 =<: α̂ a ∆
InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],Iγ̂, γ̂ ` [γ̂/γ]C =<: α̂ a ∆,Iγ̂, ∆ ′

Γ [α̂] ` ∀γ. C =<: α̂ a ∆
InstRAllL

We have Γ ` B and α̂ /∈ FV([Γ]B) and β̂ ∈ Γ0 and β̂ /∈ FV([Γ]B).
By weakening, Γ,Iγ̂, γ̂ ` B; by the definition of substitution, [Γ,Iγ̂, γ̂]B = [Γ]B.

41

Substituting equals for equals, α̂ /∈ FV([Γ,Iγ̂, γ̂]B) and β̂ /∈ FV([Γ,Iγ̂, γ̂]B).
By induction, β̂ /∈ FV([∆,Iγ̂, ∆ ′]B).
Note that β̂ is declared to the left of Iγ̂ in Γ,Iγ̂, γ̂.
By Lemma 16 (Declaration Order Preservation), β̂ is declared to the left of Iγ̂ in ∆,Iγ̂, ∆ ′.
So β̂ is declared in ∆.
Now, note that each free variable u in B is in Γ , which is to the left of Iγ̂ in Γ,Iγ̂, γ̂.
Therefore, by Lemma 16 (Declaration Order Preservation), each free variable u in B is in ∆.
Therefore [∆,Iγ̂, ∆

′]B = [∆]B.
Earlier, we obtained β̂ /∈ FV([∆,Iγ̂, ∆ ′]B), so substituting equals for equals, β̂ /∈ FV([∆]B).

Lemma 36 (Instantiation Size Preservation). If

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` α̂ :=< A a ∆ or

Γ︷ ︸︸ ︷
Γ0, α̂, Γ1 ` A =<: α̂ a ∆, and

Γ ` B and α̂ /∈ FV([Γ]B), then |[Γ]B| = |[∆]B|, where |C| is the plain size of the term C.

Proof. By induction on the given derivation.

• Case Γ0 ` τ
Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< τ a Γ0, α̂ = τ, Γ1
InstLSolve

Since ∆ differs from Γ only in solving α̂, and we know α̂ /∈ FV([Γ]B), we have [∆]B = [Γ]B; therefore
|[∆]B = [Γ]B|.

• Case

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]
InstLReach

Here, ∆ differs from Γ only in solving β̂ to α̂. However, α̂ has the same size as β̂, so even if
β̂ ∈ FV([Γ]B), we have |[∆]B = [Γ]B|.

• Case Γ ′︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ` A1 =<: α̂1 a Θ Θ ` α̂2 :=< [Θ]A2 a ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` α̂ :=< A1 → A2 a ∆
InstLArr

We have Γ ` B and α̂ /∈ FV([Γ]B). Since α̂1, α̂2 /∈ dom(Γ), we have α̂, α̂1, α̂2 /∈ FV([Γ]B). It follows
that [Γ ′]B = [Γ]B.
By weakening, Γ ′ ` B.
By induction on the first premise, |[Γ ′]B| = |[Θ]B|.
By Lemma 16 (Declaration Order Preservation), since α̂2 is declared to the left of α̂1 in Γ ′, we have
that α̂2 is declared to the left of α̂1 in Θ.
By Lemma 34 (Left Unsolvedness Preservation), since α̂2 ∈ unsolved(Γ ′), it is unsolved in Θ: that
is, Θ = (Θ0, α̂2, Θ1).
By Lemma 32 (Instantiation Extension), we have Γ ′ −→ Θ.
By Lemma 25 (Extension Weakening), Θ ` B.
Since α̂2 /∈ FV([Γ ′]B), Lemma 35 (Left Free Variable Preservation) gives α̂2 /∈ FV([Θ]B).
By induction on the second premise, |[Θ]B| = |[∆]B|, and by transitivity of equality, |[Γ]B| = |[∆]B|.

• Case
Γ0, α̂, Γ1, β ` α̂ :=< A0 a ∆,β,∆ ′

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` α̂ :=< ∀β. A0 a ∆
InstLAllR

We have Γ ` B and α̂ /∈ FV([Γ]B).
By weakening, Γ, β ` B.
From the definition of substitution, [Γ]B = [Γ, β]B. Hence α̂ /∈ FV([Γ, β]B).
The input context of the premise is (Γ0, α̂, Γ1, β), which is (Γ, β), so by induction, |[Γ, β]B| = |[∆,β,∆ ′]B|.
Suppose u is a free variable in B. Then u is declared in Γ , and so occurs before β in Γ, β.

42

By Lemma 16 (Declaration Order Preservation), u is declared before β in ∆,β,∆ ′.
So every free variable u in B is declared in ∆.
Hence [∆,β,∆ ′]B = [∆]B.
We have [Γ]B = [Γ, β]B, so |[Γ]B| = |[Γ, β]B|; by transitivity of equality, |[Γ]B| = |[∆]B|.

• Case Γ0 ` τ
Γ0, α̂, Γ1 ` τ =<: α̂ a Γ0, α̂ = τ, Γ1

InstRSolve

Similar to the InstLSolve case.

• Case

Γ [α̂][β̂] ` β̂ =<: α̂ a Γ [α̂][β̂ = α̂]
InstRReach

Similar to the InstLReach case.

• Case Γ ′︷ ︸︸ ︷
Γ0, α̂2, α̂1, α̂ = α̂1 → α̂2, Γ1 ` α̂1 :=< A1 a Θ Θ ` [Θ]A2 =<: α̂2 a ∆

Γ0, α̂, Γ1︸ ︷︷ ︸
Γ

` A1 → A2 =<: α̂ a ∆
InstRArr

Similar to the InstLArr case.

• Case
Γ ′[α̂],Iβ̂, β̂ ` [β̂/β]A0 =<: α̂ a ∆,Iβ̂, ∆

′

Γ ′[α̂] ` ∀β. A0 =<: α̂ a ∆
InstRAllL

We have Γ ` B and α̂ /∈ FV([Γ]B).
By weakening, Γ,Iβ̂, β̂ ` B.
From the definition of substitution, [Γ]B = [Γ,Iβ̂, β̂]B. Hence α̂ /∈ FV([Γ,Iβ̂, β̂]B).
By induction, |[Γ,Iβ̂, β̂]B| = |[∆,Iβ̂, ∆

′]B|.
Suppose u is a free variable in B.
Then u is declared in Γ , and so occurs before Iβ̂ in Γ,Iβ̂, β̂.
By Lemma 16 (Declaration Order Preservation), u is declared before Iβ̂ in ∆,Iβ̂, ∆

′.
So every free variable u in B is declared in ∆.
Hence [∆,Iβ̂, ∆

′]B = [∆]B.
Since [Γ]B = [Γ,Iβ̂, β̂]B, we have |[Γ]B| = |[Γ,Iβ̂, β̂]B|; by transitivity of equality, |[Γ]B| = |[∆]B|.

Theorem 7 (Decidability of Instantiation). If Γ = Γ0[α̂] and Γ ` A such that [Γ]A = A and α̂ /∈ FV(A),
then:

(1) Either there exists ∆ such that Γ0[α̂] ` α̂ :=< A a ∆, or not.

(2) Either there exists ∆ such that Γ0[α̂] ` A =<: α̂ a ∆, or not.

Proof. By induction on the derivation of Γ ` A.

(1) Γ ` α̂ :=< A a ∆ is decidable.

• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ ′[α]

` α
UvarWF

If α ∈ ΓL, then by UvarWF we have ΓL ` α, and by rule InstLSolve we have a derivation.
Otherwise no rule matches, and so no derivation exists.

• Case UnitWF: By rule InstLSolve.

43

• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

` β̂
EvarWF

By inversion, we have β̂ ∈ Γ , and [Γ]β̂ = β̂. Since α̂ /∈ FV([Γ]β̂) = FV(β̂) = {β̂}, it follows that
α̂ 6= β̂: Either β̂ ∈ ΓL or β̂ ∈ ΓR.
If β̂ ∈ ΓL, then we have a derivation by InstLSolve.
If β̂ ∈ ΓR, then we have a derivation by InstLReach.

• Case

Γ ′[β̂ = τ]︸ ︷︷ ︸
Γ

` β̂
SolvedEvarWF

It is given that [Γ]β̂ = β̂, so this case is impossible.

• Case Γ ` A1 Γ ` A2
ΓL, α̂, ΓR︸ ︷︷ ︸

Γ

` A1 → A2
ArrowWF

By assumption, [Γ](A1 → A2) = A1 → A2 and α̂ /∈ FV([Γ](A1 → A2)).
If A1 → A2 is a monotype and is well-formed under ΓL, we can apply InstLSolve.
Otherwise, the only rule with a conclusion matching A1 → A2 is InstLArr.
First, consider whether ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ` A =<: α̂1 a − is decidable.

By definition of substitution, [Γ](A1 → A2) = ([Γ]A1) → ([Γ]A2). Since [Γ](A1 → A2) = A1 →
A2, we have [Γ]A1 = A1 and [Γ]A2 = A2.
By weakening, ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ` A1 → A2.
Since Γ ` A1 and Γ ` A2, we have α̂1, α̂2 /∈ FV(A1) ∪ FV(A2).
Since α̂ /∈ FV(A) ⊇ FV(A1), it follows that [Γ ′]A1 = A1.
By i.h., either there exists Θ such that ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ` A1 =<: α̂1 a Θ, or not.
If not, then no derivation by InstLArr exists.
If so, then we have ΓL, α̂2, α̂1, α̂ = α̂1 → α̂2, ΓR ` α̂1 :=< A1 a Θ.
By Lemma 34 (Left Unsolvedness Preservation), we know that α̂2 ∈ unsolved(Θ).
By Lemma 35 (Left Free Variable Preservation), we know that α̂2 /∈ FV([Θ]A2).
Clearly, [Θ]([Θ]A2) = [Θ]A2.
Hence by i.h., either there exists ∆ such that Θ ` α̂2 :=< [Θ]A2 a ∆, or not.
If not, then no derivation by InstLArr exists.
If it does, then by rule InstLArr, we have Γ ` α̂ :=< A a ∆.

• Case Γ, α ` A0
Γ ` ∀α. A0

ForallWF

We have ∀α. A0 = [Γ](∀α. A0). By definition of substitution, [Γ](∀α. A0) = ∀α. [Γ]A0, so
A0 = [Γ]A0.
By definition of substitution, [Γ, α]A0 = [Γ]A0.
We have α̂ /∈ FV([Γ](∀α. A0)). Therefore α̂ /∈ FV([Γ]A0) = FV([Γ, α]A0).
By i.h., either there exists Θ such that Γ, α ` α̂ :=< A0 a Θ, or not.

Suppose Γ, α ` α̂ :=< A0 a Θ.
By Lemma 32 (Instantiation Extension), Γ −→ Θ;
by Lemma 24 (Extension Order) (i), Θ = ∆,α,∆ ′.
Hence by rule InstLAllR, Γ ` α̂ :=< ∀α. A0 a ∆.

Suppose not.
Then there is no derivation, since InstLAllR is the only rule matching ∀α. A0.

(2) Γ ` A =<: α̂ a ∆ is decidable.

• Case UvarWF:
Similar to the UvarWF case in part (1), but applying rule InstRSolve instead of InstLSolve.

44

• Case UnitWF: Apply InstRSolve.

• Case

ΓL, α̂, ΓR︸ ︷︷ ︸
Γ

` β̂
EvarWF

Similar to the EvarWF case in part (1), but applying InstRSolve/InstRReach instead of InstLSolve/InstLReach.

• Case SolvedEvarWF:
Impossible, for exactly the same reasons as in the SolvedEvarWF case of part (1).

• Case Γ ` A1 Γ ` A2
ΓL, α̂, ΓR︸ ︷︷ ︸

Γ

` A1 → A2
ArrowWF

As the ArrowWF case of part (1), except applying InstRArr instead of InstLArr.

• Case Γ, β ` B
ΓL, α̂, ΓR︸ ︷︷ ︸

Γ

` ∀β. B
ForallWF

By assumption, [Γ](∀β. B) = ∀β. B. With the definition of substitution, we get [Γ]B = B. Hence
[Γ]B = B.
Hence [β̂/β][Γ]B = [β̂/β]B. Since β̂ is fresh, [β̂/β][Γ]B = [Γ][β̂/β]B.
By definition of substitution, [Γ,Iβ̂, β̂][β̂/β]B = [Γ][β̂/β]B, which by transitivity of equality is
[β̂/β]B.
We have α̂ /∈ FV([Γ](∀β. B)), so α̂ /∈ FV([Γ,Iβ̂, β̂][β̂/β]B).
Therefore, by induction, either Γ,Iβ̂, β̂ ` [β̂/β]B =<: α̂ a Θ or not.

Suppose Γ,Iβ̂, β̂ ` [β̂/β]B =<: α̂ a Θ.
By Lemma 32 (Instantiation Extension), Γ,Iβ̂, β̂ −→ Θ;
by Lemma 24 (Extension Order) (ii), Θ = ∆,Iβ̂, ∆

′.
Hence by rule InstRAllL, Γ ` ∀β. B =<: α̂ a ∆.

Suppose not.
Then there is no derivation, since InstRAllL is the only rule matching ∀β. B.

F ′ Decidability of Algorithmic Subtyping

F ′.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If Γ ` α̂ :=< τ a ∆ or Γ ` τ =<: α̂ a ∆, then if [Γ]τ = τ and
α̂ /∈ FV([Γ]τ), then |unsolved(Γ)| = |unsolved(∆)|+ 1.

Proof. By induction on the given derivation.

• Case ΓL ` τ
ΓL, α̂, ΓR ` α̂ :=< τ a ΓL, α̂ = τ, ΓR︸ ︷︷ ︸

∆

InstLSolve

It is evident that |unsolved(ΓL, α̂, ΓR)| = |unsolved(ΓL, α̂ = τ, ΓR)|+ 1.

• Case

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]
InstLReach

Similar to the previous case.

45

• Case
Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ` τ1 =<: α̂1 a Θ Θ ` α̂2 :=< [Θ]τ2 a ∆

Γ0[α̂] ` α̂ :=< τ1 → τ2 a ∆
InstLArr

|unsolved(Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2])| = |unsolved(Γ0[α̂])|+ 1 Immediate
|unsolved(Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2])| = |unsolved(Θ)|+ 1 By i.h.

|unsolved(Γ)| = |unsolved(Θ)| Subtracting 1
Z = |unsolved(∆)|+ 1 By i.h.

• Case
Γ, β ` α̂ :=< B a ∆,β,∆ ′

Γ ` α̂ :=< ∀β. B a ∆
InstLAllR

This case is impossible, since a monotype cannot have the form ∀β. B.

• Cases InstRSolve, InstRReach: Similar to the InstLSolve and InstLReach cases.

• Case InstRArr: Similar to the InstLArr case.

• Case
Γ [α̂], β ` B =<: α̂ a ∆,β,∆ ′

Γ [α̂] ` ∀β. B =<: α̂ a ∆
InstRAllL

This case is impossible, since a monotype cannot have the form ∀β. B.

Lemma 38 (Monotype Monotonicity). If Γ ` τ1 <: τ2 a ∆ then |unsolved(∆)| ≤ |unsolved(Γ)|.

Proof. By induction on the given derivation.

• Cases <:Var, <:Exvar:
In these rules, ∆ = Γ , so unsolved(∆) = unsolved(Γ); therefore |unsolved(∆)| ≤ |unsolved(Γ)|.

• Case <:→: We have an intermediate context Θ.

By inversion, τ1 = τ11 → τ12 and τ2 = τ21 → τ22. Therefore, we have monotypes in the first and
second premises.

By induction on the first premise, |unsolved(Θ)| ≤ |unsolved(Γ)|. By induction on the second premise,
|unsolved(∆)| ≤ |unsolved(Θ)|. By transitivity of ≤, |unsolved(∆)| ≤ |unsolved(Γ)|, which was to be
shown.

• Cases <:∀L, <:∀R: We are given a derivation of subtyping on monotypes, so these cases are
impossible.

• Cases <:InstantiateL, <:InstantiateR: The input and output contexts in the premise exactly match
the conclusion, so the result follows by Lemma 37 (Monotypes Solve Variables).

Lemma 39 (Substitution Decreases Size). If Γ ` A then |Γ ` [Γ]A| ≤ |Γ `A|.

Proof. By induction on |Γ `A|. If A = 1 or A = α, or A = α̂ and α̂ ∈ unsolved(Γ) then [Γ]A = A.
Therefore, |Γ ` [Γ]A| = |Γ `A|.

If A = α̂ and (α̂ = τ) ∈ Γ , then by induction hypothesis, |Γ ` [Γ]τ| ≤ |Γ ` τ|. Of course |Γ ` τ| ≤
|Γ ` τ|+ 1. By definition of substitution, [Γ]τ = [Γ]α̂, so

|Γ ` [Γ]α̂| ≤ |Γ ` τ|+ 1

By the definition of type size, |Γ ` α̂| = |Γ ` τ|+ 1, so

|Γ ` [Γ]α̂| ≤ |Γ ` α̂|

which was to be shown.
If A = A1 → A2, the result follows via the induction hypothesis (twice).
If A = ∀α. A0, the result follows via the induction hypothesis.

46

Lemma 40 (Monotype Context Invariance).
If Γ ` τ <: τ ′ a ∆ where [Γ]τ = τ and [Γ]τ ′ = τ ′ and |unsolved(Γ)| = |unsolved(∆)| then Γ = ∆.

Proof. By induction on the derivation of Γ ` τ <: τ ′ a ∆.

• Cases <:Var, <:Unit, <:Exvar:

In these rules, the output context is the same as the input context, so the result is immediate.

• Case Γ ` τ ′1 <: τ1 a Θ Θ ` [Θ]τ2 <: [Θ]τ ′2 a ∆
Γ ` τ1 → τ2 <: τ ′1 → τ ′2 a ∆

<:→
We have that [Γ](τ1 → τ2) = τ1 → τ2. By definition of substitution, [Γ]τ1 = τ1 and [Γ]τ2 = τ2.
Similarly, [Γ]τ1 = τ ′1 and [Γ]τ2 = τ

′
2.

By i.h., Θ = Γ .
Since Θ is predicative, [Θ]τ2 and [Θ]τ ′2 are monotypes.
Substitution is idempotent: [Θ][Θ]τ2 = [Θ]τ2 and [Θ][Θ]τ ′2 = [Θ]τ ′2.
By i.h., ∆ = Θ. Hence ∆ = Γ .

• Cases <:∀L, <:∀R: Impossible, since τ and τ ′ are monotypes.

• Case
α̂ /∈ FV(A) Γ0[α̂] ` α̂ :=< A a ∆

Γ0[α̂] ` α̂ <: A a ∆
<:InstantiateL

By Lemma 37 (Monotypes Solve Variables), |unsolved(∆)| < |unsolved(Γ0[α̂])|, but it is given that
|unsolved(Γ0[α̂])| = |unsolved(∆)|, so this case is impossible.

• Case <:InstantiateR: Impossible, as for the <:InstantiateL case.

F ′.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context Γ and types A, B such that Γ ` A and Γ ` B and [Γ]A = A and [Γ]B = B, it is decidable
whether there exists ∆ such that Γ ` A <: B a ∆.

Proof. Let the judgment Γ ` A <: B a ∆ be measured lexicographically by

(S1) the number of ∀ quantifiers in A and B;

(S2) |unsolved(Γ)|, the number of unsolved existential variables in Γ ;

(S3) |Γ `A|+ |Γ `B|.

For each subtyping rule, we show that every premise is smaller than the conclusion. The condition
that [Γ]A = A and [Γ]B = B is easily satisfied at each inductive step, using the definition of substitution.

• Rules <:Var, <:Unit and <:Exvar have no premises.

• Case Γ ` B1 <: A1 a Θ Θ ` [Θ]A2 <: [Θ]B2 a ∆
Γ ` A1 → A2 <: B1 → B2 a ∆

<:→
If A2 or B2 has a quantifier, then the first premise is smaller by (S1). Otherwise, the first premise
shares an input context with the conclusion, so it has the same (S2). The types B1 and A1 are
subterms of the conclusion’s types, so the first premise is smaller by (S3).

If B1 or A1 has a quantifier, then the second premise is smaller by (S1). Otherwise, by Lemma 38
(Monotype Monotonicity) on the first premise, |unsolved(Θ)| ≤ |unsolved(Γ)|.

– If |unsolved(Θ)| < |unsolved(Γ)|, then the second premise is smaller by (S2).

47

– If |unsolved(Θ)| = |unsolved(Γ)|, we have the same (S2).
However, by Lemma 40 (Monotype Context Invariance), Θ = Γ , so |Θ ` [Θ]A2| = |Γ ` [Γ]A2|,
which by Lemma 39 (Substitution Decreases Size) is less than or equal to |Γ `A2|.
By the same logic, |Θ ` [Θ]B2| ≤ |Γ `B2|.
Therefore,

|Θ ` [Θ]A2| + |Θ ` [Θ]B2| ≤ |Γ ` (A1 → A2)| + |Γ ` (B1 → B2)|

and the second premise is smaller by (S3).

• Cases <:∀L, <:∀R: In each of these rules, the premise has one less quantifier than the conclusion,
so the premise is smaller by (S1).

• Cases <:InstantiateL, <:InstantiateR: Follows from Theorem 7.

G ′ Decidability of Typing

Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context Γ and a term e,
it is decidable whether there exist a type A and a context ∆ such that
Γ ` e⇒ A a ∆.

(ii) Checking: Given a context Γ , a term e, and a type B such that Γ ` B,
it is decidable whether there is a context ∆ such that
Γ ` e⇐ B a ∆.

(iii) Application: Given a context Γ , a term e, and a type A such that Γ ` A,
it is decidable whether there exist a type C and a context ∆ such that
Γ ` A • e⇒⇒ C a ∆.

Proof. For rules deriving judgments of the form

Γ ` e⇒ − a −
Γ ` e⇐ B a −
Γ ` A • e⇒⇒ − a −

(where we write “−” for parts of the judgments that are outputs), the following induction measure on
such judgments is adequate to prove decidability:

〈
e,

⇒⇐, |Γ `B|⇒⇒, |Γ `A|

〉

where 〈. . . 〉 denotes lexicographic order, and where (when comparing two judgments typing terms of the
same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second
line), which in turn is considered smaller than the application judgment (bottom line). That is,

⇒ ≺ ⇐ ≺ ⇒⇒
Note that this measure only uses the input parts of the judgments, leading to a straightforward decid-
ability argument.

We will show that in each rule, every synthesis/checking/application premise is smaller than the
conclusion.

• Case Var: No premises.

48

• Case Sub: The first premise has the same subject term e as the conclusion, but the judgment is
smaller because the measure considers a synthesis judgment to be smaller than a checking judg-
ment.

The second premise is a subtyping judgment, which by Theorem 8 is decidable.

• Case Anno:

It is easy to show that the judgment Γ ` A is decidable.
The second premise types e, but the conclusion types (e : A), so the first part of the measure gets
smaller.

• Case 1I: No premises.

• Case →I: In the premise, the term is smaller.

• Case →E: In both premises, the term is smaller.

• Case ∀I: Both the premise and conclusion type e, and both are checking; however, |Γ, α `A| <
|Γ `∀α. A|, so the premise is smaller.

• Case →App: Both the premise and conclusion type e, but the premise is a checking judgment,
so the premise is smaller.

• Case Subst⇐: Both the premise and conclusion type e, and both are checking; however, since
we can apply this rule only when Γ has a solution for α̂—that is, when Γ = Γ0[α̂ = τ]—we have
that |Γ ` [Γ]α̂| < |Γ ` α̂|, making the last part of the measure smaller.

• Case SubstApp: Similar to Subst⇐.

• Case ∀App: Both the premise and conclusion type e, and both are application judgments;
however, by the definition of |Γ `−|, the size of the type in the premise [α̂/α]A is smaller than
∀α. A.

• Case α̂App: Both the premise and conclusion type e, but we switch to checking in the premise,
so the premise is smaller.

• Case 1I⇒: No premises.

• Case →I⇒: In the premise, the term is smaller.

H ′ Soundness of Subtyping

H ′.1 Lemmas for Soundness

Lemma 42 (Variable Preservation).
If (x : A) ∈ ∆ or (x : A) ∈ Ω and ∆ −→ Ω then (x : [Ω]A) ∈ [Ω]∆.

Proof. By mutual induction on ∆ and Ω.
Suppose (x : A) ∈ ∆. In the case where ∆ = (∆ ′, x : A) and Ω = (Ω ′, x : AΩ), inversion on ∆ −→ Ω

gives [Ω ′]A = [Ω ′]AΩ; by the definition of context application, [Ω ′, x : AΩ](∆ ′, x : A) = [Ω ′]∆ ′, x :
[Ω ′]AΩ, which contains x : [Ω ′]AΩ, which is equal to x : [Ω ′]A. By well-formedness of Ω, we know that
[Ω ′]A = [Ω]A.

Suppose (x : A) ∈ Ω. The reasoning is similar, because equality is symmetric.

Lemma 43 (Substitution Typing). If Γ ` A then Γ ` [Γ]A.

Proof. By induction on |Γ `A| (the size of A under Γ).

• Cases UvarWF, UnitWF: Here A = α or A = 1, so applying Γ to A does not change it: A = [Γ]A.
Since Γ ` A, we have Γ ` [Γ]A, which was to be shown.

49

• Case EvarWF: In this case A = α̂, but Γ = Γ0[α̂], so applying Γ to A does not change it, and we
proceed as in the UnitWF case above.

• Case SolvedEvarWF: In this case A = α̂ and Γ = ΓL, α̂ = τ, ΓR. Thus [Γ]A = [Γ]α = [ΓL]τ.
We assume contexts are well-formed, so all free variables in τ are declared in ΓL. Consequently,
|ΓL ` τ| = |Γ ` τ|, which is less than |Γ ` α̂|. We can therefore apply the i.h. to τ, yielding Γ ` [Γ]τ.
By the definition of substitution, [Γ]τ = [Γ]α̂, so we have Γ ` [Γ]α̂.

• Case ArrowWF: In this case A = A1 → A2. By i.h., Γ ` [Γ]A1 and Γ ` [Γ]A2. By ArrowWF,
Γ ` ([Γ]A1) → ([Γ]A2), which by the definition of substitution is Γ ` [Γ](A1 → A2).

• Case ForallWF: In this case A = ∀α. A0. By i.h., Γ, α ` [Γ, α]A0. By the definition of substitution,
[Γ, α]A0 = [Γ]A0, so by ForallWF, Γ ` ∀α. [Γ]A0, which by the definition of substitution is Γ `
[Γ](∀α. A0).

Lemma 44 (Substitution for Well-Formedness). If Ω ` A then [Ω]Ω ` [Ω]A.

Proof. By induction on |Ω `A|, the size of A under Ω (Definition 2).
We consider cases of the well-formedness rule concluding the derivation of Ω ` A.

• Case

Ω ` 1
UnitWF

[Ω]Ω ` 1 By DeclUnitWF
[Ω]Ω ` [Ω]1 By definition of substitution

• Case

Ω ′[α]︸ ︷︷ ︸
Ω

` α
UvarWF

Ω −→ Ω By Lemma 20 (Reflexivity)
α ∈ [Ω]Ω By Lemma 41 (Uvar Preservation)

[Ω]Ω ` α By DeclUvarWF
[Ω]Ω ` [Ω]α By definition of substitution

• Case

Ω ′[α̂ = τ]︸ ︷︷ ︸
Ω

` α̂
SolvedEvarWF

Ω ` α̂ Given
Ω −→ Ω By Lemma 20 (Reflexivity)
Ω ` [Ω]α̂ By Lemma 43 (Substitution Typing)

|Ω ` [Ω]α̂| < |Ω ` α̂| Follows from definition of type size
[Ω]Ω ` [Ω][Ω]α̂ By i.h.

[Ω][Ω]α̂ = [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)
[Ω]Ω ` [Ω]α̂ Applying equality

• Case

Ω ′[α̂]︸ ︷︷ ︸
Ω

` α̂
EvarWF

Impossible: the grammar for Ω does not allow unsolved declarations.

• Case Ω ` A1 Ω ` A2
Ω ` A1 → A2

ArrowWF

50

Ω ` A1 Subderivation
|Ω `A1| < |Ω `A1 → A2| Follows from definition of type size

[Ω]Ω ` [Ω]A1 By i.h.

[Ω]Ω ` [Ω]A2 By similar reasoning on 2nd subderivation

[Ω]Ω ` [Ω]A1 → [Ω]A2 By DeclArrowWF
[Ω]Ω ` [Ω](A1 → A2) By definition of substitution

• Case Ω,α ` A0
Ω ` ∀α. A0

ForallWF

Ω,α ` A0 Subderivation
Let Ω ′ = (Ω,α).

|Ω ′ `A0| < |Ω `∀α. A0| Follows from definition of type size
[Ω ′](Ω,α) ` [Ω ′]A0 By i.h.

[Ω]Ω,α ` [Ω ′]A0 By definition of context application
[Ω]Ω,α ` [Ω]A0 By definition of substitution

[Ω]Ω ` ∀α. [Ω]A0 By DeclForallWF
[Ω]Ω ` [Ω](∀α. A0) By definition of substitution

Lemma 45 (Substitution Stability).
For any well-formed complete context (Ω,ΩZ), if Ω ` A then [Ω]A = [Ω,ΩZ]A.

Proof. By induction on ΩZ. If ΩZ = ·, the result is immediate. Otherwise, use the i.h. and the fact that
Ω ` A implies FV(A) ∩ dom(ΩZ) = ∅.

Lemma 46 (Context Partitioning).
If ∆,Iα̂, Θ −→ Ω,Iα̂,ΩZ then there is a Ψ such that [Ω,Iα̂,ΩZ](∆,Iα̂, Θ) = [Ω]∆,Ψ.

Proof. By induction on the given derivation.

• Case −→ID: Impossible: ∆,Iα̂, Θ cannot have the form ·.

• Case −→Var: We have ΩZ = (Ω ′
Z, x : A) and Θ = (Θ ′, x : A ′). By i.h., there is Ψ ′ such that

[Ω,Iα̂,Ω
′
Z](∆,Iα̂, Θ

′) = [Ω]∆,Ψ ′. Then by the definition of context application, [Ω,Iα̂,Ω ′
Z, x :

A](∆,Iα̂, Θ
′, x : A ′) = [Ω]∆,Ψ ′, x : [Ω ′]A. Let Ψ = (Ψ ′, x : [Ω ′]A).

• Case −→Uvar: Similar to the −→Var case, with Ψ = (Ψ ′, α).

• Cases −→Unsolved, −→Solve, −→Marker, −→Add, −→AddSolved: Broadly similar to the −→Uvar
case, but since the rightmost context element is soft it disappears in context application, so we let
Ψ = Ψ ′.

Lemma 49 (Stability of Complete Contexts).
If Γ −→ Ω then [Ω]Γ = [Ω]Ω.

Proof. By induction on the derivation of Γ −→ Ω.

• Case

· −→ · −→ID

In this case, Ω = Γ = ·.
By definition, [·]· = ·, which gives us the conclusion.

51

• Case Γ ′ −→ Ω ′ [Ω ′]AΓ = [Ω ′]A

Γ ′, x : AΓ −→ Ω ′, x : A
−→Var

[Ω ′]Γ ′ = [Ω ′]Ω ′ By i.h.
[Ω ′]AΓ = [Ω ′]A Premise

[Ω]Γ = [Ω ′, x : A](Γ ′, x : AΓ) Expanding Ω and Γ
= [Ω ′]Γ ′, x : [Ω ′]AΓ By definition of context application

(using [Ω ′]AΓ = [Ω ′]A)
= [Ω ′]Ω ′, x : [Ω ′]A By above equalities
= [Ω]Ω By definition of context application

• Case Γ ′ −→ Ω ′

Γ ′, α −→ Ω ′, α
−→Uvar

[Ω]Γ = [Ω ′, α](Γ ′, α) Expanding Ω and Γ
= [Ω ′]Γ ′, α By definition of context application
= [Ω ′]Ω ′, α By i.h.
= Ω ′, α By definition of context application
= [Ω]Ω By Ω = (Ω ′, α)

• Case Γ ′ −→ Ω ′

Γ ′,Iα̂ −→ Ω ′,Iα̂
−→Marker

Similar to the −→Uvar case.

• Case Γ −→ Ω ′

Γ −→ Ω ′, α̂ = τ
−→AddSolved

[Ω]Γ = [Ω ′, α̂ = τ]Γ Expanding Ω
= [Ω ′]Γ By α̂ /∈ dom(Γ)

= [Ω ′]Ω ′ By i.h.
= Ω ′, α̂ = τ By definition of context application
= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ ′ −→ Ω ′ [Ω ′]τΓ = [Ω ′]τ

Γ ′, α̂ = τΓ −→ Ω ′, α̂ = τ
−→Solved

[Ω]Γ = [Ω ′, α̂ = τ](Γ ′, α̂ = τΓ) Expanding Ω and Γ
= [Ω ′]Γ ′ By definition of context application
= [Ω ′]Ω ′ By i.h.
= Ω ′, α̂ = τ By definition of context application
= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ ′ −→ Ω ′

Γ ′, α̂ −→ Ω ′, α̂ = τ
−→Solve

[Ω]Γ = [Ω ′, α̂ = τ](Γ ′, α̂) Expanding Ω and Γ
= [Ω ′]Γ ′ By definition of context application
= [Ω ′]Ω ′ By i.h.
= Ω ′, α̂ = τ By definition of context application
= [Ω]Ω By Ω = (Ω ′, α̂ = τ)

• Case Γ −→ ∆

Γ, α̂ −→ ∆, α̂
−→Unsolved

52

Impossible: Ω cannot have the form ∆, α̂.

• Case Γ −→ ∆

Γ −→ ∆, α̂
−→Add

Impossible: Ω cannot have the form ∆, α̂.

Lemma 50 (Finishing Types).
If Ω ` A and Ω −→ Ω ′ then [Ω]A = [Ω ′]A.

Proof. By Lemma 18 (Substitution Extension Invariance), [Ω ′]A = [Ω ′][Ω]A.
If FEV(C) = ∅ then [Ω ′]C = C.
Since Ω is complete and Ω ` A, we have FEV([Ω]A) = ∅. Therefore [Ω ′][Ω]A = [Ω]A.

Lemma 51 (Finishing Completions).
If Ω −→ Ω ′ then [Ω]Ω = [Ω ′]Ω ′.

Proof. By induction on the given derivation of Ω −→ Ω ′.
Only cases −→ID, −→Var, −→Uvar, −→Solved, −→Marker and −→AddSolved are possible. In all of

these cases, we use the i.h. and the definition of context application; in cases −→Var and −→Solved, we
also use the equality in the premise of the respective rule.

Lemma 52 (Confluence of Completeness).
If ∆1 −→ Ω and ∆2 −→ Ω then [Ω]∆1 = [Ω]∆2.

Proof.
∆1 −→ Ω Given

[Ω]∆1 = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)
∆2 −→ Ω Given

[Ω]∆2 = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)
[Ω]∆1 = [Ω]∆2 By transitivity of equality

H ′.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given ∆ −→ Ω and [Γ]B = B and α̂ /∈ FV(B):

(1) If Γ ` α̂ :=< B a ∆ then [Ω]∆ ` [Ω]α̂ ≤ [Ω]B.

(2) If Γ ` B =<: α̂ a ∆ then [Ω]∆ ` [Ω]B ≤ [Ω]α̂.

Proof. By induction on the given instantiation derivation.

(1) • Case Γ0 ` τ
Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` α̂ :=< τ a Γ0, α̂ = τ, Γ1︸ ︷︷ ︸
∆

InstLSolve

In this case [∆]α̂ = [∆]τ. By reflexivity of subtyping (Lemma 3 (Reflexivity of Declarative
Subtyping)), [Ω]∆ ` [∆]α̂ ≤ [∆]τ.

• Case

Γ [α̂][β̂] ` α̂ :=< β̂ a Γ [α̂][β̂ = α̂]︸ ︷︷ ︸
∆

InstLReach

We have ∆ = Γ [α̂][β̂ = α̂]. Therefore [∆]α̂ = α̂ = [∆]β̂.
By reflexivity of subtyping (Lemma 3 (Reflexivity of Declarative Subtyping)), [Ω]∆ ` [∆]α̂ ≤
[∆]β̂.

53

• Case Γ1︷ ︸︸ ︷
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` A1 =<: α̂1 a Γ ′ Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆

Γ [α̂] ` α̂ :=< A1 → A2 a ∆
InstLArr

[Γ](A1 → A2) = [Γ1](A1 → A2) α̂ /∈ FV(A1 → A2)

α̂1, α̂2 /∈ FV(A1) ∪ FV(A2) α̂1, α̂2 fresh
Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆ Subderivation

Γ ′ −→ ∆ By Lemma 32 (Instantiation Extension)
∆ −→ Ω Given
Γ ′ −→ Ω By Lemma 21 (Transitivity)

Γ1 ` A1 =<: α̂1 a Γ ′ Subderivation
[Ω]∆ ` [Ω]A1 ≤ [Ω]α̂1 By i.h. and Lemma 52 (Confluence of Completeness)

Γ ′ ` α̂2 :=< [Γ ′]A2 a ∆ Subderivation
[Ω]∆ ` [Ω][Γ ′]α̂2 ≤ [Ω][Γ ′]A2 By i.h.
Γ ′ −→ Ω Above
[Ω]∆ ` [Ω]α̂2 ≤ [Ω]A2 By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ` [Ω](α̂1 → α̂2) ≤ [Ω]A1 → [Ω]A2 By ≤→ and definition of substitution

Since (α̂ = α̂1 → α̂2) ∈ Γ1 and Γ1 −→ ∆, we know that [Ω]α̂ = [Ω](α̂1 → α̂2).
Therefore [Ω]∆ ` [Ω]α̂ ≤ [Ω](A1 → A2).

• Case
Γ [α̂], β ` α̂ :=< B0 a ∆,β,∆ ′

Γ [α̂] ` α̂ :=< ∀β. B0 a ∆
InstLAllR

We have ∆ −→ Ω and [Γ [α̂]](∀β. B0) = ∀β. B0 and α̂ /∈ FV(∀β. B0).
Hence α̂ /∈ FV(B0) and by definition, [Γ [α̂], β]B0 = B0.
By Lemma 48 (Filling Completes), ∆,β,∆ ′ −→ Ω,β, |∆ ′|.
By induction, [Ω,β, |∆ ′|](∆,β,∆ ′) ` [Ω,β, |∆ ′|]α̂ ≤ [Ω,β, |∆ ′|]B0.
Each free variable in α̂ and B0 is declared in (Ω,β), so Ω,β, |∆ ′| behaves as [Ω,β] on α̂ and on
B0, yielding [Ω,β, |∆ ′|](∆,β,∆ ′) ` [Ω,β]α̂ ≤ [Ω,β]B0.
By Lemma 46 (Context Partitioning) and thinning, [Ω,β](∆,β) ` [Ω,β]α̂ ≤ [Ω,β]B0.
By the definition of context application, [Ω]∆,β ` [Ω,β]α̂ ≤ [Ω,β]B0.
By the definition of substitution, [Ω]∆,β ` [Ω]α̂ ≤ [Ω]B0.
Since α̂ is declared to the left of β, we have β /∈ FV([Ω]α̂).
Applying rule ≤∀L gives [Ω]∆ ` [Ω]α̂ ≤ ∀β. [Ω]B0.

(2) • Case Γ0 ` τ
Γ0, α̂, Γ1︸ ︷︷ ︸

Γ

` τ =<: α̂ a Γ0, α̂ = τ, Γ1︸ ︷︷ ︸
Γ ′

InstRSolve

Similar to the InstLSolve case.

• Case

Γ [α̂][β̂] ` β̂ =<: α̂ a Γ [α̂][β̂ = α̂]︸ ︷︷ ︸
Γ ′

InstRReach

Similar to the InstLReach case.

• Case
Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` α̂1 :=< A1 a Γ ′ Γ ′ ` [Γ ′]A2 =<: α̂2 a ∆

Γ [α̂] ` A1 → A2 =<: α̂ a ∆
InstRArr

Similar to the InstLArr case.

• Case
Γ [α̂],Iβ̂, β̂ ` [β̂/β]B0 =<: α̂ a ∆,Iβ̂, ∆

′

Γ [α̂] ` ∀β. B0 =<: α̂ a ∆
InstRAllL

54

[
Γ [α̂]

]
(∀β. B0) = ∀β. B0 Given[
Γ [α̂]

]
B0 = B0[

Γ [α̂],Iβ̂, β̂
]
[β̂/β]B0 = [β̂/β]B0

∆ −→ Ω Given
∆,Iβ̂, ∆

′ −→ Ω,Iβ̂, |∆
′| By Lemma 48 (Filling Completes)

α̂ /∈ FV(∀β. B0) Given
α̂ /∈ FV(B0) By definition of FV(−)

Γ [α̂],Iβ̂, β̂ ` [β̂/β]B0 =<: α̂ a ∆,Iβ̂, ∆ ′ Subderivation
[Ω,Iβ̂, |∆

′|](∆,Iβ̂, ∆
′) ` [Ω,Iβ̂, |∆

′|][β̂/β]B0 ≤ [Ω,Iβ̂, |∆
′|]α̂ By i.h.

Γ [α̂],Iβ̂, β̂ −→ ∆,Iβ̂, ∆
′ By Lemma 32 (Instantiation Extension)

By Lemma 16 (Declaration Order Preservation), α̂ is declared before Iβ̂, that is, in Ω.
Thus,

[
Ω,Iβ̂, |∆

′|
]
α̂ = [Ω]α̂.

By Lemma 23 (Evar Input), we know that ∆ ′ is soft, so by Lemma 47 (Softness Goes Away),
[Ω,Iβ̂, |∆

′|](∆,Iβ̂, ∆
′) = [Ω,Iβ̂](∆,Iβ̂) = [Ω]∆.

Applying these equalities to the derivation above gives

[Ω]∆ `
[
Ω,Iβ̂, |∆

′|
]
[β̂/β]B0 ≤ [Ω]α̂

By distributivity of substitution,

[Ω]∆ `
[
[Ω,Iβ̂, |∆

′|]β̂/β
][
Ω,Iβ̂, |∆

′|
]
B0 ≤ [Ω]α̂

Furthermore, [Ω,Iβ̂, |∆
′|]B0 = [Ω]B0, since B0’s free variables are either β or in Ω, giving

[Ω]∆ `
[
[Ω,Iβ̂, |∆

′|]β̂/β
]
[Ω]B0 ≤ [Ω]α̂

Now apply ≤∀L and the definition of substitution to get [Ω]∆ ` [Ω](∀β. B0) ≤ [Ω]α̂.

H ′.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
If Γ ` A <: B a ∆ where [Γ]A = A and [Γ]B = B and ∆ −→ Ω then [Ω]∆ ` [Ω]A ≤ [Ω]B.

Proof. By induction on the derivation of Γ ` A <: B a ∆.

• Case

Γ ′[α]︸ ︷︷ ︸
Γ

` α <: α a Γ ′[α]︸ ︷︷ ︸
∆

<:Var

α ∈ ∆ ∆ = Γ ′[α]

α ∈ [Ω]∆ Follows from definition of context application
[Ω]∆ ` α ≤ α By ≤Var
[Ω]∆ ` [Ω]α ≤ [Ω]α By def. of substitution

• Case <:Unit: Similar to the <:Var case, applying rule ≤Unit instead of ≤Var.

• Case

ΓL, α̂, ΓR ` α̂ <: α̂ a ΓL, α̂, ΓR
<:Exvar

[Ω]α̂ defined Follows from definition of context application
[Ω]∆ ` [Ω]α̂ Assumption that [Ω]∆ is well-formed
[Ω]∆ ` [Ω]α̂ ≤ [Ω]α̂ By Lemma 3 (Reflexivity of Declarative Subtyping)

55

• Case Γ ` B1 <: A1 a Θ Θ ` [Θ]A2 <: [Θ]B2 a ∆
Γ ` A1 → A2︸ ︷︷ ︸

A

<: B1 → B2︸ ︷︷ ︸
B

a ∆
<:→

Γ ` B1 <: A1 a Θ Subderivation
∆ −→ Ω Given
Θ −→ Ω By Lemma 21 (Transitivity)

[Ω]Θ ` [Ω]B1 ≤ [Ω]A1 By i.h.
[Ω]∆ ` [Ω]B1 ≤ [Ω]A1 By Lemma 52 (Confluence of Completeness)

Θ ` [Θ]A2 <: [Θ]B2 a ∆ Subderivation
[Ω]∆ ` [Ω][Θ]A2 ≤ [Ω][Θ]B2 By i.h.

[Ω][Θ]A2 = [Ω]A2 By Lemma 18 (Substitution Extension Invariance)
[Ω][Θ]B2 = [Ω]B2 By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ` [Ω]A2 ≤ [Ω]B2 Above equations

[Ω]∆ ` ([Ω]A1) → ([Ω]A2) ≤ ([Ω]B1) → ([Ω]B2) By ≤→
[Ω]∆ ` [Ω](A1 → A2) ≤ [Ω](B1 → B2) By def. of substitution

• Case Γ,Iα̂, α̂ ` [α̂/α]A0 <: B a ∆,Iα̂, Θ
Γ ` ∀α. A0 <: B a ∆

<:∀L

Let Ω ′ = (Ω, |Iα̂, Θ|).

Γ,Iα̂, α̂ ` [α̂/α]A0 <: B a ∆,Iα̂, Θ Subderivation

∆ −→ Ω Given
(∆,Iα̂, Θ) −→ Ω ′ By Lemma 48 (Filling Completes)

[Ω ′](∆,Iα̂, Θ) ` [Ω ′][α̂/α]A0 ≤ [Ω ′]B By i.h.
[Ω ′](∆,Iα̂, Θ) ` [Ω ′][α̂/α]A0 ≤ [Ω]B By [Ω ′]B = [Ω]B (Lemma 45 (Substitution Stability))
[Ω ′](∆,Iα̂, Θ) `

[
[Ω ′]α̂/α

]
[Ω ′]A0 ≤ [Ω]B By distributivity of substitution

Γ,Iα̂, α̂ ` α̂ By EvarWF
Γ,Iα̂, α̂ −→ ∆,Iα̂, Θ By Lemma 33 (Subtyping Extension)
∆,Iα̂, Θ ` α̂ By Lemma 25 (Extension Weakening)

(∆,Iα̂, Θ) −→ Ω ′ Above
[Ω ′]Ω ′ ` [Ω ′]α̂ By Lemma 44 (Substitution for Well-Formedness)

[Ω ′](∆,Iα̂, Θ) ` [Ω ′]α̂ By Lemma 49 (Stability of Complete Contexts)

[Ω ′](∆,Iα̂, Θ) ` ∀α. [Ω ′]A0 ≤ [Ω]B By ≤∀L
[Ω ′](∆,Iα̂, Θ) ` ∀α. [Ω,α]A0 ≤ [Ω]B By Lemma 45 (Substitution Stability)

[Ω]∆ ` ∀α. [Ω,α]A0 ≤ [Ω]B By Lemma 46 (Context Partitioning) and thinning
[Ω]∆ ` ∀α. [Ω]A0 ≤ [Ω]B By def. of substitution
[Ω]∆ ` [Ω](∀α. A0) ≤ [Ω]B By def. of substitution

• Case Γ, α ` A <: B0 a ∆,α,Θ
Γ ` A <: ∀α. B0 a ∆

<:∀R

56

Γ, α ` A <: B0 a ∆,α,Θ Subderivation
Let ΩZ = |Θ| .
Let Ω ′ = (Ω,α,ΩZ).

(∆,α,Θ) −→ Ω ′ By Lemma 48 (Filling Completes)
[Ω ′](∆,α,Θ) ` [Ω ′]A ≤ [Ω ′]B0 By i.h.
[Ω,α](∆,α) ` [Ω,α]A ≤ [Ω,α]B0 By Lemma 45 (Substitution Stability)
[Ω,α](∆,α) ` [Ω]A ≤ [Ω]B0 By def. of substitution

[Ω]∆ ` [Ω]A ≤ ∀α. [Ω]B0 By ≤∀R
[Ω]∆ ` [Ω]A ≤ [Ω](∀α. B0) By def. of substitution

• Case
α̂ /∈ FV(B) Γ ` α̂ :=< B a ∆

Γ︸︷︷︸
Γ0[α̂]

` α̂ <: B a ∆
<:InstantiateL

Γ ` α̂ :=< B a ∆ Subderivation
[Ω]∆ ` [Ω]α̂ ≤ [Ω]B By Theorem 10

• Case <:InstantiateR: Similar to the case for <:InstantiateL.

Corollary 53 (Soundness, Pretty Version). If Ψ ` A <: B a ∆, then Ψ ` A ≤ B.

Proof. By reflexivity (Lemma 20 (Reflexivity)), Ψ −→ Ψ.
Since Ψ has no existential variables, it is a complete context Ω.
By Theorem 11, [Ψ]Ψ ` [Ψ]A ≤ [Ψ]B.
Since Ψ has no existential variables, [Ψ]Ψ = Ψ, and [Ψ]A = A, and [Ψ]B = B.
Therefore Ψ ` A ≤ B.

I ′ Typing Extension

Lemma 54 (Typing Extension).
If Γ ` e⇐ A a ∆ or Γ ` e⇒ A a ∆ or Γ ` A • e⇒⇒ C a ∆ then Γ −→ ∆.

Proof. By induction on the given derivation.

• Cases Var, 1I, 1I⇒:

Since ∆ = Γ , the result follows by Lemma 20 (Reflexivity).

• Case Γ ` e⇒ B a Θ Θ ` [Θ]B <: [Θ]A a ∆
Γ ` e⇐ A a ∆

Sub

Γ −→ Θ By i.h.
Θ −→ ∆ By Lemma 33 (Subtyping Extension)

Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ ` A Γ ` e⇐ A a ∆
Γ ` (e : A) ⇒ A a ∆

Anno

Z Γ −→ ∆ By i.h.

• Case Γ, α ` e⇐ A0 a ∆,α,Θ
Γ ` e⇐ ∀α. A0 a ∆ ∀I

Γ, α −→ ∆,α,Θ By i.h.
Z Γ −→ ∆ By Lemma 24 (Extension Order) (i)

57

• Case Γ, α̂ ` [α̂/α]A0 • e⇒⇒ C a ∆
Γ ` ∀α. A0 • e⇒⇒ C a ∆

∀App

Γ, α̂ −→ ∆ By i.h.
Γ −→ Γ, α̂ By −→Add

Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ, x : A1 ` e⇐ A2 a ∆, x : A1, Θ
Γ ` λx. e⇐ A1 → A2 a ∆

→I

Γ, x : A1 −→ ∆, x : A1, Θ By i.h.
Z Γ −→ ∆ By Lemma 24 (Extension Order) (v)

• Case Γ ` e1 ⇒ B a Θ Θ ` [Θ]B • e2 ⇒⇒ A a ∆
Γ ` e1 e2 ⇒ A a ∆

→E

By the i.h. on each premise, then Lemma 21 (Transitivity).

• Case
Γ, α̂, β̂, x : α̂ ` e⇐ β̂ a ∆, x : α̂, Θ

Γ ` λx. e⇒ α̂→ β̂ a ∆
→I⇒

Γ, α̂, β̂, x : α̂ −→ ∆, x : α̂, Θ By i.h.
Γ, α̂, β̂ −→ ∆ By Lemma 24 (Extension Order) (v)

Γ −→ Γ, α̂, β̂ By −→Add (twice)
Z Γ −→ ∆ By Lemma 21 (Transitivity)

• Case Γ ` e⇐ A a ∆
Γ ` A→ C • e⇒⇒ C a ∆

→App

Z Γ −→ ∆ By i.h.

• Case Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] ` e⇐ α̂1 a ∆
Γ [α̂] ` α̂ • e⇒⇒ α̂2 a ∆

α̂App

Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] −→ ∆ By i.h.
Γ [α̂] −→ Γ [α̂2, α̂1, α̂ = α̂1 → α̂2] By Lemma 27 (Solved Variable Addition for Extension)

then Lemma 29 (Parallel Admissibility) (ii)
Z Γ −→ ∆ By Lemma 21 (Transitivity)

J ′ Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given ∆ −→ Ω:

(i) If Γ ` e⇐ A a ∆ then [Ω]∆ ` e⇐ [Ω]A.

(ii) If Γ ` e⇒ A a ∆ then [Ω]∆ ` e⇒ [Ω]A.

(iii) If Γ ` A • e⇒⇒ C a ∆ then [Ω]∆ ` [Ω]A • e⇒⇒ [Ω]C.

Proof. By induction on the given algorithmic typing derivation.

• Case (x : A) ∈ Γ
Γ ` x⇒ A a Γ

Var

58

(x : A) ∈ Γ Premise
(x : A) ∈ ∆ By Γ = ∆

∆ −→ Ω Given
(x : [Ω]A) ∈ [Ω]Γ By Lemma 42 (Variable Preservation)

Z [Ω]Γ ` x⇒ [Ω]A By DeclVar

• Case Γ ` e⇒ A a Θ Θ ` [Θ]A <: [Θ]B a ∆
Γ ` e⇐ B a ∆

Sub

Γ ` e⇒ A a Θ Subderivation
Θ ` [Θ]A <: [Θ]B a ∆ Subderivation

Θ −→ ∆ By Lemma 54 (Typing Extension)
∆ −→ Ω Given
Θ −→ Ω By Lemma 21 (Transitivity)
[Ω]Θ ` e⇒ [Ω]A By i.h.
[Ω]Θ = [Ω]∆ By Lemma 52 (Confluence of Completeness)
[Ω]∆ ` e⇒ [Ω]A By above equalities

Θ ` [Θ]A <: [Θ]B a ∆ Subderivation
[Ω]∆ ` [Ω][Θ]A ≤ [Ω][Θ]B By Theorem 11

[Ω][Θ]A = [Ω]A By Lemma 18 (Substitution Extension Invariance)
[Ω][Θ]B = [Ω]B By Lemma 18 (Substitution Extension Invariance)

[Ω]∆ ` [Ω]A ≤ [Ω]B By above equalities
Z [Ω]∆ ` e⇐ [Ω]B By DeclSub

• Case Γ ` A Γ ` e0 ⇐ A a ∆
Γ ` (e0 : A) ⇒ A a ∆

Anno

Γ ` e0 ⇐ A a ∆ Subderivation
[Ω]∆ ` e0 ⇐ [Ω]A By i.h.

Γ ` A Subderivation
Γ −→ ∆ By Lemma 54 (Typing Extension)
∆ −→ Ω Given
Γ −→ Ω By Lemma 21 (Transitivity)
Ω ` A By Lemma 25 (Extension Weakening)

[Ω]Ω ` [Ω]A By Lemma 44 (Substitution for Well-Formedness)
[Ω]∆ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)
[Ω]∆ ` [Ω]A By above equality

[Ω]∆ ` (e0 : [Ω]A) ⇒ [Ω]A By DeclAnno
A contains no existential variables Assumption about source programs

[Ω]A = A From definition of substitution
Z [Ω]∆ ` (e0 : A) ⇒ [Ω]A By above equality

• Case

Γ ` () ⇐ 1 a Γ︸︷︷︸
∆

1I

[Ω]∆ ` () ⇐ 1 By Decl1I
Z [Ω]∆ ` () ⇐ [Ω]1 By definition of substitution

• Case Γ, x : A1 ` e0 ⇐ A2 a ∆, x : A1, Θ
Γ ` λx. e⇐ A1 → A2 a ∆

→I

59

∆ −→ Ω Given
∆, x : A1 −→ Ω, x : [Ω]A1 By −→Var
Γ, x : A1 −→ ∆, x : A1, Θ By Lemma 54 (Typing Extension)

Θ is soft By Lemma 24 (Extension Order) (v)
(with ΓR = ·, which is soft)

∆, x : A1, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1, |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 48 (Filling Completes)

Γ, x : A1 ` e0 ⇐ A2 a ∆ ′ Subderivation

[Ω ′]∆ ′ ` e0 ⇐ [Ω ′]A2 By i.h.
[Ω ′]A2 = [Ω]A2 By Lemma 45 (Substitution Stability)
[Ω ′]∆ ′ ` e0 ⇐ [Ω]A2 By above equality

∆, x : A1, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]A1, |Θ|︸ ︷︷ ︸
Ω ′

Above

Θ is soft Above
[Ω ′]∆ ′ = [Ω]∆, x : [Ω]A1 By Lemma 47 (Softness Goes Away)

[Ω]∆, x : [Ω]A1 ` e0 ⇐ [Ω]A2 By above equality
[Ω]∆ ` λx. e0 ⇐ ([Ω]A1) → ([Ω]A2) By Decl→I

Z [Ω]∆ ` λx. e0 ⇐ [Ω](A1 → A2) By definition of substitution

• Case Γ ` e1 ⇒ A1 a Θ Θ ` A1 • e2 ⇒⇒ A2 a ∆
Γ ` e1 e2 ⇒ A2 a ∆

→E

Γ ` e1 ⇒ A1 a Θ Subderivation
Θ ` A1 <: B a ∆ Subderivation

Θ −→ ∆ By Lemma 54 (Typing Extension)
∆ −→ Ω Given
Θ −→ Ω By Lemma 21 (Transitivity)
[Ω]Θ ` e1 ⇒ [Ω]A1 By i.h.
[Ω]Θ = [Ω]∆ By Lemma 52 (Confluence of Completeness)
[Ω]∆ ` e1 ⇒ [Ω]A1 By above equality

Θ ` A1 • e2 ⇒⇒ A2 a ∆ Subderivation
∆ −→ Ω Given
[Ω]∆ ` [Ω]A1 • e2 ⇒⇒ [Ω]A2 By i.h.

Z [Ω]∆ ` e1e2 ⇒ [Ω]A2 By Decl→E

• Case Γ, α ` e⇐ A0 a ∆,α,Θ
Γ ` e⇐ ∀α. A0 a ∆ ∀I

(Similar to →I, using a different subpart of Lemma 24 (Extension Order) and applying Decl∀I;
written out anyway.)

60

∆ −→ Ω Given
∆,α −→ Ω,α By −→Uvar
Γ, α −→ ∆,α,Θ By Lemma 54 (Typing Extension)

Θ is soft By Lemma 24 (Extension Order) (i) (with ΓR = ·, which is soft)
∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 48 (Filling Completes)

Γ, α ` e⇐ A0 a ∆ ′ Subderivation

[Ω ′]∆ ′ ` e⇐ [Ω ′]A0 By i.h.
[Ω ′]A0 = [Ω]A0 By Lemma 45 (Substitution Stability)
[Ω ′]∆ ′ ` e⇐ [Ω]A0 By above equality

∆,α,Θ︸ ︷︷ ︸
∆ ′

−→ Ω,α, |Θ|︸ ︷︷ ︸
Ω ′

Above

Θ is soft Above
[Ω ′]∆ ′ = [Ω]∆,α By Lemma 47 (Softness Goes Away)
[Ω]∆,α ` e⇐ [Ω]A0 By above equality

[Ω]∆ ` e⇐ ∀α. [Ω]A0 By Decl∀I
Z [Ω]∆ ` e⇐ [Ω](∀α. A0) By definition of substitution

• Case Γ, α̂ ` [α̂/α]A0 • e⇒⇒ C a ∆
Γ ` ∀α. A0 • e⇒⇒ C a ∆

∀App

Γ, α̂ ` [α̂/α]A0 • e⇒⇒ C a ∆ Subderivation
∆ −→ Ω Given
[Ω]∆ ` [Ω][α̂/α]A0 • e⇒⇒ [Ω]C By i.h.
[Ω]∆ `

[
[Ω]α̂ / α

]
[Ω]A0 • e⇒⇒ [Ω]C By distributivity of substitution

Γ, α̂ −→ ∆ By Lemma 54 (Typing Extension)
Γ, α̂ −→ Ω By Lemma 21 (Transitivity)
Γ, α̂ ` α̂ By EvarWF
Ω ` α̂ By Lemma 25 (Extension Weakening)

[Ω]Ω ` [Ω]α̂ By Lemma 44 (Substitution for Well-Formedness)
[Ω]Ω = [Ω]∆ By Lemma 49 (Stability of Complete Contexts)
[Ω]∆ ` [Ω]α̂ By above equality

[Ω]∆ ` ∀α. [Ω]A0 • e⇒⇒ [Ω]C By Decl∀App
Z [Ω]∆ ` [Ω](∀α. A0) • e⇒⇒ [Ω]C By definition of substitution

• Case Γ ` e⇐ B a ∆
Γ ` B→ C • e⇒⇒ C a ∆

→App

Γ ` e⇐ B a ∆ Subderivation
∆ −→ Ω Given
[Ω]∆ ` e⇐ [Ω]B By i.h.
[Ω]∆ ` ([Ω]B) → ([Ω]C) • e⇒⇒ [Ω]C By Decl→App

Z [Ω]∆ ` [Ω](B→ C) • e⇒⇒ [Ω]C By definition of substitution

• Case Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ` e⇐ α̂1 a ∆
Γ0[α̂]︸ ︷︷ ︸
Γ

` α̂ • e⇒⇒ α̂2 a ∆
α̂App

61

Γ ′︷ ︸︸ ︷
Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2] ` e⇐ α̂1 a ∆ Subderivation

∆ −→ Ω Given
[Ω]∆ ` e⇐ [Ω]α̂1 By i.h.
[Ω]∆ ` ([Ω]α̂1) → ([Ω]α̂2) • e⇒⇒ [Ω]α̂2 By Decl→App

Γ ′ −→ ∆ By Lemma 54 (Typing Extension)
∆ −→ Ω Given
Γ ′ −→ Ω By Lemma 21 (Transitivity)
[Γ ′]α̂ = [Γ ′](α̂1 → α̂2) By definition of [Γ ′](−)

[Ω][Γ ′]α̂ = [Ω][Γ ′](α̂1 → α̂2) Applying Ω to both sides
[Ω]α̂ = [Ω](α̂1 → α̂2) By Lemma 18 (Substitution Extension Invariance), twice

= ([Ω]α̂1) → ([Ω]α̂2) By definition of substitution

Z [Ω]∆ ` [Ω]α̂ • e⇒⇒ [Ω]α̂2 By above equality

• Case

Γ ` () ⇒ 1 a Γ︸︷︷︸
∆

1I⇒
Z [Ω]∆ ` () ⇒ [Ω]1 By Decl1I⇒ and definition of substitution

• Case
Γ, α̂, β̂, x : α̂ ` e0 ⇐ β̂ a ∆, x : α̂, Θ

Γ ` λx. e0 ⇒ α̂→ β̂ a ∆
→I⇒

Γ, α̂, β̂, x : α̂ −→ ∆, x : α̂, Θ By Lemma 54 (Typing Extension)
Θ is soft By Lemma 24 (Extension Order) (v) (with ΓR = ·, which is soft)

Γ, α̂, β̂ −→ ∆ ′′

∆ −→ Ω Given
∆, x : α̂ −→ Ω, x : [Ω]α̂ By −→Var

∆, x : α̂, Θ︸ ︷︷ ︸
∆ ′

−→ Ω, x : [Ω]α̂, |Θ|︸ ︷︷ ︸
Ω ′

By Lemma 48 (Filling Completes)

Γ, α̂, β̂, x : α̂ ` e⇐ β̂ a ∆, x : α̂, Θ Subderivation

[Ω ′]∆ ′ ` e0 ⇐ [Ω ′]β̂ By i.h.
[Ω ′]β̂ =

[
Ω, x : [Ω]α̂

]
β̂ By Lemma 45 (Substitution Stability)

= [Ω]β̂ By definition of substitution
[Ω ′]∆ ′ =

[
Ω, x : [Ω]α̂

](
∆, x : α̂

)
By Lemma 47 (Softness Goes Away)

= [Ω]∆, x : [Ω]α̂ By definition of context substitution
[Ω]∆, x : [Ω]α̂ ` e0 ⇐ [Ω]β̂ By above equalities

Γ, α̂, β̂ −→ ∆ Above
Γ, α̂, β̂ −→ Ω By Lemma 21 (Transitivity)
Γ, α̂, β̂ ` α̂ By EvarWF

Ω ` α̂ By Lemma 25 (Extension Weakening)
[Ω]∆ ` [Ω]α̂ By Lemma 44 (Substitution for Well-Formedness)

and Lemma 49 (Stability of Complete Contexts)

[Ω]∆ ` [Ω]β̂ By similar reasoning
[Ω]∆ ` ([Ω]α̂) → ([Ω]β̂) By DeclArrowWF

[Ω]α̂, [Ω]β̂ monotypes Ω predicative

[Ω]∆ ` λx. e0 ⇒ ([Ω]α̂) → ([Ω]β̂) By Decl→I⇒
Z [Ω]∆ ` λx. e0 ⇒ [Ω](α̂→ β̂) By definition of substitution

62

K ′ Completeness

K ′.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
Given Γ −→ Ω and A = [Γ]A and α̂ ∈ unsolved(Γ) and α̂ /∈ FV(A):

(1) If [Ω]Γ ` [Ω]α̂ ≤ [Ω]A
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` α̂ :=< A a ∆.

(2) If [Ω]Γ ` [Ω]A ≤ [Ω]α̂
then there are ∆, Ω ′ such that Ω −→ Ω ′ and ∆ −→ Ω ′ and Γ ` A =<: α̂ a ∆.

Proof. By mutual induction on the given declarative subtyping derivation.

(1) We have [Ω]Γ ` [Ω]α̂ ≤ [Ω]A. We now case-analyze the shape of A.

• Case A = β̂:
It is given that α̂ /∈ FV(β̂), so α̂ 6= β̂.
Since A = β̂, we have [Ω]Γ ` [Ω]α̂ ≤ [Ω]β̂.
Since Ω is predicative, [Ω]α̂ = τ1 and [Ω]β̂ = τ2, so we have [Ω]Γ ` τ1 ≤ τ2.
By Lemma 9 (Monotype Equality), τ1 = τ2.
We have A = β̂ and [Γ]A = A, so [Γ]β̂ = β̂. Thus β̂ ∈ unsolved(Γ).
Let Ω ′ be Ω. By Lemma 20 (Reflexivity), Ω −→ Ω.
Now consider whether α̂ is declared to the left of β̂, or vice versa.

– Case Γ = (Γ0, α̂, Γ1, β̂, Γ2):
Let ∆ be Γ0, α̂, Γ1, β̂ = α̂, Γ2.
By rule InstLReach, Γ ` α̂ :=< β̂ a ∆.
It remains to show that ∆ −→ Ω.
We have [Ω]α̂ = [Ω]β̂. Then by Lemma 30 (Parallel Extension Solution), ∆ −→ Ω.

– Case (Γ = Γ0, β̂, Γ1, α̂, Γ2):
Let ∆ be Γ0, β̂, Γ1, α̂ = β̂, Γ2.
By rule InstLSolve, Γ ` α̂ :=< β̂ a ∆.
It remains to show that ∆ −→ Ω.
We have [Ω]β̂ = [Ω]α̂. Then by Lemma 30 (Parallel Extension Solution), ∆ −→ Ω.

• Case A = α:
Since A = α, we have [Ω]Γ ` [Ω]α̂ ≤ [Ω]α.
Since [Ω]α = α, we have [Ω]Γ ` [Ω]α̂ ≤ α.
By inversion, ≤Var was used, so [Ω]α̂ = α; therefore, since Ω is well-formed, α is declared to
the left of α̂ in Ω.
We have Γ −→ Ω.
By Lemma 17 (Reverse Declaration Order Preservation), we know that α is declared to the left
of α̂ in Γ ; that is, Γ = Γ0[α][α̂].
Let ∆ = Γ0[α][α̂ = α] and Ω ′ = Ω.
By InstLSolve, Γ0[α][α̂] ` α̂ :=< α a ∆.
By Lemma 30 (Parallel Extension Solution), Γ0[α][α̂ = α] −→ Ω.

• Case A = A1 → A2:
By the definition of substitution, [Ω]A = ([Ω]A1) → ([Ω]A2).
Therefore [Ω]Γ ` [Ω]α̂ ≤ ([Ω]A1) → ([Ω]A2).
Since we have an arrow as the supertype, only ≤∀L or ≤→ could have been used, and the
subtype [Ω]α̂ must be either a quantifier or an arrow. But Ω is predicative, so [Ω]α̂ cannot be
a quantifier. Therefore, it is an arrow: [Ω]α̂ = τ1 → τ2, and ≤→ concluded the derivation.
Inverting ≤→ gives [Ω]Γ ` [Ω]A2 ≤ τ2 and [Ω]Γ ` τ1 ≤ [Ω]A1.

Since α̂ ∈ unsolved(Γ), we know that Γ has the form Γ0[α̂].
By Lemma 28 (Unsolved Variable Addition for Extension) twice, inserting unsolved variables

63

α̂2 and α̂1 into the middle of the context extends it, that is: Γ0[α̂] −→ Γ0[α̂2, α̂1, α̂].
Clearly, α̂1 → α̂2 is well-formed in (. . . , α̂2, α̂1), so by Lemma 26 (Solution Admissibility for
Extension), solving α̂ extends the context: Γ0[α̂2, α̂1, α̂] −→ Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2]. Then by
Lemma 21 (Transitivity), Γ0[α̂] −→ Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2].
Since α̂ ∈ unsolved(Γ) and Γ −→ Ω, we know thatΩ has the formΩ0[α̂ = τ0]. To show that we
can extend this context, we apply Lemma 27 (Solved Variable Addition for Extension) twice to
introduce α̂2 = τ2 and α̂1 = τ1, and then Lemma 26 (Solution Admissibility for Extension) to
overwrite τ0:

Ω0[α̂ = τ0]︸ ︷︷ ︸
Ω

−→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = α̂1 → α̂2]

We have Γ −→ Ω, that is,
Γ0[α̂] −→ Ω0[α̂ = τ0]

By Lemma 29 (Parallel Admissibility) (i) twice, inserting unsolved variables α̂2 and α̂1 on both
contexts in the above extension preserves extension:

Γ0[α̂2, α̂1, α̂] −→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = τ0] By Lemma 29 (Parallel Admissibility) (ii) twice
Γ0[α̂2, α̂1, α̂ = α̂1→α̂2]︸ ︷︷ ︸

Γ1

−→ Ω0[α̂2 = τ2, α̂1 = τ1, α̂ = α̂1→α̂2]︸ ︷︷ ︸
Ω1

By Lemma 31 (Parallel Variable Update)

Since α̂ /∈ FV(A), it follows that [Γ1]A = [Γ]A = A.
Therefore α̂1 /∈ FV(A1) and α̂1, α̂2 /∈ FV(A2).
By Lemma 51 (Finishing Completions) and Lemma 50 (Finishing Types), [Ω1]Γ1 = [Ω]Γ and
[Ω1]α̂1 = τ1.
By i.h., there are ∆2 and Ω2 such that Γ1 ` A1 =<: α̂1 a ∆2 and ∆2 −→ Ω2 and Ω1 −→ Ω2.
Next, note that [∆2][∆2]A2 = [∆2]A2.
By Lemma 34 (Left Unsolvedness Preservation), we know that α̂2 ∈ unsolved(∆2).
By Lemma 35 (Left Free Variable Preservation), we know that α̂2 /∈ FV([∆2]A2).
By Lemma 21 (Transitivity), Ω −→ Ω2.
We know [Ω2]∆2 = [Ω]Γ because:

[Ω2]∆2 = [Ω2]Ω2 By Lemma 49 (Stability of Complete Contexts)
= [Ω]Ω By Lemma 51 (Finishing Completions)
= [Ω]Γ By Lemma 49 (Stability of Complete Contexts)

By Lemma 50 (Finishing Types), we know that [Ω2]α̂2 = [Ω1]α̂2 = τ2.
By Lemma 50 (Finishing Types), we know that [Ω2]A2 = [Ω]A2.
Hence we know that [Ω2]∆2 ` [Ω2]α̂2 ≤ [Ω2]A2.
By i.h., we have ∆ and Ω ′ such that ∆2 ` α̂2 :=< [∆2]A2 a ∆ and Ω2 −→ Ω ′ and ∆ −→ Ω ′.
By rule InstLArr, Γ ` α̂ :=< A a ∆.
By Lemma 21 (Transitivity), Ω −→ Ω ′.

• Case A = 1:
We have A = 1, so [Ω]Γ ` [Ω]α̂ ≤ [Ω]1.
Since [Ω]1 = 1, we have [Ω]Γ ` [Ω]α̂ ≤ 1.
The only declarative subtyping rules that can have 1 as the supertype in the conclusion are ≤∀L
and ≤Unit. However, since Ω is predicative, [Ω]α̂ cannot be a quantifier, so ≤∀L cannot have
been used. Hence ≤Unit was used and [Ω]α̂ = 1.
Let ∆ = Γ [α̂ = 1] and Ω ′ = Ω.
By InstLSolve, Γ [α̂] ` α̂ :=< 1 a ∆.
By Lemma 30 (Parallel Extension Solution), Γ [α̂ = 1] −→ Ω.

• Case A = ∀β. B:
We have [Ω]Γ ` [Ω]α̂ ≤ [Ω](∀β. B).
By definition of substitution, [Ω](∀β. B) = ∀β. [Ω]B, so we have [Ω]Γ ` [Ω]α̂ ≤ ∀β. [Ω]B.
The only declarative subtyping rules that can have a quantifier as supertype are ≤∀L and ≤∀R.
However, since Ω is predicative, [Ω]α̂ cannot be a quantifier, so ≤∀L cannot have been used.
Hence ≤∀R was used, and we have a subderivation of [Ω]Γ, β ` [Ω]α̂ ≤ [Ω]B.

64

Let Ω1 = (Ω,β) and Γ1 = (Γ, β).
By −→Uvar, Γ1 −→ Ω1.
By the definition of substitution, [Ω1]B = [Ω]B and [Ω1]α̂ = [Ω]α̂.
Note that [Ω1]Γ1 = [Ω]Γ, β.
Since α̂ ∈ unsolved(Γ), we have α̂ ∈ unsolved(Γ1).
Since α̂ /∈ FV(A) and A = ∀β. B, we have α̂ /∈ FV(B).
By i.h., there are Ω2 and ∆2 such that Γ, β ` α̂ :=< B a ∆2 and ∆2 −→ Ω2 and Ω1 −→ Ω2.
By Lemma 32 (Instantiation Extension), Γ1 −→ ∆2, that is, Γ, β −→ ∆2.
Therefore by Lemma 24 (Extension Order), ∆2 = (∆ ′, β,Ω ′′) where Γ −→ ∆ ′.
By equality, we know ∆ ′, β, ∆ ′′ −→ Ω2.
By Lemma 24 (Extension Order), Ω2 = (Ω ′, β,Ω ′′) where Z ∆ ′ −→ Ω ′.
We have Ω1 −→ Ω2, that is, Ω,β −→ Ω ′, β,Ω ′′, so Lemma 24 (Extension Order) gives
Z Ω −→ Ω ′.
By rule InstLAllR, Γ ` α̂ :=< ∀β. B a ∆ ′.

(2) [Ω]Γ ` [Ω]A ≤ [Ω]α̂

These cases are mostly symmetric. The one exception is the one connective that is not treated
symmetrically in the declarative subtyping rules:

• Case A = ∀α. B:
Since A = ∀α. B, we have [Ω]Γ ` [Ω]∀β. B ≤ [Ω]α̂.
By symmetric reasoning to the previous case (the last case of part (1) above), ≤∀L must have
been used, with a subderivation of [Ω]Γ ` [Ω]α̂ ≤ [τ/β][Ω]B.
Since [Ω]Γ ` τ, the type τ has no existential variables and is therefore invariant under substi-
tution: τ = [Ω]τ. Therefore

[
τ/β

][
Ω
]
B =

[
[Ω]τ/β

][
Ω
]
B.

By distributivity of substitution, this is
[
Ω
]
[τ/β]B. Interposing β̂, this is equal to [Ω][τ/β̂][β̂/β]B.

Therefore [Ω]Γ ` [Ω]α̂ ≤ [Ω][τ/β̂][β̂/β]B.
Let Ω1 be Ω,Iβ̂, β̂ = τ and let Γ1 be Γ,Iβ̂, β̂.

– By the definition of context application, [Ω1]Γ1 = [Ω]Γ .
– From the definition of substitution, [Ω1]α̂ = [Ω]α̂.
– It follows from the definition of substitution that [Ω][τ/β̂]C = [Ω1]C for all C. Therefore
[Ω][τ/β̂][β̂/β]B = [Ω1][β̂/β]B.

Applying these three equalities, [Ω1]Γ1 ` [Ω1]α̂ ≤ [Ω1][β̂/β]B.
By the definition of substitution, [Γ,Iβ̂, β̂]B = [Γ]B = B, so α̂ /∈ FV([Γ1]B).
Since α̂ ∈ unsolved(Γ), we have α̂ ∈ unsolved(Γ1).

By i.h., there exist ∆2 and Ω2 such that Γ1 ` B =<: α̂ a ∆2 and Ω1 −→ Ω2 and ∆2 −→ Ω2.
By Lemma 32 (Instantiation Extension), Γ1 −→ ∆2, which is, Γ,Iβ̂, β̂ −→ ∆2.
By Lemma 24 (Extension Order), ∆2 = (∆ ′,Iβ̂, ∆

′′) and Γ −→ ∆ ′.
By equality, ∆ ′,Iβ̂, ∆

′′ −→ Ω2.
By Lemma 24 (Extension Order), Ω2 = (Ω ′,Iβ̂,Ω

′′) and Z ∆ ′ −→ Ω ′.
By equality, Ω,Iβ̂, β̂ = τ −→ Ω ′,Iβ̂,Ω

′′.
Z By Lemma 24 (Extension Order), Ω −→ Ω ′.
By InstRAllL, Γ ` ∀β. B =<: α̂ a ∆ ′.

65

K ′.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If Γ −→ Ω and Γ ` A and Γ ` B and [Ω]Γ `
[Ω]A ≤ [Ω]B then there exist ∆ and Ω ′ such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ]A <: [Γ]B a ∆.

Proof. By induction on the derivation of [Ω]Γ ` [Ω]A ≤ [Ω]B.
We distinguish cases of [Γ]B and [Γ]A that are impossible, fully written out, and similar to fully-

written-out cases.

[Γ]B

∀β. B ′ 1 α β̂ B1 → B2

∀α. A ′ 1 (B poly) 2.Poly 2.Poly 2.Poly 2.Poly

1 1 (B poly) 2.Units impossible 2.BEx.Unit impossible

[Γ]A α 1 (B poly) impossible 2.Uvars 2.BEx.Uvar impossible

α̂ 1 (B poly) 2.AEx.Unit 2.AEx.Uvar
2.AEx.SameEx
2.AEx.OtherEx 2.AEx.Arrow

A1 → A2 1 (B poly) impossible impossible 2.BEx.Arrow 2.Arrows

The impossibility of the “impossible” entries follows from inspection of the declarative subtyping
rules.

We first split on [Γ]B.

• Case 1 (B poly): [Γ]B polymorphic: [Γ]B = ∀β. B ′:

B = ∀β. B0 Γ predicative
B ′ = [Γ]B0 Γ predicative

[Ω]B = [Ω](∀β. B0) Applying Ω to both sides
= ∀β. [Ω]B0 By definition of substitution

D :: [Ω]Γ ` [Ω]A ≤ [Ω]B Given
D :: [Ω]Γ ` [Ω]A ≤ ∀β. [Ω]B0 By above equality
D ′ :: [Ω]Γ, β ` [Ω]A ≤ [Ω]B0 By Lemma 7 (Invertibility)

D ′ < D ′′

D ′ :: [Ω,β](Γ, β) ` [Ω,β]A ≤ [Ω,β]B0 By definitions of substitution
Γ, β ` [Γ, β]A <: [Γ, β]B0 a ∆ ′ By i.h.
∆ ′ −→ Ω ′

0
′′

Ω,β −→ Ω ′
0

′′

Γ, β ` [Γ]A <: [Γ]B0 a ∆ ′ By definition of substitution

Γ, β −→ ∆ ′ By Lemma 32 (Instantiation Extension)
∆ ′ = ∆,β,Θ By Lemma 24 (Extension Order) (i)
Γ −→ ∆ ′′

∆,β,Θ −→ Ω ′
0 By ∆ ′ −→ Ω ′

0 and above equality
Ω ′
0 = Ω ′, β,ΩR By Lemma 24 (Extension Order) (i)

Z ∆ −→ Ω ′ ′′

Γ, β ` [Γ]A <: [Γ]B0 a ∆,β,Θ By above equality
Ω,β −→ Ω ′, β,ΩR By above equality

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Γ ` [Γ]A <: ∀β. [Γ]B0 a ∆ By <:∀R
Z Γ ` [Γ]A <: ∀β. B ′ a ∆ By above equality

66

• Cases 2.*: [Γ]B not polymorphic:

We split on the form of [Γ]A.

– Case 2.Poly: [Γ]A is polymorphic: [Γ]A = ∀α. A ′:

A = ∀α. A0 Γ predicative
A ′ = [Γ]A0 Γ predicative

[Ω]A = [Ω](∀α. A0) Applying Ω to both sides
[Ω]A = ∀α. [Ω]A0 By definition of substitution
[Ω]Γ ` [Ω]A ≤ [Ω]B Given
[Ω]Γ ` ∀α. [Ω]A0 ≤ [Ω]B By above equality
[Γ]B 6= (∀β. · · ·) We are in the “[Γ]B not polymorphic” subcase
B 6= (∀β. . . .) Γ predicative

[Ω]Γ ` [τ/α][Ω]A0 ≤ [Ω]B By inversion on ≤∀L
[Ω]Γ ` τ ′′

Γ −→ Ω Given
Γ,Iα̂ −→ Ω,Iα̂ By −→Marker

Γ,Iα̂, α̂ −→ Ω,Iα̂, α̂ = τ︸ ︷︷ ︸
Ω0

By −→Solve

[Ω]Γ = [Ω0](Γ,Iα̂, α̂) By definition of context application (lines 16, 13)

[Ω]Γ ` [τ/α][Ω]A0 ≤ [Ω]B Above
[Ω0](Γ,Iα̂, α̂) ` [τ/α][Ω]A0 ≤ [Ω]B By above equality
[Ω0](Γ,Iα̂, α̂) `

[
[Ω0]α̂/α

]
[Ω]A0 ≤ [Ω]B By definition of substitution

[Ω0](Γ,Iα̂, α̂) `
[
[Ω0]α̂/α

]
[Ω0]A0 ≤ [Ω0]B By definition of substitution

[Ω0](Γ,Iα̂, α̂) ` [Ω0][α̂/α]A0 ≤ [Ω0]B By distributivity of substitution

Γ,Iα̂, α̂ ` [Γ,Iα̂, α̂][α̂/α]A0 <: [Γ,Iα̂, α̂]B a ∆0 By i.h.
∆0 −→ Ω ′′ ′′

Ω0 −→ Ω ′′ ′′

Γ,Iα̂, α̂ ` [Γ][α̂/α]A0 <: [Γ]B a ∆0 By definition of substitution
Γ,Iα̂, α̂ −→ ∆0 By Lemma 33 (Subtyping Extension)

∆0 = (∆,Iα̂, Θ) By Lemma 24 (Extension Order) (ii)
Γ −→ ∆ ′′

Ω ′′ = (Ω ′,Iα̂,ΩZ) By Lemma 24 (Extension Order) (ii)
Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′′ Above
Ω,Iα̂, α̂ = τ −→ Ω ′,Iα̂,ΩZ By above equalities

Z Ω −→ Ω ′ By Lemma 24 (Extension Order) (ii)

Γ,Iα̂, α̂ ` [Γ][α̂/α]A0 <: [Γ]B a ∆,Iα̂, Θ By above equality ∆0 = (∆,Iα̂, Θ)

Γ,Iα̂, α̂ ` [α̂/α][Γ]A0 <: [Γ]B a ∆,Iα̂, Θ By def. of subst. ([Γ]α̂ = α̂ and [Γ]α = α)
Γ ` ∀α. [Γ]A0 <: [Γ]B a ∆ By <:∀L

Z Γ ` ∀α. A ′ <: [Γ]B a ∆ By above equality

– Case 2.AEx: A is an existential variable [Γ]A = α̂:
We split on the form of [Γ]B.

∗ Case 2.AEx.SameEx: [Γ]B is the same existential variable [Γ]B = α̂:

67

Γ ` α̂ <: α̂ a Γ By <:Exvar
Z Γ ` [Γ]A <: [Γ]B a Γ By [Γ]A = [Γ]B = α̂

Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

∗ Case 2.AEx.OtherEx: [Γ]B is a different existential variable [Γ]B = β̂ where β̂ 6= α̂:
Either α̂ ∈ FV([Γ]β̂), or α̂ /∈ FV([Γ]β̂).

· α̂ ∈ FV([Γ]β̂):
We have α̂ � [Γ]β̂.
Therefore α̂ = [Γ]β̂, or α̂ ≺ [Γ]β̂.
But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, α̂ ≺ [Γ]β̂.
Since Γ is predicative, [Γ]β̂ cannot have the form ∀β. · · · , so the only way that α̂ can
be a proper subterm of [Γ]β̂ is if [Γ]β̂ has the form B1 → B2 such that α̂ is a subterm
of B1 or B2, that is: α̂ ≺→ [Γ]β̂.
Then by a property of substitution, [Ω]α̂ ≺→ [Ω][Γ]β̂.
By Lemma 18 (Substitution Extension Invariance), [Ω][Γ]β̂ = [Ω]β̂, so [Ω]α̂ ≺→ [Ω]β̂.
We have [Ω]Γ ` [Ω]α̂ ≤ [Ω]β̂, and we know that [Ω]α̂ is a monotype, so we can use
Lemma 8 (Occurrence) (ii) to show that [Ω]α̂ ≺6→ [Ω]β̂, a contradiction.
· α̂ /∈ FV([Γ]β̂):

Γ ` α̂ :=< [Γ]β̂ a ∆ By Theorem 13 (1)
Z Γ ` α̂ <: β̂ a ∆ By <:InstantiateL
Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

∗ Case 2.AEx.Unit: [Γ]B = 1:
Γ −→ Ω Given

1 = [Ω]1 By definition of substitution
α̂ /∈ FV(1) By definition of FV(−)

[Ω]Γ ` [Ω]α̂ ≤ [Ω]1 Given

Γ ` α̂ :=< 1 a ∆ By Theorem 13 (1)
Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′ ′′

1 = [Γ]1 By definition of substitution
α̂ /∈ FV(1) By definition of FV(−)

Z Γ ` α̂ <: 1 a ∆ By <:InstantiateL
∗ Case 2.AEx.Uvar: [Γ]B = β:

Similar to Case 2.AEx.Unit, using β = [Ω]β = [Γ]β and α̂ /∈ FV(β).
∗ Case 2.AEx.Arrow: [Γ]B = B1 → B2:

Since [Γ]B is an arrow, it cannot be exactly α̂.
Suppose, for a contradiction, that α̂ ∈ FV([Γ]B).

68

α̂ � [Γ]B α̂ ∈ FV([Γ]B)
[Ω]α̂ � [Ω][Γ]B By a property of substitution

Γ −→ Ω Given
[Ω][Γ]B = [Ω]B By Lemma 18 (Substitution Extension Invariance)

[Ω]α̂ � [Ω]B By above equality

[Γ]B 6= α̂ Given (2.AEx.Arrow)
[Ω][Γ]B 6= [Ω]α̂ By a property of substitution

[Ω]B 6= [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)

[Ω]α̂ ≺ [Ω]B Follows from � and 6=
[Ω]α̂ ≺→ [Ω]B [Ω]A has the form · · ·→ · · ·
[Ω]Γ ` [Ω]α̂ ≤ [Ω]B Given

[Ω]B is a monotype Ω is predicative
[Ω]α̂ ≺6→ [Ω]B By Lemma 8 (Occurrence) (ii)⇒⇐

α̂ /∈ FV([Γ]B) By contradiction

Γ ` α̂ :=< [Γ]B a ∆ By Theorem 13 (1)
Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ` α̂ <: [Γ]B︸︷︷︸
B1→B2

a ∆ By <:InstantiateL

– Case 2.BEx: [Γ]A is not polymorphic and [Γ]B is an existential variable: [Γ]B = β̂

We split on the form of [Γ]A.

∗ Case 2.BEx.Unit ([Γ]A = 1),
Case 2.BEx.Uvar ([Γ]A = α),
Case 2.BEx.Arrow ([Γ]A = A1 → A2):
Similar to Cases 2.AEx.Unit, 2.AEx.Uvar and 2.AEx.Arrow, but using part (2) of Theo-
rem 13 instead of part (1), and applying <:InstantiateR instead of <:InstantiateL as the
final step.

– Case 2.Units: [Γ]A = [Γ]B = 1:
Z Γ ` 1 <: 1 a Γ By <:Unit

Γ −→ Ω Given
Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

– Case 2.Uvars: [Γ]A = [Γ]B = α:
α ∈ Ω By inversion on ≤Var

Γ −→ Ω Given
α ∈ Γ By Lemma 24 (Extension Order)

Z Γ ` α <: α a Γ By <:Var
Z ∆ −→ Ω ∆ = Γ

Z Ω −→ Ω ′ By Lemma 20 (Reflexivity) and Ω ′ = Ω

– Case 2.Arrows: A = A1 → A2 and B = B1 → B2:
Only rule ≤→ could have been used.

69

[Ω]Γ ` [Ω]B1 ≤ [Ω]A1 Subderivation
Γ ` [Γ]B1 <: [Γ]A1 a Θ By i.h.

Θ −→ Ω0
′′

Ω −→ Ω0
′′

Γ −→ Ω Given
Γ −→ Ω0 By Lemma 21 (Transitivity)

Θ −→ Ω0 Above

[Ω]Γ = [Ω]Θ By Lemma 52 (Confluence of Completeness)

[Ω]Γ ` [Ω]A2 ≤ [Ω]B2 Subderivation
[Ω]Θ ` [Ω]A2 ≤ [Ω]B2 By above equality

[Ω]A2 = [Ω][Γ]A2 By Lemma 18 (Substitution Extension Invariance)
[Ω]B2 = [Ω][Γ]B2 By Lemma 18 (Substitution Extension Invariance)

[Ω]Θ ` [Ω][Γ]A2 ≤ [Ω][Γ]B2 By above equalities
Θ ` [Θ][Γ]A2 <: [Θ][Γ]B2 a ∆ By i.h.

Z ∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Γ ` ([Γ]A1) → ([Γ]A2) <: ([Γ]B1) → ([Γ]B2) a ∆ By <:→
Z Γ ` [Γ](A1 → A2) <: [Γ](B1 → B2) a ∆ By definition of substitution
Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Corollary 55 (Completeness of Subtyping). If Ψ ` A ≤ B then there is a ∆ such that Ψ ` A <: B a ∆.

Proof. Let Ω = Ψ and Γ = Ψ.
By Lemma 20 (Reflexivity), Ψ −→ Ψ, so Γ −→ Ω.
By Lemma 4 (Well-Formedness), Ψ ` A and Ψ ` B; since Γ = Ψ, we have Γ ` A and Γ ` B.
By Theorem 14, there exists ∆ such that Γ ` [Γ]A <: [Γ]B a ∆.
Since Γ = Ψ and Ψ is a declarative context with no existentials, [Ψ]C = C for all C, so we actually have
Ψ ` A <: B a ∆, which was to be shown.

70

L ′ Completeness of Typing

Theorem 15 (Completeness of Algorithmic Typing). Given Γ −→ Ω and Γ ` A:

(i) If [Ω]Γ ` e⇐ [Ω]A
then there exist ∆ and Ω ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` e⇐ [Γ]A a ∆.

(ii) If [Ω]Γ ` e⇒ A
then there exist ∆, Ω ′, and A ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` e⇒ A ′ a ∆ and A = [Ω ′]A ′.

(iii) If [Ω]Γ ` [Ω]A • e⇒⇒ C
then there exist ∆, Ω ′, and C ′

such that ∆ −→ Ω ′ and Ω −→ Ω ′ and Γ ` [Γ]A • e⇒⇒ C ′ a ∆ and C = [Ω ′]C ′.

Proof. By induction on the given declarative derivation.

• Case (x : A) ∈ [Ω]Γ

[Ω]Γ ` x⇒ A
DeclVar

(x : A) ∈ [Ω]Γ Premise
Γ −→ Ω Given

(x : A ′) ∈ Γ where [Ω]A ′ = [Ω]A From definition of context application
Let ∆ = Γ .

Let Ω ′ = Ω.
Z Γ −→ Ω Given
Z Ω −→ Ω By Lemma 20 (Reflexivity)
Z Γ ` x⇒ A ′ a Γ By Var

[Ω]A ′ = [Ω]A Above
Z = A FEV(A) = ∅

• Case [Ω]Γ ` e⇒ B [Ω]Γ ` B ≤ [Ω]A

[Ω]Γ ` e⇐ [Ω]A
DeclSub

[Ω]Γ ` e⇒ B Subderivation
Γ ` e⇒ B ′ a Θ By i.h.
B = [Ω]B ′ ′′

Θ −→ Ω0
′′

Ω −→ Ω0
′′

Γ −→ Ω Given
Γ −→ Ω0 By Lemma 21 (Transitivity)
[Ω]Γ ` B ≤ [Ω]A Subderivation
[Ω]Γ = [Ω]Θ By Lemma 52 (Confluence of Completeness)
[Ω]Θ ` B ≤ [Ω]A By above equalities
Θ −→ Ω0 Above
Θ ` [Θ]B ′ <: [Θ]A a ∆ By Theorem 14

∆ −→ Ω ′ ′′

Ω0 −→ Ω ′ ′′

Z ∆ −→ Ω ′ By Lemma 21 (Transitivity)
Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

Z Γ ` e⇐ A a ∆ By Sub

71

• Case [Ω]Γ ` A [Ω]Γ ` e0 ⇐ A

[Ω]Γ ` (e0 : A) ⇒ A
DeclAnno

A = [Ω]A Source type annotations cannot contain evars
= [Γ]A ′′

[Ω]Γ ` e0 ⇐ A Subderivation
[Ω]Γ ` e0 ⇐ [Ω]A By above equality
Γ ` e0 ⇐ [Γ]A a ∆ By i.h.

Z ∆ −→ Ω ′′

Z Ω −→ Ω ′ ′′

Γ ` A Given

Γ ` (e0 : A) ⇒ A a ∆ By Anno
A = [Ω ′]A Source type annotations cannot contain evars

Z Γ ` (e0 : [Ω
′]A) ⇒ [Ω ′]A a ∆ By above equality

• Case

[Ω]Γ ` () ⇐ 1
Decl1I

We have [Ω]A = 1. Either [Γ]A = 1 or [Γ]A = α̂ ∈ unsolved(Γ).

In the former case:
Let ∆ = Γ .

Let Ω ′ = Ω.
Z Γ −→ Ω Given
Z Ω −→ Ω ′ By Lemma 20 (Reflexivity)

Γ ` () ⇐ 1 a Γ By 1I
Z Γ ` () ⇐ [Γ]1 a Γ 1 = [Γ]1

In the latter case:
Γ ` () ⇒ 1 a Γ By 1I⇒

[Ω]Γ ` 1 ≤ 1 By ≤Unit

1 = [Ω]1 By definition of substitution
= [Ω][Γ]α̂ By [Ω]A = 1
= [Ω]α̂ By Lemma 18 (Substitution Extension Invariance)

[Ω]Γ ` [Ω]1 ≤ [Ω]α̂ By above equalities
Γ ` 1 <: α̂ a ∆ By Theorem 13 (1)
1 = [Γ]1 By definition of substitution
α̂ = [Γ]α̂ α̂ ∈ unsolved(Γ)

Γ ` [Γ]1 <: [Γ]α̂ a ∆ By above equalities
Z Ω −→ Ω ′ ′′

Z ∆ −→ Ω ′ ′′

Γ ` () ⇐ α̂ a ∆ By Sub
Z Γ ` () ⇐ [Γ]A a ∆ By [Γ]A = α̂

• Case [Ω]Γ, α ` e⇐ A0

[Ω]Γ ` e⇐ ∀α. A0 Decl∀I

72

[Ω]A = ∀α. A0 Given
= ∀α. [Ω]A ′ By def. of subst. and predicativity of Ω

A0 = [Ω]A ′ Follows from above equality
[Ω]Γ, α ` e⇐ [Ω]A ′ Subderivation and above equality

Γ −→ Ω Given
Γ, α −→ Ω,α By −→Uvar

[Ω]Γ, α = [Ω,α](Γ, α) By definition of context substitution
[Ω,α](Γ, α) ` e⇐ [Ω]A ′ By above equality
[Ω,α](Γ, α) ` e⇐ [Ω,α]A ′ By definition of substitution

Γ, α ` e⇐ [Γ, α]A ′ a ∆ ′ By i.h.
∆ ′ −→ Ω ′

0
′′

Ω,α −→ Ω ′
0

′′

Γ, α −→ ∆ ′ By Lemma 54 (Typing Extension)
∆ ′ = ∆,α,Θ By Lemma 24 (Extension Order) (i)

∆,α,Θ −→ Ω ′
0 By above equality

Ω ′
0 = Ω ′, α,ΩZ By Lemma 24 (Extension Order) (i)

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 24 (Extension Order) on Ω,α −→ Ω ′
0

Γ, α ` e⇐ [Γ, α]A ′ a ∆,α,Θ By above equality
Γ, α ` e⇐ [Γ]A ′ a ∆,α,Θ By definition of substitution
Γ ` e⇐ ∀α. [Γ]A ′ a ∆ By ∀I

Z Γ ` e⇐ [Γ](∀α. A ′) a ∆ By definition of substitution

• Case [Ω]Γ ` τ [Ω]Γ ` [τ/α]A0 • e⇒⇒ C

[Ω]Γ ` ∀α. A0︸ ︷︷ ︸
[Ω]A

• e⇒⇒ C
Decl∀App

[Ω]Γ ` τ Subderivation

[Ω]A = ∀α. A0 Given
= ∀α. [Ω]A ′ By def. of subst. and predicativity of Ω

[Ω]Γ ` [τ/α][Ω]A ′ • e⇒⇒ C Subderivation and above equality
Γ −→ Ω Given

Γ, α̂ −→ Ω, α̂ = τ By −→Solve

[Ω]Γ = [Ω, α̂ = τ](Γ, α̂) By definition of context application
[Ω, α̂ = τ](Γ, α̂) ` [τ/α][Ω]A ′ • e⇒⇒ C By above equality
[Ω, α̂ = τ](Γ, α̂) ` [τ/α][Ω, α̂ = τ]A ′ • e⇒⇒ C By def. of subst.([

[Ω]τ/α
][
Ω, α̂ = τ

]
A ′) = ([Ω, α̂ = τ][α̂/α]A ′) By distributivity of substitution
τ = [Ω]τ FEV(τ) = ∅([

τ/α
][
Ω, α̂ = τ

]
A ′) = ([Ω, α̂ = τ][α̂/α]A ′) By above equality

[Ω, α̂ = τ](Γ, α̂) ` [Ω, α̂ = τ][α̂/α]A ′ • e⇒⇒ C By above equality

Γ, α̂ ` [α̂/α]A ′ • e⇒⇒ C ′ a ∆ By i.h.
Z C = [Ω]C ′ ′′

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Z Γ ` ∀α. A ′ • e⇒⇒ C ′ a ∆ By ∀App

73

• Case [Ω]Γ, x : A ′
1 ` e0 ⇐ A ′

2

[Ω]Γ ` λx. e0 ⇐ A ′
1 → A ′

2

Decl→I

We have [Ω]A = A ′
1 → A ′

2. Either [Γ]A = A1 → A2 where A ′
1 = [Ω]A1 and A ′

2 = [Ω]A2—or
[Γ]A = α̂ and [Ω]α̂ = A ′

1 → A ′
2.

In the former case:
[Ω]Γ, x : A ′

1 ` e0 ⇐ A ′
2 Subderivation

A ′
1 = [Ω]A1 Known in this subcase
= [Ω][Γ]A1 By Lemma 18 (Substitution Extension Invariance)

[Ω]A ′
1 = [Ω][Ω][Γ]A1 Applying Ω on both sides
= [Ω][Γ]A1 By idempotence of substitution

[Ω]Γ, x : A ′
1 = [Ω, x : A ′

1](Γ, x : [Γ]A1) By definition of context application

[Ω, x : A ′
1](Γ, x : [Γ]A1) ` e0 ⇐ A ′

2 By above equality

Γ −→ Ω Given
Γ, x : [Γ]A1 −→ Ω, x : A ′

1 By −→Var

Γ, x : [Γ]A1 ` e0 ⇐ A2 a ∆ ′ By i.h.
∆ ′ −→ Ω ′

0
′′

Ω, x : A ′
1 −→ Ω ′

0
′′

Ω ′
0 = Ω ′, x : A ′

1, Θ By Lemma 24 (Extension Order) (v)
Z Ω −→ Ω ′ ′′

Γ, x : [Γ]A1 −→ ∆ ′ By Lemma 54 (Typing Extension)
∆ ′ = ∆, x : · · · , Θ By Lemma 24 (Extension Order) (v)

∆, x : · · · , Θ −→ Ω ′, x : A ′
1, Θ By above equalities

Z ∆ −→ Ω ′ By Lemma 24 (Extension Order) (v)

Γ, x : [Γ]A1 ` e0 ⇐ [Γ]A2 a ∆,α,Θ By above equality
Γ ` λx. e0 ⇐ ([Γ]A1) → ([Γ]A2) a ∆ By →I

Z Γ ` λx. e0 ⇐ [Γ](A1 → A2) a ∆ By definition of substitution

In the latter case:
[Ω]α̂ = A ′

1 → A ′
2 Known in this subcase

[Ω]Γ, x : A ′
1 ` e0 ⇐ A ′

2 Subderivation
Γ −→ Ω Given

Γ, α̂, β̂ −→ Ω, α̂ = A ′
1, β̂ = A ′

2 By −→Solve twice
[Ω]α̂ = [Ω]A ′

1 By definition of substitution
Γ, α̂, β̂, x : α̂ −→ Ω, α̂ = A ′

1, β̂ = A ′
2, x : A

′
1 By −→Var

[Ω]Γ, x : A ′
1 =

[
Ω, α̂ = A ′

1, β̂ = A ′
2, x : A

′
1

](
Γ, α̂, β̂, x : α̂

)
By definition of context application

Let Ω0 = (Ω, α̂ = A ′
1, β̂ = A ′

2, x : A
′
1).

[Ω0](Γ, α̂, β̂, x : α̂) ` e0 ⇐ A ′
2 By above equality

Γ, α̂, β̂, x : α̂ ` e0 ⇐ β̂ a ∆ ′ By i.h. with Ω0
∆ ′ −→ Ω ′

0
′′

Ω0 −→ Ω ′
0

′′

74

Γ, α̂, β̂, x : α̂ −→ ∆ ′ By Lemma 54 (Typing Extension)
∆ ′ = ∆, x : α̂, Θ By Lemma 24 (Extension Order) (v)

∆, x : α̂, Θ −→ Ω ′
0 By above equality

Ω ′
0 = Ω ′′, x : · · · ,ΩZ By Lemma 54 (Typing Extension)

Z ∆ −→ Ω ′′ ′′

Γ, α̂, β̂ −→ ∆ ′′

Ω0 −→ Ω ′′, x : · · · ,ΩZ︸ ︷︷ ︸
Ω ′

0

By above equality

Ω, α̂ = A ′
1, β̂ = A ′

2, x : A
′
1 −→ Ω ′′, x : · · · ,ΩZ By def. of Ω0
Ω ′′ = Ω ′, α̂ = . . ., . . . By Lemma 24 (Extension Order) (iii)

Z Ω −→ Ω ′ ′′

Γ, α̂, β̂, x : α̂ ` e0 ⇐ β̂ a ∆, x : α̂, Θ By above equality
Γ ` λx. e0 ⇐ α̂→ β̂ a ∆ By →I⇒

[Γ]α̂ = α̂ By definition of substitution
[Γ]β̂ = β̂ By definition of substitution
Γ ` λx. e0 ⇐ ([Γ]α̂) → ([Γ]β̂) a ∆ By above equalities

Z Γ ` λx. e0 ⇐ [Γ](α̂→ β̂) a ∆ By definition of substitution

• Case [Ω]Γ ` e1 ⇒ B [Ω]Γ ` B • e2 ⇒⇒ A

[Ω]Γ ` e1 e2 ⇒ A
Decl→E

[Ω]Γ ` e1 ⇒ B Subderivation
Γ −→ Ω Given
Γ ` e1 ⇒ B ′ a Θ By i.h.
B = [Ω]B ′ ′′

Θ −→ Ω ′
0

′′

Ω −→ Ω ′
0

′′

[Ω]Γ ` B • e2 ⇒⇒ A Subderivation
[Ω]Γ ` [Ω]B ′ • e2 ⇒⇒ A By above equality
Γ −→ Ω ′

0 By Lemma 21 (Transitivity)
[Ω]Γ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

= [Ω ′
0]Ω

′
0 By Lemma 51 (Finishing Completions)

= [Ω ′
0]Γ By Lemma 49 (Stability of Complete Contexts)

= [Ω ′
0]Θ By Lemma 52 (Confluence of Completeness)

[Ω ′
0]Θ ` [Ω]B ′ • e2 ⇒⇒ A By above equality

[Ω]B ′ = [Ω ′
0]B

′ By Lemma 50 (Finishing Types)
[Ω ′
0]B

′ = [Ω ′
0][Θ]B

′ By Lemma 18 (Substitution Extension Invariance)
[Ω ′
0]Θ ` [Ω][Θ]B ′ • e2 ⇒⇒ A By above equalities

Θ ` [Θ]B ′ • e2 ⇒⇒ A ′ a ∆ By i.h. with Ω ′
0

Z A = [Ω]A ′ ′′

Z ∆ −→ Ω ′ ′′

Ω ′
0 −→ Ω ′ ′′

Ω −→ Ω ′ By Lemma 21 (Transitivity)
Z Γ ` e1 e2 ⇒ A ′ a ∆ By →E

75

• Case [Ω]Γ ` e⇐ B

[Ω]Γ ` B→ C︸ ︷︷ ︸
[Ω]A

• e⇒⇒ C
Decl→App

We have [Ω]A = B → C. Either [Γ]A = B0 → C0 where B = [Ω]B0 and C = [Ω]C0—or [Γ]A = α̂
where α̂ ∈ unsolved(Γ) and [Ω]α̂ = B→ C.

In the former case:
[Ω]Γ ` e⇐ B Subderivation
B = [Ω]B0 Known in this subcase

Γ −→ Ω Given

Γ ` e⇐ [Γ]B0 a ∆ By i.h.
Γ ` ([Γ]B0) → ([Γ]C0) • e⇒⇒ [Γ]C0 a ∆ By →App

Z ∆ −→ Ω ′ ′′

Z Ω −→ Ω ′ ′′

Let C ′ = [Γ]C0.
C = [Ω]C0 Known in this subcase
= [Ω][Γ]C0 By Lemma 18 (Substitution Extension Invariance)

Z = [Ω]C ′ [Γ]C0 = C
′

Z Γ ` [Γ](B0 → C0) • e⇒⇒ [Γ]C0 a ∆ By definition of substitution

In the latter case, α̂ ∈ unsolved(Γ), so the context Γ must have the form Γ0[α̂].

Γ −→ Ω Given
Γ0[α̂] −→ Ω Γ = Γ0[α̂]

[Ω]A = B→ C Above
[Ω]α̂ = B→ C A = α̂

Ω = Ω0[α̂ = A0] and [Ω]A0 = B→ C Follows from [Ω]α̂ = B→ C

Let Γ ′ = Γ0[α̂2, α̂1, α̂ = α̂1 → α̂2].
Let Ω ′

0 = Ω0[α̂2 = [Ω]C, α̂1 = [Ω]B, α̂ = α̂1 → α̂2].
Γ ′ −→ Ω ′

0 By Lemma 29 (Parallel Admissibility) (ii) twice

[Ω]Γ ` e⇐ B Subderivation

Ω −→ Ω ′
0 By Lemma 27 (Solved Variable Addition for Extension)

then Lemma 29 (Parallel Admissibility) (iii)
[Ω]Γ = [Ω]Ω By Lemma 49 (Stability of Complete Contexts)

= [Ω ′
0]Ω

′
0 By Lemma 51 (Finishing Completions)

= [Ω ′
0]Γ

′ By Lemma 52 (Confluence of Completeness)

B = [Ω ′
0]α̂1 By definition of Ω ′

0

[Ω ′
0]Γ

′ ` e⇐ [Ω ′
0]α̂1 By above equalities

Γ ′ ` e⇐ [Γ ′]α̂1 a ∆ By i.h.
Z ∆ −→ Ω ′ ′′

Ω ′
0 −→ Ω ′ ′′

Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

[Γ ′]α̂1 = α̂1 α̂1 ∈ unsolved(Γ ′)

Γ ′ ` e⇐ α̂1 a ∆ By above equality

76

Γ ` α̂ • e⇒⇒ α̂2 a ∆ By α̂App
Let C ′ = α̂2.

C = [Ω ′
0]α̂2 By definition of Ω ′

0

= [Ω ′]α̂2 By Lemma 50 (Finishing Types)
Z = [Ω ′]C ′ By above equality
Z Γ ` [Γ]A • e⇒⇒ C ′ a ∆ α̂ = [Γ]A and α̂2 = C ′

• Case

[Ω]Γ ` () ⇒ 1
Decl1I⇒

1 = A Given
Γ ` () ⇒ 1 a Γ By 1I⇒

Let ∆ = Γ .
Let Ω ′ = Ω.

Γ −→ Ω Given
Z ∆ −→ Ω By above equality
Z Ω −→ Ω ′ By Lemma 20 (Reflexivity)

Let A ′ = 1.
Z Γ ` () ⇒ A ′ a ∆ By above equalities
Z 1 = [Ω]A ′ By definition of substitution

• Case [Ω]Γ ` σ→ τ [Ω]Γ, x : σ ` e0 ⇐ τ

[Ω]Γ ` λx. e0 ⇒ σ→ τ
Decl→I⇒

(σ→ τ) = A Given
[Ω]Γ, x : σ ` e0 ⇐ τ Subderivation

Let Γ ′ = (Γ, α̂, β̂, x : α̂).
Let Ω0 = (Ω, α̂ = σ, β̂ = τ, x : σ).

Γ −→ Ω Given
Γ ′ −→ Ω0 By −→Solve twice, then −→Var

[Ω0]Γ
′ =

(
[Ω]Γ, x : σ

)
By definition of context application

τ = [Ω0]β̂ By definition of Ω0
[Ω0]Γ

′ ` e0 ⇐ [Ω0]β̂ By above equalities

Γ ′ ` e0 ⇐ β̂ a ∆ ′ By i.h.
∆ ′ −→ Ω ′

0
′′

Ω0 −→ Ω ′
0

′′

∆ ′ = (∆, x : α̂, Θ) By Lemma 24 (Extension Order) (v)
Γ, α̂, β̂, x : α̂ ` e0 ⇐ β̂ a ∆, x : α̂, Θ By above equalities

(∆, x : α̂, Θ) −→ Ω ′
0 By above equality

Ω ′
0 = Ω ′, x : σ,ΩZ By Lemma 24 (Extension Order) (v)

Z ∆ −→ Ω ′ ′′

Γ ` λx. e0 ⇒ α̂→ β̂ a ∆ By →I⇒

77

Let A ′ = (α̂→ β̂).
Z Γ ` λx. e0 ⇒ A ′ a ∆ By above equality

σ→ τ = ([Ω0]α̂) → ([Ω0]β̂) By definition of Ω0
σ→ τ = [Ω0](α̂→ β̂) By definition of substitution

A = [Ω0]A
′ By above equalities

Z A = [Ω ′]A ′ By Lemma 50 (Finishing Types)

Γ ′ −→ ∆ ′ By Lemma 54 (Typing Extension)
Z Ω −→ Ω ′ By Lemma 21 (Transitivity)

References

Frank Pfenning. Structural cut elimination. In LICS, 1995.

78

	Declarative Subtyping
	Properties of Well-Formedness
	Reflexivity
	Subtyping Implies Well-Formedness
	Substitution
	Transitivity
	Invertibility of R
	Non-Circularity and Equality

	Type Assignment
	Robustness of Typing
	Properties of Context Extension
	Syntactic Properties
	Instantiation Extends
	Subtyping Extends

	Decidability of Instantiation
	Decidability of Algorithmic Subtyping
	Lemmas for Decidability of Subtyping
	Decidability of Subtyping

	Decidability of Typing
	Soundness of Subtyping
	Lemmas for Soundness
	Instantiation Soundness
	Soundness of Subtyping

	Typing Extension
	Soundness of Typing
	Completeness of Subtyping
	Instantiation Completeness
	Completeness of Subtyping

	Completeness of Typing
	=14ptProofs
	Declarative Subtyping
	Properties of Well-Formedness
	Reflexivity
	Subtyping Implies Well-Formedness
	Substitution
	Transitivity
	Invertibility of R
	Non-Circularity and Equality

	Type Assignment
	Robustness of Typing
	Properties of Context Extension
	Syntactic Properties
	Instantiation Extends
	Subtyping Extends

	Decidability of Instantiation
	Decidability of Algorithmic Subtyping
	Lemmas for Decidability of Subtyping
	Decidability of Subtyping

	Decidability of Typing
	Soundness of Subtyping
	Lemmas for Soundness
	Instantiation Soundness
	Soundness of Subtyping

	Typing Extension
	Soundness of Typing
	Completeness
	Instantiation Completeness
	Completeness of Subtyping

	Completeness of Typing

