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A Declarative Subtyping

A.1 Properties of Well-Formedness

Proposition 1 (Weakening). If ¥ - A then ¥,¥’' F A by a derivation of the same size.
Proposition 2 (Substitution). If Y + A and ¥, &, ¥/ - B then W, ¥' I [A/«]B.

A.2 Reflexivity
Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if ¥ = A then W - A < A.

A.3 Subtyping Implies Well-Formedness
Lemma 4 (Well-Formedness). If VY - A < B thenVF+ A andV¥ F B.

A.4 Substitution
Lemma 5 (Substitution). If ¥ + tand ¥, o, ¥’ - A < B then V¥, [t/a]¥’ - [t/a]A < [T/a]B.

A.5 Transitivity
Lemma 6 (Transitivity of Declarative Subtyping). f W+ A <Band¥+ B < Cthen¥Y+H A <C.

A.6 Invertibility of <VR

Lemma 7 (Invertibility).
If D derives Y + A < Vp.B then D’ derives¥,3 - A < B where D’ < D.

A.7 Non-Circularity and Equality

Definition 1 (Subterm Occurrence).

Let A < B iff A is a subterm of B.

Let A < B iff A is a proper subterm of B (that is, A < B and A # B).

Let A 2 B iff A occurs in B inside an arrow; that is, there exist By, B, such that (B;—B,) < B and
A =< By for some k € {1,2}.

Lemma 8 (Occurrence).
() IfVY+- A<tTthent ZA.
@ii) IfVY+ t<Bthent Z B.

Lemma 9 (Monotype Equality). If ¥+ o < t then 0 = 7.
Definition 2 (Contextual Size). The size of A with respect to a context I', written |I" - A|, is defined by

Il of = 1

F'@&l &l = 1

Tae=1F& = 1+[M&=1tr1
Il FVa. Al = T+ |LatkA]
TA—=B = 1+|TFA|+I'+B]



B Type Assignment

Lemma 10 (Well-Formedness).
IfVYFe&sAorY-e=Aor¥Y+ Aee== CthenV¥t+ A (and in the last case, Y I C).

Theorem 1 (Completeness of Bidirectional Typing).
IfV |- e: A then there exists e’ such that V- ¢’ = A and |e’| = e.

Lemma 11 (Subtyping Coercion). If¥ - A < B then there exists f which is n-equal to the identity such
thatWFHf:A — B.

Lemma 12 (Application Subtyping). If ¥ A e e == C then there exists B such thatV - A <B — C
and Y + e « B by a smaller derivation.

Theorem 2 (Soundness of Bidirectional Typing). We have that:
o IfVF e & A, then there is an e’ such thatW e’ : A and e’ =g,, |el.
o IfYI e= A, then thereis an e’ such that W t- e’ : A and e’ =g, |e].

C Robustness of Typing

Lemma 13 (Type Substitution).
Assume VY F T.

o If V. a, W' F e’ & Cthen V¥, [t/oJ¥' I [t/a]e’ & [t/x]C.
o If V. x, V' F e’ = Cthen V¥, [t/oJ¥' I [t/a]e’ = [t/a]C.
o If V., V' F Bee' == Cthen V¥, [t/oJ¥'F [t/x]B e [T/x]e’ == [A/x]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Definition 3 (Context Subtyping). We define the judgment ¥’ <V with the following rules:

y<y Yy YA <A
—— CtxSubEmpty —————— CtxSubUvar ; ; CtxSubVar
- < Yia<VW a Yix:A"<Wx:A

Lemma 14 (Subsumption). Suppose ¥’ < V. Then:
) IfVYFe&=AandVF- A<A’thenV'e&A'.
(ii) IfVY + e = A then there exists A’ such thatWV - A’ < AandV¥' I e= A’.

(i) If Y- Cee==Aand¥F+ C'<C
then there exists A’ such thatWV+ A’ < AandV¥'F C'ee == A’.

Theorem 3 (Substitution).
AssumeVY F e = A.

(1) If¥,x:At e’ & Cthen Y [e/x]e’ & C.
@) If ¥,x: A+ e’ = Cthen Y [e/x]e’ = C.
(i) If Y,x: A+ Bee’ = Cthen Y+ Bele/x]e’ == C.

Theorem 4 (Inverse Substitution).
AssumeV¥Y + e & A.

D IfYHE [(e:A)/xle’ & Cthen ¥,x: Al e’ & C.



@) If Y+ [(e: A)/x]e’ = C then ¥,x: A+ e’ = C.
(iii) If Y- Be[(e:A)/xle’ == C then ¥,x: A+ Bee' == C.

Theorem 5 (Annotation Removal). We have that:

o IV ((Ax.e):A) & Cthen W Ax.e & C.

o IfYF (O:A) & CthenYE O & C.

o IfVF ey (e;:A)= CthenVt ey ex = C.

o IfVYF (x:A)= Athen¥Y+ x=Band¥t+ B <A.

oIf‘l’l—(e1ez A) = AthenV¥t eje; = Band¥+ B<A.
((e

o IfYI :A) = AthenVt (e:B)= Band¥F B<A.

o IfYF ((Ax.e):0—=T) = 0—Tthen¥YF Ax.e = 0 — T.

Theorem 6 (Soundness of Eta).
IfYE Ax.ex & Aandx € FV(e), thenY + e &« A.

D Properties of Context Extension

D.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If ' — A, and u is a variable or marker » 5 declared in T, then
u is declared in A.

Lemma 16 (Declaration Order Preservation). If ' — A and u is declared to the left of v in T, then u is
declared to the left of v in A.

Lemma 17 (Reverse Declaration Order Preservation). If ' — A and u and v are both declared in T and
u is declared to the left of v in A, then u is declared to the left of v in T.

Lemma 18 (Substitution Extension Invariance). If ® - A and ®© — T then [I'A = [T]([GJA) and
MA = [B]([TA).

Lemma 19 (Extension Equality Preservation).
IfTH AandTF B and[INA =[T'B and " — A, then [A]JA = [A]B.

Lemma 20 (Reflexivity). If T is well-formed, then ' — T.

Lemma 21 (Transitivity). If T — A and A — ©, then " — ©.
Definition 4 (Softness). A context © is soft iff it consists only of & and & = t declarations.

Lemma 22 (Right Softness). If T — A and O is soft (and (A, ©) is well-formed) then " — A, ©.

Lemma 23 (Evar Input).
IfT, & — A then A = (Ao, Ay, ©) where ' — Ay, and Ay is either & or & = 1, and © is soft.

Lemma 24 (Extension Order).

@ Ier, X, R — Athen A = (AL, &, AR) where 'L — Ay.
Moreover, if T'r is soft then Ag is soft.

@ii) IfT ,»s, R — A then A = (Ar,»4,AR) where 'L — Ar.
Moreover, if Tk is soft then Ag is soft.

(iii) IfTy,&,TrR — A then A = A, ©, Agr where It — Ar and O is either & or & = T for some T.

(iv) IfT,,&=1,TR — Athen A = A,& =1/, Ag where 7. — Ay and [AL]t = [AL]T’



(v) IfT ,x: A,TR — A then A = (AL, x: A’,AR) where 'L — A and [AL]A = [AL]A’.
Moreover, Ik is soft if and only if Ay is soft.

Lemma 25 (Extension Weakening). If T+ A andT" — A then A+ A.
Lemma 26 (Solution Admissibility for Extension). If I + T then 'L, &, TR — I'L,& =7, Ik.
Lemma 27 (Solved Variable Addition for Extension). If Iy + T then I't, TR — ', & = T, Tk.
Lemma 28 (Unsolved Variable Addition for Extension). We have that I't,I'x — T, &, Tk.
Lemma 29 (Parallel Admissibility).
IfTy — Ar and T, TR — Ay, Ag then:

@ T, Tk — AL R AR

@ii) If Ay - T/ then T, &, TR — Ar,& =1/, Ag.
(iii) IfTy F tand A1 + 1/ and [Ar]t = [AL]T/, then T, & = 1,TR — A1, & =1/, Ag.

Lemma 30 (Parallel Extension Solution).
Ifr]_, &, R — Ar, &= T/,AR and Ty F tand [Ar]t = [A]_}Tl then r[_, &= T, R — Ar, &= T/,AR.

Lemma 31 (Parallel Variable Update).
If FL, &, FR — AL, ;= To,AR and FL H T and AL H T2 and [AL]TO = [AL]’ﬁ = [AL]TZ
then I, Q= 11,k — Ap, ;= T2, AR.

D.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
IfTH &: St 4AorTH T2 & 4A thenT — A.

D.3 Subtyping Extends

Lemma 33 (Subtyping Extension).
IfTH A<: B 4AthenT — A.

E Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
IfTo, 8T F &:SA 4AorTo,& T F A S:& 4 A, and B € unsolved(Ty), then B € unsolved(A).
— —
r r

r r
. . — < — <
Lemma 35 (Left Free Variable Preservation). If Iy, &, 7 F & := A 4 Aorly, &M F A =& 4 A, and

'+ B and & ¢ FV([TB) and B € unsolved(Ty) and B ¢ FV([IB), then P ¢ FV([A]B).
r r

L. X . — < —
Lemma 36 (Instantiation Size Preservation). If Iy, &, 1 - & := A 4 AorTy, &1 F A
'+ B and & ¢ FV([I'|B), then |[T'1B| = |[A]B|, where |C| is the plain size of the term C.
This lemma lets us show decidability by taking the size of the type argument as the induction metric.

Theorem 7 (Decidability of Instantiation). If ' = Ty[&] and ' = A such that [I'TA = A and & ¢ FV(A),
then:

;& 1A, and

(1) Either there exists A such that To[&] - & := A - A, or not.
(2) Either there exists A such that To[&] - A =: & - A, or not.



F Decidability of Algorithmic Subtyping

F.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If ' - & 21 4AorTH 15 & A, then if Mt = t and
& € FV([I't), then |unsolved(T")| = |unsolved(A)| + 1.

Lemma 38 (Monotype Monotonicity). If ' - T <: T, 4 A then |unsolved(A)| < |unsolved(T)].
Lemma 39 (Substitution Decreases Size). If T+ A then I - [TA| < | FA]|.

Lemma 40 (Monotype Context Invariance).
IfT+ t<: 1" 4 A where [Tt =7 and [Tt’ = 1t/ and |unsolved(T')| = |unsolved(A)| thenT = A.

F.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context I' and types A, B such thatT'+ A and '+ B and [TJA = A and [I'|B = B, it is decidable
whether there exists A such thatT - A <: B - A.

G Decidability of Typing
Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context I" and a term e,
it is decidable whether there exist a type A and a context A such that
'Fe=AdA.

(ii) Checking: Given a context T, a term e, and a type B such that ' + B,
it is decidable whether there is a context A such that
' -e&B A

(iii) Application: Given a context T, a term e, and a type A such thatT + A,
it is decidable whether there exist a type C and a context A such that
'k Aee==C HA.

H Soundness of Subtyping
Definition 5 (Filling). The filling of a context |T'| solves all unsolved variables:

N - .
IDx:Al = [IN,x: A

IS = [Ny«
Na=1 = [M,&=1
I »al = [My»a
5 & = N,a=1
H.1 Lemmas for Soundness
Lemma 41 (Uvar Preservation).
Ifx € Q and A — Q then « € [Q]A.
Proof. By induction on Q, following the definition of context application. O

Lemma 42 (Variable Preservation).
If(x:A)eAor(x:A)e Qand A — Q then (x: [Q]A) € [Q]A.

Lemma 43 (Substitution Typing). If '+ A thenT F [T]A.

10



Lemma 44 (Substitution for Well-Formedness). If Q A then [Q]Q F [Q]A.

Lemma 45 (Substitution Stability).
For any well-formed complete context (Q,Qz), if Q = A then [Q]A = [Q, Q7]A.

Lemma 46 (Context Partitioning).
IfA» 4,0 — Q,»s, Q7 then there is aV¥ such that [Q,» 4, Q7](A,»5,0) = [Q]A, V.

Lemma 47 (Softness Goes Away).
IfA,® — Q, Q7 where A — Q and © is soft, then [Q, Q7](A,0) = [Q]A.

Proof. By induction on ©, following the definition of [Q]T.
Lemma 48 (Filling Completes). If ' — Q and (T}, ©) is well-formed, thenT;© — Q, 6.

Proof. By induction on ©, following the definition of |—| and applying the rules for —.

Lemma 49 (Stability of Complete Contexts).
IfT — Q then [Q]T = [Q]Q.

Lemma 50 (Finishing Types).
IfOF A and Q — Q' then [Q]JA = [Q']A.

Lemma 51 (Finishing Completions).
IfQ — Q' then [Q]Q =[Q']Q".

Lemma 52 (Confluence of Completeness).
IfA] — Q and A, — Q then [Q]A] = [Q}Az
H.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given A — Q and [I'B = B and & ¢ FV(B):

(1) IfT+ & :=B 4 A then [Q]JA + [Q]& < [Q]B.
(2) IfT+ B = & 4 A then [QJAF [Q]B < [Q]&.

H.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
IfTH A<: B 4A where [ITA = A and [I'B =B and A — Q then [Q]A F [Q]A < [Q]B.

Corollary 53 (Soundness, Pretty Version). f Y - A <: B 4 A, thenY+ A <B.

I Typing Extension

Lemma 54 (Typing Extension).

IfTFe<=A dAorTHe=A 4AorTH Aee=>C HAthenl — A.
J Soundness of Typing

Theorem 12 (Soundness of Algorithmic Typing). Given A — Q.
D IfTH e&< A HAthen [QJAF e < [Q]A.
(i) IfTH e= A 4 Athen[QJA} e = [Q]A.

(iii) IfTH Aee== C 1A then[QJA} [Q]A e e == [Q]C.

11



K Completeness of Subtyping

K.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
GivenT" — Q and A = [T']A and & € unsolved(T') and & ¢ FV(A):

(D IFIQIT - [Qla < [Q]JA
then there are A, Q' such that Q — Q' and A — Q' and T+ & :S A HA.

(2) If[QIT - [QJA < [Q]a
then there are A, Q' such that Q — Q' and A — Q' andT+ A £: & A,

K.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If ' — Q and "'+ A and '+ B and [Q]I" -
[QJA < [Q]B then there exist A and Q' such that A — Q' and Q — Q' andT F [IMA <: [lB 4 A.

Corollary 55 (Completeness of Subtyping). If ¥ - A < B then there is a A such that W+ A <: B - A.

L Completeness of Typing
Theorem 15 (Completeness of Algorithmic Typing). Given ' — Q and '+ A:

1) IfFIQIT F e & [Q]A
then there exist A and Q'
suchthat A — Q' and Q — Q' andT F e & [TA HA.

) IfIQITF e= A
then there exist A, Q', and A’
such thatA — Q' and Q — Q' andTF e= A’ 4Aand A =[Q']A".

(i) If[QITF [Q]JA ee == C
then there exist A, Q', and C’
suchthat A — Q' and Q — Q' andTF+ [NMA ee==C’ 4A and C=[Q’']C’.

12



Proofs

In the rest of this document, we prove the results stated above, with the same sectioning.

A’ Declarative Subtyping

Proposition 1 (Weakening). If W + A then W,¥’ - A by a derivation of the same size.
Proposition 2 (Substitution). If ¥ + A and ¥, &, ¥’ - B then W, ¥' I [A/«]B.
The proofs of these two propositions are routine inductions.

A’.1 Properties of Well-Formedness
A’.2 Reflexivity
Lemma 3 (Reflexivity of Declarative Subtyping). Subtyping is reflexive: if Y + A then W+ A < A.
Proof. By induction on A.
e Case A =1: Apply rule <Unit.
e Case A = «: Apply rule <Var.

Case A=A7 — Ay

YEA <A By i.h.
YEA, <A, By i.h.
W"A]—)Ang]—}Az ByS—)

Case A =Vu. Ap:

‘1], ok Ao < Ao By i.h.
Yok o By DeclUvarWF
Yoot [o/a]Ap < Ap By def. of substitution
W, ok Va. Ao < Ao By SVL
Y Va. Ag <Va. Ay By <VR O

A’.3 Subtyping Implies Well-Formedness
Lemma 4 (Well-Formedness). If ¥+ A <B thenY+ A andV¥ | B.

Proof. By induction on the given derivation. All 5 cases are straightforward. O

A’.4 Substitution
Lemma 5 (Substitution). If ¥ + tand ¥, o, V' - A < B then V¥, [t/a]¥’ - [T/a]A < [T/a]B.

Proof. By induction on the given derivation.

©Case pe vy
7 <Var
Yy, W'EpB<p
It is given that W + 7.

Either B = «x or B # «. In the former case: We need to show ¥, ¥’ I [t/x]a < [t/«]c, that is,
Y, Y’ + 1 < 1, which follows by Lemma 3] (Reflexivity of Declarative Subtyping). In the latter case:
We need to show ¥, ¥/ I [t/x]p < [t/«]p, thatis, ¥, ¥’ B < B. Since p € (V,,¥’) and B # «,
we have € (V,V¥’), so applying <Var gives the result.

13



e Case

— <ZUnit
VoW 1<1- "

For all 7, substituting [t/a]1 = 1, and applying <Unit gives the result.

e Case Yoo, Y - By < Ay Yo, W'E Ay <By

Yo, W' - Ay 5 A; < By — B =7
Yoo, Y+ By <A Subderivation
Y Y [t/alBy < [T/x]A4 By i.h.
Yo, W' - Ay <B; Subderivation
Y Y [t/a]A; < [1/«]B2 By i.h.
YW E ([t/o]Aq) = ([T/edA2) < ([T/edB1) — ([t/a]B2) By <—
£ Y Y+ [t/a](A] — Az) < [t/ad(B7 — B3) By definition of subst.
e Case y , w i ¢ WV [o/plA<B "
Yo, W' - VB. Ay < B =
Yoo, ¥+ [0/BlAyr < B Subderivation
Y Y+ [t/allo/PBlAy < [T/x]B By i.h.
Y W' [[t/ado / B]lt/x]Ao < [t/x]B By distributivity of substitution
Yoa,¥Y'Fo Premise
Y1 Given
YY' + [t/a]o By Proposition
Y Y VA [t/a]Ag < [t/a]B By <VL
= YW+ /o] (VB. Ao) < [t/«]B By definition of substitution
° O woaw prA<B
VoW F A<VB.By
Yoo, ¥, B F A <Bg Subderivation
Y Y B+ [t/0]A < [t/alBg By i.h.
Y Y - [t/a]A < VB. [t/a]Bg By <VR
= Y Y - [t/odA < [t/a](VB.Boy) By definition of substitution O

A’.5 Transitivity

To prove transitivity, we use a metric that adapts ideas from a proof of cut elimination by Pfenning
(1995).

Lemma 6 (Transitivity of Declarative Subtyping). f ¥+ A <Band ¥+ B < Cthen¥Y+ A <C.

Proof. By induction with the following metric:
(#9(B), D1 +Dy)

where (...) denotes lexicographic order, the first part #V(B) is the number of quantifiers in B, and the
second part is the (simultaneous) size of the derivations D; : ¥+ A <Band D, : ¥+ B < C. We need
to consider the number of quantifiers first in one case: when <VR concluded D; and <VL concluded D>,
because in that case, the derivations on which the i.h. must be applied are not necessarily smaller.

o Case xeV xeVY

— <Var — <Var
YE a<ax YE a<a

Apply rule <Var.
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e Case <Unit / <Unit: Similar to the <Var / <Var case.

o Case yi g, <a, YA <By Y- C;<B; VYrB,<C,
WFA]—)A2§B1—>BZ =7 q”‘B]—)BzSC]%CZ -
By i.h. on the 3rd and 1st subderivations, ¥ + C; < A;.

By i.h. on the 2nd and 4th subderivations, WY + A, < C,.
By <—,¥YF A} 5 A, <Cy — Ca.

—

If <VL concluded D;:

o Case yi + Wi [r/adA, <B

<VL
YEVa.Ag <B
Y1 Premise
Y+ [t/aJAg < B Subderivation
YEB<C Given (D)
Y+ [t/a]Ap < C Byi.h.
w YRV Ag <C  By<vl
If <VR concluded D5:
e Case Y BRFB<C
Y- B<VB.C <R
YET Premise
YRAEB<SC Subderivation
Y-A<LB Given (D7)
YRAFALB By Proposition
YRFA<C By i.h.

= WFA<VB.C By<vl

The only remaining possible case is <VR / <VL.

e Case y py A <B, Y1 W [t/BlBy < C
YE A<Vp.By S X Yr VB.By < C vt
Y. BFA<B Subderivation of D,
VYT Premise of D,
Y [t/BIA < [1/B]By By Lemma
[t/BIA =A [ cannot appear in A
Y+ A <I[t/B]Bo By above equality
Y+ [t/B]By < C Subderivation of D,
= YFALZC By i.h. (one less V quantifier in B)

A’.6 Invertibility of <VR

Lemma 7 (Invertibility).
If D derives ¥ = A < V[.B then D’ derives ¥, 3 - A < B where D’ < D.

Proof. By induction on the given derivation D.

e Cases <Var, <Unit, <—: Impossible: the supertype cannot have the form Vf3. B.
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.Case W)BI_ASB
—— <VR
Y A<VR.B ™

The subderivation is exactly what we need, and is strictly smaller than D.

e Case Do
Vi1 Y+ [t/a]Ag < VB.B L
Y Va. Ag <VB.B -

By ih., D§ derives ¥, 3 - [t/a]Ay < B where D} < Dy.
By <VL, D’ derives ¥, I Va. Ay < B; since Dj < Dy, we have D’ < D.

A'.7 Non-Circularity and Equality

Lemma 8 (Occurrence).

(D) IfYH A<tthent Z A.
(i) IfW+ t<B thent Z B.

Proof. By induction on the given derivation.

e Cases <Var, <Unit: (i), (ii): Here A and B have no subterms at all, so the result is immediate.

eCase y g <A, WK A,<B,
WFA]—)A2§B1—>BZ -

—

(i) Here, A=A; — Ay and Tt = B; — B,.
B: Z A; Byih. (i)
By — B, AA; Suppose By — B, < Aj. Then By 2 A;: contradiction.
By — By AA, Similar
Suppose (for a contradiction) that By — B, 2 A7 — A,.
Now B; — B, < AjorB; — By < As.
But above, we showed that both were false: contradiction.
Therefore, B; — B; £ A7 — A,.
Therefore, By — B2 Z A1 — Aj.
(ii) Here, A =tand B =B; — B,.
Symmetric to the previous case.

e Case wi o Wi [t//alAg <7 "
YEVax.Ap <7 -
In part (ii), this case cannot arise, so we prove part (i).

By i.h. (i), T 2 [t'/odAo.
It follows from the definition of 2 thatt Z Va. Ap.

e Case W, B+ 1< B R
YET<VB.By ~

In part (i), this case cannot arise, so we prove part (ii).
Similar to the <VL case. O

Lemma 9 (Monotype Equality). If ¥ + ¢ < T then 0 = T.
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Proof. By induction on the given derivation.

e Case <Var: Immediate.

e Case <Unit: Immediate.

Case wi B, <A, Wk A,<B,
YA 5 A <B;y - B
By i.h. on each subderivation, B; = A; and A, = B;. Therefore A; — A; = B; — Ba,.

<—=

Case <VL: Here 0 = Va. Ao, which is not a monotype, so this case is impossible.

Case <VR: Here v =Vf3. By, which is not a monotype, so this case is impossible. O

B’ Type Assignment

Lemma 10 (Well-Formedness).
IfVYFe&sAorV-e=AorVYF Aee== CthenV¥YF A (and in the last case, ¥ - C).

Proof. By induction on the given derivation.
In all cases, we apply the induction hypothesis to all subderivations.

e In the DeclVar and Decl—I cases, we use our standard assumption that every context appearing in
a derivation is well-formed.

e In the Decl—|= case, we use inversion on the ¥ o — T premise.
e In the DeclVApp case, we use the property that if ¥ + [t/a]Ao then ¥ F V. Ag.

e In the DeclAnno case, we use its premise. O

Theorem 1 (Completeness of Bidirectional Typing).
IfV |- e: A then there exists e’ such that WY I- e’ = A and |e’| = e.

Proof. By induction on the derivation of ¥ e : A.

o Case x:AeVY
YEx:A

Immediate, by rule DeclVar.

AVar

©Case y .y :Abe:B .
YEAx.e:A—B

By inversion, we have ¥, x: A - e : B.

By induction, we have ¥, x : A+ e’ = B, where |e/| = e.

By Lemma [3| (Reflexivity of Declarative Subtyping)), ¥ - B < B.
By rule DeclSub, ¥,x: A+ e’ & B.

By rule Decl—|, ¥ - Ax.e’ & A — B.

By Lemma[10] (Well-Formedness), ¥ - A — B.

By rule DeclAnno, ¥ - ((Ax.e’): A — B) = A — B.

By definition, |[((Ax.e’) : A — B)| = [Ax.e’| = Ax.|e’| = Ax.e.

—l
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eCase yi o A 4B VWie:A
Wl‘(%] ez:B

By induction, ¥ + e{ = A — B and |ef| = e;.

By induction, ¥ - e5 = A and |e5| = e;.

By Lemma [3| (Reflexivity of Declarative Subtyping), W - A < A.
By rule DeclSub, ¥ I- e; < A.

By rule Decl—App, Y+ A — B e &) == B.

By rule Decl—E, Y+ ef e) = B.

By definition, |e] e5| = |ej] [e}| = e ea.

—E

o Case y ype:A
YiEe:Va A

By induction, ¥, « - e’ = A where |e’| = e.

By Lemma [3| (Reflexivity of Declarative Subtyping), W, o - A < A.
By rule DeclSub, ¥, x - e’ & A.

By rule DeclVl, ¥ I e’ & Va. A.

By Lemma [10| (Well-Formedness), ¥ - V. A.

By rule DeclAnno, ¥ I (e’ : V. A) = V. A.

By definition, |e’ : V. A| = |e’| = e.

AvI

°Case\Pl—e:ch.A Y1
Yie:[t/alA

By induction, ¥ - e’ = Va. A where |e/| = e.

By Lemma [3| (Reflexivity of Declarative Subtyping)), ¥ - [t/x]A < [T/a]A.
By <VL,¥YF Va. A < [t/a]A.

By rule DeclSub, ¥ I- e/ & [t/a]A.

By Lemma |10| (Well-Formedness)), ¥ + [t/«]
By rule DeclAnno, ¥ - (e’ : [t/o]A) & [t/
By definition, e’ : [t/«]A| = |e/| = e.

AVE

A.
A.

Lemma 11 (Subtyping Coercion). If¥ I A < B then there exists f which is n-equal to the identity such

thatWV+f: A — B.

Proof. By induction on the derivation of ¥ - A < B.

e Case xew

Y a<a

Choose f = Ax. x.
Clearly W F Ax.x: ot — «.

<Var

e Case

—  <Unit
YiE1<1

Choose f = Ax. x.

Clearly W F Ax.x:1 — 1.

e Case yi B <A,  WFA,<B,
WFA]—)Ang]*}BZ -
By induction, we have g : B; — A, which is fn-equal to the identity.
By induction, we have k : A, — B,, which is fn-equal to the identity.
Let f be Ah.kohog.
It is easy to verify that W+ f: (A; — Az) — (B7 — B3).
Since k and g are identities, f =g, Ah. h.

—
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o Case yi Yy [r/aA<B <

<VL
YEFVa.A<B
By induction, g : [t/aJA — B.
Let f £ Ax. g x.

f is an eta-expansion of g, which is fn-equal to the identity. Hence f is too.
Also, Ax. g x : (V. A) — B, using the DeclVE rule on x.

Y- A<VYB.B

By induction, we have g such that ¥, +g: A — B.
Let f = Ax. g x.
Use the following derivation:

WEAKEN

Y BFg:A—B

Yx:ABFg:A—B Yix:ApFx:A
Yx:ARFgx:B
Yx:AFgx:Vp.B

YEAX.gx:A V3. B O

Lemma 12 (Application Subtyping). If ¥ - A e e == C then there exists B such thatW - A <B = C
and ¥ + e <« B by a smaller derivation.

Proof. By induction on the given derivation D.

e Case Yh e<B
Decl—App
Y-B—-oCee==C
w D'Vl e&B Subderivation
= D' <D D’ is a subderivation of D
= YFB—-C<B—C By Lemma Reflexivity of Declarative Subtyping]
A

o Case wi +  yi [r/adAgee==C
YEVa.Agee==C
Y1 Subderivation
Y+ [t/a]Ag e e = C Subderivation
Y [t/a]Ag <B— C Byih.
w D'iYhe&B "
= D/ < D 1"
= YEVa.Ag <B— C By <VL O]

DeclVApp

Theorem 2 (Soundness of Bidirectional Typing). We have that:
o IfYI e & A, then there is an e’ such that W - e’ : A and e’ =gy |e].
o IfYI e= A, then thereis an e’ such that W t- e’ : A and e’ =g |e].

Proof. e Case (x:A) eV
YiEx=A

By rule AVar, Y F x : A.
Note x =g, x.

DeclVar
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Case y oA wYrA<B
YFe<B

DeclSub

By induction, ¥ - e’ : A and e’ =gy, le].
By Lemma [I1] (Subtyping Coercion), f : A — B such that f =g, id.

By A—E, W fe':B.
Note f e’ =pn id e’ =pn e =pBn le].

Case y A  ypeeA
YE (e:A)= A

DeclAnno

By induction, ¥ I e’ : A such that e’ =g, le].

Note e’ =g, |e| = e : Al.

Case

——— Declll
Y- O &1

By AUnit, ¥ - O : 1.

Note () =g, O.

Case

— Dedl
Y Qo1

By AUnit, ¥ - O : 1.
Note ) =gy O.

Case Y,akFe& A

—— DeclVI
YEe&Va A

By induction, ¥, - e’ : A such that e’ =g, [e].

By rule AV, ¥ |- e’ : V. A.

Case y . . ArecB
Yk Axv.e = A B

Decl—|

By induction, ¥,x : A I e’ : B such that e’ =g, |e].

By A=, W Ax.e’: A — B.
Note Ax. e’ =g, Ax.le| = [Ax. €.

Case\yl_ 0c—T Yx:oFe&n

YEAXx.e=>0—T

Decl—=l=

By induction, ¥, x : 0 - e’ : T such that e’ =g, |e].

By A=, W Ax.e':0— T
Note Ax. e’ =gy, Ax.le| = [Ax. €.

Case yi o A YL Aee,==C

Decl—E

YEeje;=C

By induction, ¥ - e} : A such that e] =g, |e1].

By Lemma 12| (Application Subtyping)), there is a B such that

1.Y- A<B—C,and

2. Y e, & B, which is no bigger than W - A e e; == C.

By Lemma |11| (Subtyping Coercionl
By induction, we get W - e} : B and
By A—E twice, Y- fej e} : C.

, we have f such that W - f: A — B — C and f =, id.
e =pn le2l.

Note f e] 5 =g, id e] e} =pn €] e5 =pn le1] e5 =pn le1]|e2] = leq ezl
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C’ Robustness of Typing

Lemma 13 (Type Substitution).
Assume VY F T.

o If YV, a, V' I e’ & C then V¥, [t/oJ¥' I [t/a]e’ & [t/x]C.
o If V. x, V' F e’ = C then V¥, [t/oJ¥' I [t/a]e’ = [t/«]C.
o If V. a, V' F Bee' == Cthen V¥, [t/oJ¥'F [t/x]B e [t/x]e’ == [A/x]C.

Moreover, the resulting derivation contains no more applications of typing rules than the given one.
(Internal subtyping derivations, however, may grow.)

Proof. By induction on the given derivation.
In the DeclVar case, split on whether the variable being typed is in ¥ or ¥’; the former is immediate,
and in the latter, use the fact that (x: C) € ¥’ implies (x : [t/«]C) € [t/x]V¥’.

In the DeclSub case, use the i.h. and Lemmal[5] (Substitution)).

In the DeclAnno case, we are substituting in the annotation in the term, as well as in the type; we
also need Proposition

In Decl—l, Decl—|= and DeclVI, we add to the context in the premise, which is why the statement is
generalized for nonempty ¥'. O

Lemma 14 (Subsumption). Suppose ¥’ < V. Then:
A IfVYFe&s=AandVF A<A’thenV'e& A'.
(ii) IfV + e = A then there exists A’ such thatWF A’ < AandV¥'F e= A’.

(i) If Y- Cee==Aand¥F+ C'<C
then there exists A’ such thatWV - A’ < AandV¥'F C'ee==> A’.

Proof. By mutual induction: in (i), by lexicographic induction on the derivation of the checking judg-
ment, then of the subtyping judgment; in (ii), by induction on the derivation of the synthesis judgment;
in (iii), by lexicographic induction on the derivation of the application judgment, then of the subtyping
judgment.

For part (i), checking:

cCase y B YLrB<A
YEe&cA
YHe=B Subderivation
Y’ e=B’" Byih
YEB'<B

DeclSub

YEFB<A Subderivation

YEA<A’ Given

YEB' <A’ By Lemma@ (]Transitivity of Declarative Subtypingl) (twice)
Y| B’' <A’ Byweakening

w Y'Fe& A’ By DeclSub

e Case

—————— Decl1l
YE O <1

Y+ (=1 ByDecll=

YE1I<A’ Given

YE1I<A' By weakening
w Y'E (O A’ ByDeclSub
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e Case y 1 ec A,
Y e&Va Ap
We consider cases of W - V. Ag < A’:

Declvi

- Case y g1 ya Ay <B
YE Va.Ag <VB.B <R
Y. B FVa.Ag <B Subderivation
YEFe&Va. Ay Given
Y'I-e&B By i.h. (i)
= Y| e&VBR.B By DeclvI
——

A’

-Case yy o Y [r/a]Ay < A
VI Va. Ag <A’
Y oake&s Ay Subderivation
Y e« [t/alAg By Lemma (IType Substitution[)
YE [t/adAg < A’ Subderivation
(=5 VY'ie&sAl By i.h. (i)

<vL

o Case Yx:A1F ey & A
Y Ax.eg &A1 — Az
We consider casesof W - A7 — Ay, < A”:

Decl— I

-Case yi g <A, VYL A,<B,

<
W"A]%AzﬁB]—)Bz -
<y Given
Y B <A Subderivation
Yix:By <W¥,x: A By CtxSubVar
Y x:ByFey& By By i.h. (i)
= Y Ax.ep & B; — B2 By Decl—l
-Case w1 A A, <B
Y+ A] —>Az SVBB/ =R
YRFA] — Ay <B’ Subderivation
Y B Ax.ep &A; — A, By weakening
Y B+ Ax.eq & B’ By i.h. (i)
= Y Ax.eo & VB.B’ By DeclVI

For part (ii), synthesis:

o Case x:A)eV
VYi-x=A

By inversion on ¥’ <Y, we have (x: A’) €¢ ¥/ where Y A’ < A.
By DeclVar, V' I x = A’.

DeclVar

eCase yi A  ypoe oA
WE (e0:A) = A

DeclAnno
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Let A’ = A.

YA Subderivation
Y EA By weakening
YiEey &= A Subderivation
Y ey & A By i.h.
= Y| (eg: A) = A’ ByDeclAnnoand A’ =
= YEA' <A By Lemma QReﬂexivity of Declarative Subtypingl)
e Case
—————— Declll
VRO o1 o
Let A’ =1.
= Y'FE (=1 ByDecll=
= YE1<1 By <Unit

e Case Y-o—oT

Yx:oFe&T

Decl—I=

Y- Ax.eo=>0—T1

Let A/ =0 — 1.

Y<y Given
Y-o<o By Lemma (]Reﬂexivity of Declarative Subtyping[)
Yix:0<W,x:0 By CtxSubVar
Yx:obe &1 Subderivation
YETr<n7t By Lemma Reflexivity of Declarative Subtypingl)
Yix:obey &1 By i.h. (i) with t

= YFA'<o—T

Y Ax.eqg = A’

By Lemma (]Reﬂexivity of Declarative Subtyping[)
By Decl—1=

=

eCase yy o . C YL Cee,=2A

Decl—E
YEejex= A
YEe =C Subderivation
Y'ke = C’ By i.h. (i)
YEC'<C "
YECeoey = A Subderivation
= YHEA'<A By i.h. (iii)
W’FCIOQZf,Z)A/ "
w Y'ihee= A By Decl—E
For part (iii), application:
o Case Y 1 Y [t/a]Cpee== A
DeclVApp
YEVax.Coee== A
Y+ C'<Va. Co Given
Y ok C'<Cy By Lemma Invertibili
Y [t/«]C’ < [t/a]Co By Lemmal|5 [Substitution|
YE C < [t/oCop o cannot appear in C’
Y [t/x]Coee==A Subderivation
i Y EClee=>A' By i.h. (iii)
1= YA <A "
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e Case Vi e & C
YECo—Aee== A
YEC'<Co— A Given

Decl—App

-Case yy co<cl wr Ci<A _
UECl 5C<CoA  —

Let A’ = CJ.
YEe&< Gy Subderivation
YECo<(Cy Subderivation
Y+ e & Cy By i.h.
Y Cy— Clee==C, ByDec—App
- YECl A ee=sA" A'=C
Vi C)<A Subderivation
- YA <A A’ =C}

-Case y ¢ yp g/BB<Co oA
YE VB.B<Co— A vt
Y [t/B]B < Co — A Subderivation
Y+ [1/BIBee==> A’ Byih. (iii)
i YEFA' <A "
Yt Subderivation
YT By weakening
w Y EVR.Bee== A’ By DeclVApp

Theorem 3 (Substitution).
AssumeVY F e = A.

(i) If ¥, x: At e’ & Cthen YF [e/x]e’ & C.
@) If ¥,x: A+ e’ = C then Y+ [e/x]e’ = C.
(iii) If Y,x: A+ Bee’ == Cthen YI Be[e/x]le’ == C.
Proof. By a straightforward mutual induction on the given derivation.

Theorem 4 (Inverse Substitution).
AssumeVY F e & A.

D IfYHE [(e:A)/xle’ & C then ¥,x: A e’ &« C.

@) If Y+ [(e: A)/x]e’ = C then ¥, x: A+ e’ = C.

(iii) If Y+~ Be[(e:A)/xle’ = C then ¥,x: A+ Bee' == C.
Proof. By mutual induction on the given derivation.

(i) Wehave VI [(e: A)/x]e’ & C.

* Case i [c:A)/xle’=B WFB<C
VI [(e: A)/x]le’ & C
By i.h. (i), ¥,x: A+ e’ = B.
By DeclSub, ¥,x: A+ e’ & C.

e Case

DeclSub

\yl—()—]_ Declll
3
We have [(e: A)/x]e’ = (). Therefore e’ = (), and the result follows by Decl1l.
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o Case y ot [(c:A)/x]e! = C'

Vi [(e: A)/xle’ & Va. C’

Byih. (), ¥,0,x:AF e’ & C.
By exchange, W,x : A,a - e’ & C'.

By DeclVl, ¥,x: A e’ &Va. C'.

DeclVI

eCase y.Cike” ey
Y }\y.€//<=C1 — C

We have [(e: A)/x]e’ =Ay.e”.
By the definition of substitution, e’ = Ay.eo and e” = [(e : A)/x]eo.

Decl—l

Yy:Cike"&ECy Subderivation
Yiy:CiF[(e:A)/xleo & C2 By above equality
Yy:Cix: Ak e & Cy By i.h. (i)
Yx:Ay:Ci ke & Cy By exchange
= Yix:AFAy.eo &C;y —» C, By Decl—l
0 T

(i) Wehave ¥+ [(e: A)/x]e’ = C.

e Casee’ =x:
Note [(e: A)/x]x = (e: A).
Hence WV I~ (e: A) = C; by inversion, C = A.
By Lemma [10] (Well-Formedness), ¥ - C, which is ¥ - A.
By DeclAnno, ¥ - (e: A) = A.
By DeclVar, W,x: AL x = A.
~—

e’

e Case e’ # x:
We now proceed by cases on the derivation of W I- [(e: A)/x]e’ = C.

— Case (y:C)ev

YEy==C

Since [(e: A)/x]le’ =y, we know that e’ =y.
By DeclVar, ¥,x: A+ y= C.

DeclVar

— Case Y e’ & C

Y (e”:C) =C
——
[(e:A)/x]e’
We know [(e: A)/x]e’ = (e’ : C) and e’ # x.
Hence there is ey such that e’ = (e : C) and [(e: A)/x]leg = e”.

DeclAnno

YEe”"&C Subderivation
Y [(e: A)/xlep & C By above equality
Yix:AFey&C By i.h. (i)
Yx:AFC By Lemma ¢Well-Formednessb
Yx:AF (ep:C)=C By DeclAnno
w Yx:Abe =C By above equality
— Case
————  Declll
YO o1

Since [(e: A)/x]e’ = (), it follows that e’ = ().
By Declll=, ¥, x:AF OO = 1.
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- Case w5 ¢ Yy:oFe" &

Yi-M.e' =01
We have [(e: A)/x]e’ =Ay.e”.
By definition of substitution, there exists ey such that e’ =Ay.ep and e” = [(e: A)/x]eo.
SoV,y:ok [(e:A)/x]ep & T.
Byih. (),¥Y,y:0,x: Ak ey & 1.
By exchange and Decl—=l, W,x: A+ Ay.ep & 0 — T.
Hence Decl—l=, ¥, x : Ak e/ = o0— 1.

Decl—I=

—Case yi ¢ 2B WhBee =5 C
Y eje; =C
~—~——
[(e:A)/x]e’
Note that [(e: A)/x]e’ = ej e3.
So there exist ef, e such that e’ = e} e} and [(e: A)/x]e; = ey for k € {1,2}.
Applying these equalities to each subderivation gives

Decl—E

Y [(e:A)/xle; = B and Y+ Be[(e:A)/xle; == C

By i.h. (ii) and (iii), ¥,x: Al e} = Band ¥,x: A+ Bee}) == C.
By Decl—E, ¥,x: A+ ey e, = C, whichisW,x: Al e’ = C.

(iii) We have W I [(e: A)/x]e’ e A == C.

e Case yi v i [r/alBel(e:A)/xle’ == C
VI Vax.Be[(e:A)/xle’ == C
Follows by i.h. (iii) and DeclVApp.

DeclVApp

o Case Yt [(e:A)/xle’ < B
Y- B—-Celle:A)/xle’ == C
Follows by i.h. (i) and Decl—App. O

Decl—App

Theorem 5 (Annotation Removal). We have that:

o IFYHE ((Ax.e):A) & Cthen ¥+ Ax.e & C.

e IfYF (O:A)& CthenVY () «C.

e IfYFej(ex:A)= Cthen¥YtF ey e; = C.

o IfYFH (x:A)= Athen¥Y+ x=Band¥H+ B <A.
e IfVH ((ere):A) = AthenVF eje; = Band ¥V B <A.
e IfVF ((e:B):A) = Athen¥+ (e:B)=Band¥+ B <A.
o IfYF ((Ax.e):0— 1) = 0—Tthen¥YF Ax.e = 0 — T.

Proof. All of these follow directly from inversion and Lemma [14] (Subsumption]). The one exception is
the third, which additionally requires a small induction on the application judgment. O

Theorem 6 (Soundness of Eta).
IfYE Ax.ex < A and x € FV(e), then¥Y I- e & A.

Proof. By induction on the derivation of ¥ I Ax. e x <& A. There are three non-impossible cases:
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o Case Yx:BFex&C
YEAx.ex&B—C

We have W, x: BF ex & C.

By inversion on DeclSub, we get W,x : BF ex = C’'and Y+ C’' < C.

By inversion on Decl—E, we get W, x:BF e= A’and ¥,x:BF A’ e x == C'.

By thinning, we know that W - e = A’.

By Lemma [12] (Application Subtyping)), we get B’ so ¥,x: B+ A’ < B’ — C'and ¥,x: B F x &
B’.

By inversion, we know that ¥,x: BF- x = Band Y+ B < B’.

By <—,¥,x:BFB’'—-C'<B—C.

Hence by Lemma [6] (Transitivity of Declarative Subtyping), ¥,x: B+ A’ <B — C.
Hence W+ A’ < B — C.

By DeclSub, ¥+ e & B — C.

Decl—l

*Case y ot Ax.ex < B
YE Ax.ex &Va.B

By induction, ¥, « - Ax.e x < B.
By Declvl, ¥ - Ax.e x < V. B.

DeclVI

e Case yi \xex=B WFB<A
VYE AX.ex & A

We have WF Ax.ex = Band ¥+ B <A.

By inversion on Decl—=l=,¥,x:cF ex & tand B=0 — 7.

By inversion on DeclSub, we get W, x: 0 ex = Coand ¥+ C; <.

By inversion on Decl—E, we get W, x: o e= Cand ¥,x: o+ Cex == C,.

By thinning, we know that ¥ + e = C.

By Lemma 12] (Application Subtyping]), we get C; such that ¥,x: o+ C < C; — Czand ¥,x: 0 -
x & Cy.

By inversion on DeclSub, ¥,x: o+ x = cand Y+ o < C;.

By<—,¥Yx:oF-Ci =2Cr<o—m.

Hence by Lemma [6] (Transitivity of Declarative Subtyping), ¥,x: o+ C < 0 — .

HenceVF- C<o— .

Hence by Lemma|§| (Transitivity of Declarative Subtyping), ¥ + C < A.

By DeclSub, Y - e &« A. O

DeclSub

D’ Properties of Context Extension

D’.1 Syntactic Properties

Lemma 15 (Declaration Preservation). If ' — A, and u is a variable or marker » 4 declared in T, then
u is declared in A.

Proof. By a routine induction on I' — A. O

Lemma 16 (Declaration Order Preservation). If ' — A and u is declared to the left of v in T, then u is
declared to the left of v in A.

Proof. By induction on the derivation of ' — A.

e Case
— —ID

This case is impossible.
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e Case r—3 A
Cx:A— Ax: A

There are two cases, depending on whether or not v = x.

—sVar

- Casev=x:
Since u is declared to the left of v, u is declared in T".
By Lemma 15| (Declaration Preservation)), u is declared in A.
Hence u is declared to the left of x in A, x : A.

— Casev # x:
Then v is declared in T", and u is declared to the left of vin T.
By induction, u is declared to the left of v in A.
Hence u is declared to the left of vin A, x : A.

Case [ __, A

——  —Uvar
Do — A

This case is similar to the —Var case.

Case [ __, A
La — A&

This case is similar to the —Var case.

—Unsolved

Case 1, A [Alr=[AlY
La=1—A&="1'

This case is similar to the —Var case.

—Solved

Case r— A

_— —>Marker
Bra — Apa

This case is similar to the —Var case.

Case r— A
na—Ac=r

This case is similar to the —Var case.

—Solve

Case r— A
r— A&

By induction, u is declared to the left of v in A.
Therefore u is declared to the left of vin A, &.

—Add

Case I A
r—Aa=rt

By induction, u is declared to the left of v in A.
Therefore u is declared to the left of vin A, & = 7. O

——AddSolved

Lemma 17 (Reverse Declaration Order Preservation). If ' — A and u and v are both declared in T and
u is declared to the left of v in A, then u is declared to the left of v in T.

Proof. It is given that u and v are declared in I'. Either u is declared to the left of v in T, or v is declared
to the left of u. Suppose the latter (for a contradiction). By Lemma [16] (Declaration Order Preservation)),
v is declared to the left of u in A. But we know that u is declared to the left of v in A: contradiction.
Therefore u is declared to the left of vin T. O
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Lemma 18 (Substitution Extension Invariance). If ©® - A and ® — T then [IA =
MA = [B]([TA).

Proof. To show that [I'NA = [O][']A, observe that © - A, and that by definition of ® — T, every solved
variable in © is solved in I'. Therefore [®]([I'lJA) = [I']A, since unsolved([I'JA) contains no variables that
© solves.

M([©IA) and

To show that [I'A = [I'[@]A, we proceed by induction on |I" - Al.

e Case xc®

OF o
Note that [N = & = [O]e, so [N = [N[O] .

cCase g A OB
OFA—B

By induction, [I'NA = [I'[O]A.
By induction, [I'B = [I'[O]B.

Then
MA—=B) = [MA—[I'B By definition of substitution
= [NIEeJA — [N[e]B By induction hypothesis (twice)
= ['([GJA — [G]B) By definition of substitution
= [MN[O](A — B) By definition of substitution

e Case O.aF A
)
OF Va. A

By inversion, we have O, x - A.

By rule —Uvar, ©,x — T .

By induction, [I] «]A = [I; «l[©, ] A.
By definition, [I'A = [T[G]A.

Then
Mva.A = Va.[llA By definition
= Vo [[[OJA By conclusion above
= [V [BJA) By definition
= [MOel(Vx.A) By definition
= [[a[®,a(Va. A) By definition
e Case

00, &,0; - &
S

Note that [@]& = &.
Hence [T[@O]& = [T&.

e Case

@o,&ZT,@1 F&

From © — T, By a nested induction we get I' = Ty, & = 1/, T, and [t/ = [I.

Note that [© 1| < [© F&].
By induction, [I't = [[O]r.

Hence
rea = [Tt By definition
= [t From the extension judgment
= [[N[@]t From the induction hypothesis
= [I[@]& By definition
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Lemma 19 (Extension Equality Preservation).
IfTH AandT+ Band [TA = [I'B and ' — A, then [A]A = [A]B.

Proof. By induction on the derivation of ' — A.

e Case
—ID
— =~
r A
We have [TJA = [T'|B, but I' = A, so [A]JA = [A]B.

e Case I A/
Mx:C— A',x:C
We have [I',x : C]JA = [T, x : C]B.
By definition of substitution, [I'']A = [I'']B.
By i.h., [A’]A = [A']B.
By definition of substitution, [A’,x : CJA = [A’,x : C]B.

—Var

e Case ' — A
Moa— A o
We have [I', oA = [T/, «]B.
By definition of substitution, [I'']A = ["']B.
By i.h., [A’]A = [A']B.
By definition of substitution, [A’, x]A = [A’, «B.

—Uvar

e Case Ty A
ra-—a,a

Similar to the —Uvar case.

—Unsolved

e Case I A/

7 S —Marker
Mepa — Alyps

Similar to the —Uvar case.

e Case r— A/
r—A,&
We have [INA = [T]B.
By i.h., [A’]A = [A']B.
By definition of substitution, [A’, &]A = [A’, &]B.

—Add

r—A &=t

We have [T]A = [I']B.

By i.h., [A’]A = [A']B.

We implicitly assume that A is well-formed, so & ¢ dom(A’).

Since ' — A’ and & ¢ dom(A’), it follows that & ¢ dom(T').

We have ' Aand '+ B, so & ¢ (FV(A) UFV(B)).

Therefore, by definition of substitution, [A’, & = T]A = [A’, & = T]B.

—AddSolved
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e Case T —5 A/ [A/}TZ [A/]T/
Ma=t—A,&6=1
We have [I'",& = t]A = [T, & = 7]B.

—Solved

By definition, [I'',& = T]A = [I’,& = 1Jt, but we implicitly assume that I" is well-formed, so
& ¢ FV(1), so actually [, & = t]A = [I'']t.
Combined with similar reasoning for B, we get

rt/&lA = [I][t/&]B

By i.h., [A'][t/&]A = [A’][t/&]B.

By distributivity of substitution, [[A’]T/&][A']A = [[A']T/&]]

Using the premise [A’]Tt = [A']T/, we get [[A']T'/&][A']A = [[ .

By distributivity of substitution (in the other direction), [A'][t’'/&]A = [A’][T’/&]B.
It follows from the definition of substitution that [A’, & = T’]

e Case T — A
rMa-—A,a=r
We have [I'', &]A = [T/, &]B.
By definition of substitution, [I'']A = [I'']B.
By i.h., [A'][t/&]A = [A’][t/&]B.
It follows from the definition of substitution that [A’, & = T]A = [A’, & = 1]B. O

—Solve

Lemma 20 (Reflexivity). If T is well-formed, then ' — T.

Proof. By induction on the structure of T'.

e Case "= Applyrule —ID.
e Case'=(I",a): Byih, " —T'. By rule —Uvar, we get I, o« — '/, .
e Case'=(T"";&): Byih., I'" — T'. By rule —Unsolved, we get "', & — ', &.
e Casel'=(I",&a =1):
Byih., T —T".
Clearly, [I'']t = [I'']t, so we can apply —Solved to get ', & =1 — T, & = 1.
e Case'= (I"",»g): Byih., I'" — T"’. By rule —Marker, we get ', »5 — ', p4. O
Lemma 21 (Transitivity). If — A and A — ©, then "' — ©.

Proof. By induction on the derivation of A — ©.

e Case —ID:

In this case © = A.
Hence I' — A suffices.

e Case A @
Ao — O«
We have A = (A’ «) and © = (@', ).
By inversionon ' — A, we have I' = (I',; ) and " — A’.
Byih., I’ — ©'.
Applying rule —Uvar gives ', x — @', ax.

—sUvar
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e Case  ,/_ o’
A& — 0O &
We have A = (A’,&) and © = (©/, &).
Either of two rules could have derived ' — A:

—sUvar

- Case I — A
ra-—A &
Here we have I' = (I', &) and I'" — A’.
Byih, " — ©'.
Applying rule —Unsolved gives T/, & — ', &.

—Unsolved

- Case __ ., A/
r— A&
Byih,I' — ©@’.
By rule —Add, we get ' — @', &.

—Add

e Case A/ —>®/ [@I]T] _ [®I]T2
A=t — 0O ,&a=1

In this case A = (A’,& =17) and ©® = (O, & = 13).
One of three rules must have derived ' — A/, & = 1:

—Solved

- Case rl — A/ [A/]TO — [A/]T]
r/,&ZTo HAG&ZT]
Here, ' =(I'",& =1p) and A = (A", & = 17).
By i.h., we have I'" — ©'.
The premises of the respective — derivations give us [A']ty = [A]T; and [@']T) = [O']15.
We know that '’ + 19 and A’ + 17 and ©’ - 75.

—Solved

By extension weakening (Lemma (Extension Weakening)), ©' - To.
By extension weakening (Lemma (Extension WeaEening ), ®' F T4.

Since [A']ty = [A’]T7, we know that [Q'][A’]Ty = [O'][A']1;.

By Lemma Substitution Extension Invariance)), [@'][A’]ty = [@']7o.
By Lemma Substitution Extension Invariance)), [@'][A']t; = [@/]T;.
So [@I]To = [@I]’ﬁ.

Hence by transitivity of equality, [@']ty = [@']T) = [O']15.
By rule —Solved, ', & =1 — ©',& = 15.

- Case I A
N — Al, &= T
By induction, we have ' — ©’.
By rule —AddSolved, we get T — ©’, & = 1,.

—AddSolved

— Case I A/
rM&a—A,a=m
We have I' = (T, &).
By induction, ' — ©@’.
By rule —Solve, we get ', & — O/, & = T5.

—Solve

32



e Case A @

7 7 —Marker
Alypg — O g

In this case we know A = (A’,»3) and © = (O, p4).

Since A = (A’,»a), only —Marker could derive ' — A, so by inversion, I' = (I'';»4) and
r— A

By induction, we have I'" — ©’.

Applying rule — Marker gives ', » 5 — O’, »a.

e Case A— @
A— 0’
In this case, we have © = (@', &).
By induction, we get ' — ©’.
By rule —Add, we get ' — O', &.

—Add

e Case A 5@
A—0O &=r1
In this case, we have ® = (@', & = 1).
By induction, we get ' — ©’.
By rule —AddSolved, we getI' — O, & = .

—AddSolved

e Case A @
A&g— 0O &=r1

In this case, we have A = (A’, &) and © = (@', & = T).
One of two rules could have derived ' — A’, &:

—Solve

— Case I A/
ra—A,&
In this case, we have '= (I'", &) and " — A’ and A’ — ©'.

By induction, we have I'" — @',
By rule —Solve, we get ', & — @', & = 7.

—Unsolved

— Case I — A

r— A&
In this case, we have ' — A’ and A’ — ©'.

By induction, we have I' — ©’.
By rule —Solve, we get ' — O/, & = T. O

—Add

Lemma 22 (Right Softness). If T — A and O is soft (and (A, ©) is well-formed) then " — A, ©.
Proof. By induction on ©, applying rules —Add and —AddSolved as needed. O

Lemma 23 (Evar Input).
IfT,& — A then A = (Ay, Ay, ©®) where ' — Ay, and Ay is either & or & = T, and © is soft.

Proof. By induction on the given derivation.

e Cases —ID, —Var, —Uvar, —Solved, — Marker:
Impossible: the left-hand context cannot have the form I} &.
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e Case I — Ao

E&—)Ao,&
N
A

Let ® = -, which is vacuously soft. Therefore A = (Ap, &) = (Ao, &, O); the subderivation is the
rest of the result.

—Unsolved

e Case r—s Ao

R&‘)Ao,&:’f
——
A

Let ® = -, which is vacuously soft. Therefore A = (Ap, &) = (Ao, & = T,0); the subderivation is
the rest of the result.

—Solve

e Case & — Ao
L& — Ao, B
——
A
Suppose B = &.
We have I & — Ap. By Lemma [15| (Declaration Preservation)), & is declared in Ay.
But then (Ao, [AS) = (Ap, &) with multiple & declarations,

which violates the implicit assumption that A is well-formed. Contradiction.
Therefore B # &.
By ih., A’ = (Ay,Ag,©’) where ' — A, and @’ is soft.

A

Let ® = (©/, B). Therefore (A’, B) = (Ao, Ax,©’, B). As O’ is soft, (O, B) is soft. Since A = (A/, B),
this gives A = (Ao, Ag, ©).

—Add

e Case —AddSolved:  Similar to the case for —Add. O
Lemma 24 (Extension Order).

() IfT,,TR — A then A = (A, &, Ag) where L — Ar.
Moreover, if T is soft then Ay is soft.

@ii) IfT ,»a, TR — A then A = (AL, »a,Ar) where 'L — Ar.
Moreover, if T'r is soft then Ay is soft.

(iii) IfTy,&, Tk — A then A = A, ©, Ag where I'T — Ar and O is either & or & = T for some T.
(iv) Ier, x= T,k — A then A = Ar, a= T/,AR where T — A and [Ar]T = [Ar]T.

(v) IfT ,x: A,TR — A then A = (Ar,x: A, Ar) where I'T — A and [AL]A = [AL]A.
Moreover, Ik is soft if and only if Ay is soft.

Proof. (i) By induction on the derivation of I, &, R — A.

e Case
— —ID
. —) .
This case is impossible since (7, «, I'k) cannot have the form -.

e Cases —Uvar:
We have two cases, depending on whether or not the rightmost variable is «.

- Case __ A/
Lo — A,
Let Ay = A’, and let Agx = - (which is soft).
We have ' — A/, whichis T — A;.

—Uvar
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-Case oo

FL» x, r]é) B — A/) [5
—— ——
r A
Byih., A’ = (AL, o, Ay) where I'. — Ar.
Hence A = (A, &, Ag, B).
(Since B € Ty, it cannot be the case that Iy is soft.)

—Uvar

Case Mo T — A

M, TRy x : A — Al x A
—— —
I'r A
Byih., A" = (Ar, «, A;) where [T — Ay
Hence A = (Ar, &, Ag,x : A).
(Since x : A € Iy, it cannot be the case that Iy is soft.)

—Var

Case 1 ol — A

/ /
Moo & — 47,8
Tr A
Byih., A" = (Ar, o, A;) where [T — A
Hence A = (Ar, o, Ag, &).
(If Tk is soft, by i.h. Ay is soft, so Ag = (Ag, &) is soft.)

—Unsolved

Case 1 ot A

7 S —Marker
I, o TRy — Aleg
S~—— ~——
ry A
Byih., A" = (Ar, «, Ay) where [T — Ay
Hence A = (Ar, o, Ag,»3).
(Since >5 € 'z, it cannot be the case that Iy is soft.)

Case 1 ot — A (A=A
Mn,oMg,a=1—A,&a="1
A/
I'r
Byih., A" = (Ar, o, Ay) where [T — Ay
Hence A = (Ar, o, Ag, & =1').
(If Tk is soft, by i.h. A is soft, so Ag = (Ag, & = T) is soft.)

—Solved

Case Mol — A

M,og,a — A &a="1
~— —
x A
Byih., A" = (Ar, «, A;) where [t — A
Therefore A = (AL, &, Ag, & = 7).
(If 'k is soft, by i.h. Ay is soft, so Ag = (A}, & = 7) is soft.)

—Solve

Case 1 Ty A

— —Add
r]_, X, 'R — A ,&

A
Byih., A" = (Ar, «, A;) where [T — Ay

Therefore A = (Ar, &, Ag, &).

(If Tk is soft, by i.h. Ay is soft, so Ag = (A, &) is soft.)

Case 1 oy — A

—AddSolved

MN,,TR — A &=1
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In this case, we know that A = (A’, & = 1).

Byih.,, A" = (Ar, o, A;) where [T — Ay

Hence A = (Ar, o, Ag, & = T).

(If Tk is soft, by i.h. Ay is soft, so Ag = (A}, & = 7) is soft.)

(ii) Similar to the proof of (i), except that the —sMarker and —Uvar cases are swapped.

(iii) Similar to (i), with ® = & in the —Unsolved case and © = (& = 1) in the —Solve case.

(iv) Similar to (iii).

(v) Similar to (i), but using the equality premise of —Var. O
Lemma 25 (Extension Weakening). If T+ A andT" — A then A+ A.

Proof. By a straightforward induction on " - A.

In the UvarWF case, we use Lemma (Extension Order) (i). In the EvarWF case, use Lemma
(Extension Order)) (iii). In the SolvedEvarWF case, use Lemma [24] (Extension Order)) (iv).

In the other cases, apply the i.h. to all subderivations, then apply the rule. O

Lemma 26 (Solution Admissibility for Extension). If I + T then 'L, & R — 'L, & = 71, IRk.

Proof. By induction on Tk.

e Caselgr =-:

By Lemma [20] ([Reflexivity) (reflexivity), It — T7.

Applying rule —Solve gives I' ,& — ', & = T.

Case 'k = (I, x : A):

Byih, I, &, — I, & =1,T%.
Applying rule —Var gives I', &, I, x : A — I, & = 1, [}, x : A,

Case 'k = (I}, «): By i.h. and rule —Uvar.
e Case Iz = (I}, B): By i.h. and rule —Add.
e Caselr = (F,é,[?} = 1’): By i.h. and rule —AddSolved.

e Case I'x = (I'g,»p): By Lh. and rule —Marker. O

Lemma 27 (Solved Variable Addition for Extension). IfI'1 - Tt then I ,lx — I, & =T, Tk.

Proof. By induction on I'z. The proof is exactly the same as the proof of Lemma[26] (Solution Admissibility]
[for Extension)), except that in the 'y = -, we apply rule —AddSolved instead of —Solve. O

Lemma 28 (Unsolved Variable Addition for Extension). We have that I't, TR — I, &, k.

Proof. By induction on I'z. The proof is exactly the same as the proof of Lemma[26] (Solution Admissibility]
[for Extension)), except that in the 'z = - case, we apply rule —Add instead of —Solve. O

Lemma 29 (Parallel Admissibility).
IfTy — A and FL, R — AL,AR then:

(1) rL) &) rR — AL> &) AR
(ii) IfA]_l— 1’ then FL,&,FR —)A]_,&:T/,AR.
(iii) IfTL F tand AL F 1t/ and [AL]t = [AL]1/, then T, & = T,TR — AL, & =1/, Ag.

Proof. By induction on Ag. As always, we assume that all contexts mentioned in the statement of the
lemma are well-formed. Hence, & ¢ dom(I't) U dom(I'r) U dom(Ar) U dom(Ag).
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(i) We proceed by cases of Ag. Observe that in all the extension rules, the right-hand context gets
smaller, so as we enter subderivations of I, 'rx — Ar, Ag, the context Ax becomes smaller.

The only tricky part of the proof is that to apply the i.h., we need ' — A. So we need to make
sure that as we drop items from the right of 'k and Ag, we don’t go too far and start decomposing
[T or Ar! It’s easy to avoid decomposing A;: when Ag = -, we don’t need to apply the i.h. any-
way. To avoid decomposing I, we need to reason by contradiction, using Lemma 15|
Preservation)).

e Case Ag = -:
We have IT — Ar. Applying —Unsolved to that derivation gives the result.

e Case Ag = (Ay, B): Wehavep #a& by the well-formedness assumption.
The concluding rule of I', [k — Ap, A{a,@ must have been —Unsolved or —Add. In both
cases, the result follows by i.h. and applying — Unsolved or —Add.
Note: In —Add, the left-hand context doesn’t change, so we clearly maintain [y — A. In
—Unsolved, we can correctly apply the i.h. because 'z # -. Suppose, for a contradiction, that
'R = -. Then I = (IY{, [AS). It was given that [T — Ap, that is, FL’,[AS — Ar. By Lemma
(IDeclaration Preservation[), A has a declaration of 3. But then A = (Ar, Ag, B) is not
well-formed: contradiction. Therefore 'y # -.

e Case Ag = (A, B =1): We have B # & by the well-formedness assumption.
The concluding rule must have been —Solved, —Solve or —AddSolved. In each case,
apply the i.h. and then the corresponding rule. (In —Solved and —Solve, use Lemma
(Declaration Preservation) to show I'g # -.)

e Case Ag = (A}, «): The concluding rule must have been —Uvar. The result follows by i.h.
and applying — Uvar.

e Case Ag = (Ag, »@): Similar to the previous case, with rule — Marker.

e Case Ag = (Af,x: A):  Similar to the previous case, with rule —Var.

(i) Similar to part (i), except that when Ag = -, apply rule —Solve.
(iii) Similar to part (i), except that when Ag = -, apply rule —Solved, using the given equality to satisfy
the second premise. O

Lemma 30 (Parallel Extension Solution).
IfT,&, Tk — A,&=1',Ar and T + T and [A ]t = [AL]t then T, & =1,TR — AL, & =1/, Ag.

Proof. By induction on Ag.

In the case where Ag = (AL, & = 1’), we know that rule — Solve must have concluded the derivation
(we can use Lemma [15| (Declaration Preservation) to get a contradiction that rules out —AddSolved);
then we have a subderivation IT — Ay, to which we can apply — Solved. O

Lemma 31 (Parallel Variable Update).
If FL, &, FR — A]_, &= To,AR and r]_ F T and A]_ H T2 and [AL]TO = [A]_]T] = [A]_]Tz
thenT,& =711,R — AL, & = T2, Ag.

Proof. By induction on Ag. Similar to the proof of Lemma [30] (Parallel Extension Solution)), but applying
—Solved at the end. O

D’.2 Instantiation Extends

Lemma 32 (Instantiation Extension).
IfT- &: St 4AorTHt5: & 1A thenT — A.

Proof. By induction on the given instantiation derivation.
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e Case re t

; InstLSolve

N&TrrFa:St4nLa=m1T
By Lemma [26| (Solution Admissibility for Extension)), I} &, ' — L& = 7,T".

e Case
InstLReach

MBI F & :=B AT@RIP = a]

P(8][B] = To, &, T, B, T for some To, Ty, 2.
By the definition of well-formedness, Iy, &, 1 - &.
Therefore, by Lemma[26| (Solution Admissibility for Extension)), To, &, I', B, T2 — To, & 1, § = &, .

o Case o &I &A=& o &alF A S &y AT T'F & :STA, 4A
Mal- &:2A; 5 A, 1A

By Lemma [28] (Unsolved Variable Addition for Extension)), we can insert an (unsolved) &,, giving
ral — &g, al.

By Lemma (Unsolved Variable Addition for Extension) again, I'[&,, & — T'[&2, &1, &l.

By Lemma (Solution Admissibility for Extensionl), we can solve &, giving I'[&y, &1, & —
F[&z, &1 y &= &1 — &2]

Then by transitivity (Lemma [21] (Transitivity)), M'&] — T'[&2, &1, & = &1 — 2.

By i.h. on the first subderivation, I'[&;, &1, & = & — &2] — T,

By i.h. on the second subderivation, ' — A.

By transitivity (Lemma Transitivity), I'&2, &1, & = &1 — &2 — A.

By transitivity (Lemma Transitivity)), I'&] — A.

InstLArr

* Case 5 B a:<B HA,B,A

rNaj- &:2vp.B 4A

By induction, I'&],p — A, 3,A’.
By Lemma [24] (Extension Order) (i), we have I'&] — A.

InstLAIIR

e Case et

; InstRSolve

Larrrtsa-Ana=rr
By Lemma (Solution Admissibility for Extensionl), we can solve &, giving [, & I — L& = 1,T".

e Case

= < = InstRReach
rialpl-p=a 4r@lp =al
ra&lpl = o, &, T, B, I for some Ty, Iy, .
By the definition of well-formedness, Iy, &, F &.
Hence by Lemma (Solution Admissibility for Extensionl), we can solve {3, giving Iy, &, Ty, B, > —
To,&,T1,B =&,

e Case pn &&= - &lF & :SA AT TF TA; S &0 HA

MalF A =5 Ay, &6 HA

Because the contexts here are the same as in InstLArr, this is the same as the InstLArr case.

InstRArr

e Case

ral,»a, B+ [B/BIB £ & HA, !
(&, >, B [/B] 2 "B 7 nstRAIIL
M&F VB.BX& 1A
By i.h., F[&],»g,@ — Ajpg, A
By Lemma [24] (Extension Order) (i), I'&] — A. O
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D'

3 Subtyping Extends

Lemma 33 (Subtyping Extension).
IfTH A<: B H4AthenT — A.

Proof. By induction on the given derivation.

E/

For cases <:Var, <:Unit, <:Exvar, we have A =T, so Lemma [20] (Reflexivity) suffices.

eCase L g <. A, 4O OF [QJA, <: [Q]B; 4A
<:
FF A 5A,<:B; =B, 1A -
By IH on each subderivation, ' — © and ® — A.

By Lemma [21] (Transitivity) (transitivity), ' — A, which was to be shown.

o Case . ar [B/adA<: B 4A ra,O
M- Va.A<: B HA
ByIH, [»ga, & — A, ps,0.
By Lernrna (Extension Order) (ii) with I =T and I = A and 'k = & and 'y = ©, we obtain

<:VL

r— A

©CAE B ABAABO
' A<:VB3.B H4A

By IH, we have [ 3 — A, 3, 0.

By Lemma [24] (Extension Order) (i), we obtain ' — A, which was to be shown.

:VR

e Cases <:Instantiatel, <:InstantiateR:  In each of these rules, the premise has the same input and
output contexts as the conclusion, so Lemma [32| (Instantiation Extension)) suffices. O

Decidability of Instantiation

Lemma 34 (Left Unsolvedness Preservation).
IfTo, &1 &:2A 4AorTo, &1 A S: & H4A, and B € unsolved(Iy), then B € unsolved(A).
— —

r r

Proof. By induction on the given derivation.

e Case
ToF T
0 InstLSolve

To, &1 F&:21 4T, & =1,y
~—
r
Immediate, since to the left of &, the contexts A and I'" are the same.

e Case
InstLReach

MBI F & :=B ATRIP = a]

Immediate, since to the left of &, the contexts A and I" are the same.

* Case ria, &, a=81 s8]k A Sk AT T/F &y :STA; HA

< InstLArr
F[&] F &:=A1 —)Az 4 A
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We have ﬁ € unsolved(Ty). Therefore ﬁ € unsolved(Tp, &2).
Clearly, &, € unsolved(Ty, &2).
We have two subderivations:

ro,&z,&h&: &] — az,ﬂ F A é: &1 41’ (1)
ME & :=[MA; 4A )

By induction on (1), B € unsolved(I').

Also by induction on (1), with &, playing the role of B, we get &, € unsolved(I"’).

Since ﬁ € Ty, it is declared to the left of &, in Iy, Ry, &1, & = &1 — K2, 7.

Hence by Lemma. (Declaration Order Preservation), {3 is declared to the left of &, in I'’. That is,
I = (T§, &2, T), where 5 € unsolved(T}).

By induction on (2), [5 € unsolved(A).

e Case 1 AM,BF&:SB HAB,A

fo, &1 &:2VR.B 4A
We have P € unsolved(I}).
By induction, € unsolved(A, B, A’).
Note that B is declared to the left of f in Iy, &, ', B.
By Lemma (]Declaration Order Preservation[), B is declared to the left of  in (A, B, A’), that is,
in A. Since 3 € unsolved(A, B,A’), we have B € unsolved(A).

InstLAIIR

e Cases InstRSolve, InstRReach:  Similar to the InstLSolve and InstLReach cases.

* CaSe rlay ar, & =& = &l &1 A AT TV E A S8 HA

Malk A 5 Ay S H4A
Similar to the InstLArr case.

InstRArr

* Case rial v 9 B/BIB SR 4A mo, A

<
rMajkF vB.B =& 4A

We have p € unsoIved(Fo)

By induction, B € unsolved(A, >, A).

Note that B is declared to the left of w5 in I, &, F1 Rz

By Lemma Declaration Order Preservatlonb B is declared to the left of »4 in A, »y,A’.

Hence [5 is declared in A, and we know it is in unsolved(A, »5,A’), so [5 € unsolved( ). O

InstRAIIL

r r
. . AT < WD <
Lemma 35 (Left Free Variable Preservation). If [y, &, 7 F & := A 4 Aorly, &M F A =& 4 A, and

'+ Band & ¢ FV([IB) and B € unsolved(Ty) and B ¢ FV([I'B), then B ¢ FV([A]B).
Proof. By induction on the given instantiation derivation.

e Case Mo T

< InstLSolve
Fo,&,ﬂ Fa:=t 4I“0,62:'t,l“1
— —_———

r A

We have & é FV([I'B). Since A differs from I" only in &, it must be the case that [['|B = [A]B. It is
given that p ¢ FV([IB), so B ¢ FV([A]B).

e Case
InstLReach

MR- &:29 AT RIK =&
r A

Since A differs from T" only in solving 9 to &, applying A to a type will not introduce a . We have

B ¢ FV(INB), so B ¢ FV([AIB).
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e Case
o T
0 InstRSolve

Moy &, k1 & 4Ty, & =1,

Similar to the InstLSolve case.

e Case
InstRReach

Malpl -9 <& AT RR = &

Similar to the InstLReach case.

e Case r

To, &2, &1, & =& — &, Ty = Ay =& A AR & :2[AJA; HA
fo, & T F &:2A; = Ay HA
r
We have ' B and & ¢ FV(['B) and P ¢ FV([T'B).
By weakening, we get I'' - B; since & ¢ FV(IT'|B) and I'’ only adds a solution for &, it follows that
I]B = [T'B.
Therefore &; ¢ FV([I'']B) and &, ¢ FV([I'']B) and P ¢ FV([I''B).
Since we have G € Iy, we also have /B € (To, &2).
By induction on the first premise, B ¢ FV([A]B).
Also by induction on the first premise, with &, playing the role of 3, we have &, ¢ FV([A]B).
Note that &, € unsolved(Fo, &2)
By Lemma [34] (Left Unsolvedness Preservation)), &, € unsolved(A).
Therefore A has the form (Ao, Ra, A1)
Since B # &,, we know that {3 is declared to the left of &, in Fo, &2, so by Lemma u M
[Order Preservation)), B is declared to the left of &, in A. Hence B € Ao.
Furthermore, by Lemma [32] (Instantiation Extension), we have I'" — A.
Then by Lemma . (Extension Weakening), we have A + B. Using induction on the second
premise, B ¢ FV([A]B).

InstLArr

e Case o Ay F &:5CHAy,A

To, &1 F &:=Vy.C HA
r

We have '+ B and & ¢ FV([IB) and B € Iy and P ¢ FV([IB).
By weakening, I,y - B; by the definition of substitution, [I}y]B = [T'|B.
Substituting equals for equals, & ¢ FV([I,y]B) and B ¢ FV([T,y]B).
By induction, B ¢ FV([A,vy, A’]B).
Since P is declared to the left of y in (T} y), we can use Lemmau 16| (Declaration Order Preservation))
to show that {3 is declared to the left of v in (A, vy, A’), that is, in A.
We have I' - B, soy ¢ FV(B). Thus each free variable u in B is in T, to the left of y in (T}7y).
Therefore, by Lemma [16] (Declaration Order Preservation|), each free variable u in B is in A.
Therefore [A,y,A’']B = [A]B.
Earlier, we obtained 8 ¢ FV([A,v, A’]B), so substituting equals for equals, B ¢ FV([A]B).

InstLAIIR

Case lo,R2, %1, =& — &2, 1 F & :§A1 H4A I [AlA; <. & 1A
T, & T F Al 5 As =& HA

Similar to the InstLArr case.

InstRArr

* Case pial e 9 B/AVIC SR 44, me, A

rajk- vy.C & 1A

We have '+ B and & ¢ FV([IB) and B € Iy and p ¢ FV([IB).
By weakening, I} »5,9 - B; by the definition of substitution, [} »4,9]B = [T']B.

InstRAIIL
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Substituting equals for equals, & ¢ FV([I; »+,%9]B) and B¢ FV(IT, >, 9IB).

By induction, B ¢ FV([A, »5,A']B).

Note that f is declared to the left of w5 in I} »+, 9.

By Lemma |16 (Declaration Order Preservation)), B is declared to the left of o in Ay, A

So B is declared in A.

Now, note that each free variable u in B is in I, which is to the left of »5 in [[ »5,9.

Therefore, by Lemma [16| (Declaration Order Preservation)), each free variable u in B is in A.
Therefore [A,»4,A’]B = [A]B.

Earlier, we obtained {3 ¢ FV([A, »¢,A’]B), so substituting equals for equals, B ¢ FV([AIB). O

r r

L. . . — < — <
Lemma 36 (Instantiation Size Preservation). If Iy, &, 1 F & := A 4 Aorly, &1 F A = & 4 A, and
'+ B and & ¢ FV([I'IB), then |[T'1B| = |[A]B|, where |C| is the plain size of the term C.

Proof. By induction on the given derivation.

e Case
o T
0 InstLSolve

fo, &1 F &:21 4Ty, & =1,1y
——
r

Since A differs from I'" only in solving &, and we know & ¢ FV([I'|B), we have [A]B = [I'|B; therefore
[[A]B = [I']B|.

e Case
InstLReach

MalBlF & :=B 4T@RIP = al

Here, A differs from I only in solving § to & However, & has the same size as B, so even if
B € FV([IB), we have |[A]B = [I'B|.

e Case r

To, B2, 81,8 =& — &2, 1 F A1 =& 40 OF &, :2[OJA, 1A
Mo, &M F&:SA; = Ay HA
r

We have '+ B and & ¢ FV([I'|B). Since &1, &, ¢ dom(I'), we have &, &, &, ¢ FV([I'|B). It follows
that [T']B = [T']B.

By weakening, I'' - B.

By induction on the first premise, |[I'']B| = |[O]B].

By Lemma (Declaration Order Preservation)), since &; is declared to the left of &; in I'’, we have
that &, is declared to the left of &; in ©.

By Lemma [34] (Left Unsolvedness Preservation)), since &, € unsolved(I"’), it is unsolved in ©: that
is, @ = (®0) &2)@1 )

By Lemma [32| (Instantiation Extension)), we have I'" — ©.

By Lemma 25| (Extension Weakening), © I- B.
Since &, ¢ FV([I'']B), Lemma (Left Free Variable Preservation)) gives &, ¢ FV([@]B).

By induction on the second premise, |[[©]B| = |[A]B|, and by transitivity of equality, |[I'|B| = |[A]B].

InstLArr

©Case A B &:SA, HA,B,A
fo, &1 F &:SVR.Ag 1A
r
We have I' - B and & ¢ FV([I']B).
By weakening, I, § - B.
From the definition of substitution, [I'/B = [T} 3]B. Hence & ¢ FV(IT; ]1B).
The input context of the premise is (o, &, ', ), which is (T} ), so by induction, |[I; 3]B| = |[A, B, A’]B|.
Suppose u is a free variable in B. Then u is declared in T', and so occurs before  in T} .

InstLAIIR
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By Lemma [16| (Declaration Order Preservation)), u is declared before B in A, 3, A’.
So every free variable u in B is declared in A.

Hence [A, B,A’]B = [A]B.

We have [I'B = [ 1B, so |[I'B| = |[T; BIB|; by transitivity of equality, |[T1B| = [[A]B].

Case Mok T
2 InstRSolve
Fo,&,ﬂ Ft=a ro,&:T,n
Similar to the InstLSolve case.
Case
InstRReach

ralpl- B <& TR = al

Similar to the InstLReach case.

Case r
ro,az,&h&:&]—)&z,r]}—&]1§A1 40 @}—[@]Az é:&z A
Mo, & T F AT — Ay S & H4A
N—_——
r

InstRArr

Similar to the InstLArr case.

Case g ps, B [B/BIA0 S & 4A,»g,A
T@&lF VB. Ay =& 4A

We have I' - B and & ¢ FV([I']|B).

By weakening, T; >f§,[§ F B.

From the definition of substitution, [T|B = [T, > /B}B. Hence & ¢ FV([I; >3 S]B).

By induction, |[[}»3, BIB| = A, » 5, A']BI.

Suppose u is a free variable in B.

Then u is declared in T', and so occurs before » 53 in [y »4, B.

By Lemma 16| (Declaration Order Preservation)), u is declared before » 5 in A, »5, A’

So every free variable u in B is declared in A.
Hence [A,»g,A’]B = [A]B.

Since [TB = [T, » 3, B]B, we have |[[']B| = |[I; » 5, B]B|; by transitivity of equality, |[[1B| = [[A]B]. [

InstRAIIL

Theorem 7 (Decidability of Instantiation). If ' = Tp[&] and ' + A such that [ITA = A and & ¢ FV(A),

(1) Either there exists A such that To[&] - & := A - A, or not.

(2) Either there exists A such that To[&] - A =: & - A, or not.

Proof. By induction on the derivation of I' - A.

(1) T &:2A A is decidable.

e Case

r[_,&, FR F o
~—

I [o]

UvarWF

If « € T, then by UvarWF we have Il - «, and by rule InstLSolve we have a derivation.
Otherwise no rule matches, and so no derivation exists.

e Case UnitWF: By rule InstLSolve.
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e Case

—— = EvarWF

rL) &) FR F B

r

By inversion, we have ﬁ e T, and [F][AS = ﬁ Since & ¢ FV([F]Q) = FV([g) = {[@}, it follows that
& # B: Either B € I' or B € Ik.
If § € 'L, then we have a derivation by InstLSolve.
If § € Ik, then we have a derivation by InstLReach.

e Case
————— SolvedEvarWF
Mp=1drp
———
r

It is given that [I']

A

B = B, so this case is impossible.

eCase L A, T} A,
r]_,&, FR = A] — Az
r
By assumption, [I(A; — Az) =A; — Ay and & ¢ FV([I'(A; — Az)).
If A1 — A3 is a monotype and is well-formed under 't , we can apply InstLSolve.

Otherwise, the only rule with a conclusion matching A; — A, is InstLArr.
First, consider whether I, &>, &1,& = &1 — &2, Tk - A =: &; - — is decidable.

By definition of substitution, [T1(A; — Az) = ([I'NA;) — ([I'A3). Since [T1(A; — Ay) = A1 —
A, we have [INA; = A7 and [TA; = A,.

By weakening, I, &, &1, & = & — %2,k F A7 — As.

Since '+ A; and I'F A,, we have &1, &, ¢ FV(A;) UFV(A3).

Since & ¢ FV(A) D FV(A;), it follows that [I"]A; = A;.

By i.h., either there exists © such that I, &2, &1,& = & — &2,k F A7 <: & 4O, or not.
If not, then no derivation by InstLArr exists.

If so, then we have I, &>, &1, & = & — &2, Tk F & :=A; H0O.

By Lemma Left Unsolvedness Preservation)), we know that &, € unsolved(©).

By Lemma Left Free Variable Preservation]), we know that &, ¢ FV([B]A;).

Clearly, [B]([O]A;) = [B]A,.

Hence by i.h., either there exists A such that © - &, -2 [O]A, - A, or not.

If not, then no derivation by InstLArr exists.

If it does, then by rule InstLArr, we have '+ & : S A HA.

ArrowWF

e Case Mok Ao
' Va. Ap

We have Va. Ag = [I'(Va. Ag). By definition of substitution, [I'(Va. Ap) = V. [IAyp, so
Ao = [TAy.

By definition of substitution, [ «a]Ag = [TA,.

We have & ¢ FV([I'l(Vx. Ag)). Therefore & ¢ FV([I'JAq) = FV([T; o]Ao).

By i.h., either there exists © such that [ o - & 2 Ao -0, or not.

Suppose - & : S Ao 4 0O.

By Lemma [32] (Instantiation Extension), I' — ©;
by Lemma [24] (Extension Order) (i), ©® = A, o, A'.
Hence by rule InstLAIIR, T F & : SVa. Ay 4 A.

Suppose not.
Then there is no derivation, since InstLAIIR is the only rule matching V. Ap.

ForallWF

(2) TH A =: & 4 Ais decidable.

e Case UvarWF:
Similar to the UvarWF case in part (1), but applying rule InstRSolve instead of InstLSolve.
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Case UnitWF:  Apply InstRSolve.

e Case
—— EvarWF
rL) &) rR F B
r
Similar to the EvarWF case in part (1), but applying InstRSolve/InstRReach instead of InstLSolve/InstLReach.

Case SolvedEvarWF:
Impossible, for exactly the same reasons as in the SolvedEvarWF case of part (1).

Case A, TrA,
FL,&, FR F A] — Az
—
r
As the ArrowWF case of part (1), except applying InstRArr instead of InstLArr.

ArrowWF

Case NpF B
I,& R V3. B
N——

r
By assumption, [I'](Vp. B) = Vf. B. With the definition of substitution, we get [I'/B = B. Hence

ForallWF

NB = B.

Hence [3/BI[TB = [3/p]B. Since [ is fresh, [3/BIIB = [[B/p]B.

By definition of substitution, [} » 3, BI[R/BIB = [I[B/B]B, which by transitivity of equality is
[B/BIB.

We have & ¢ FV([](¥B. B)), so & ¢ FV([T; » 5, B113/BB).
Therefore, by induction, either T, >4 B+ [B/BIB =: & 4O or not.

Suppose »5, B - [B/BIB =: & 40.

By Lemma (]Instantiation Extension|), [N p— 6;
by Lemma w qutensmn Orderp (i), © = A, >3 A
Hence by rule InstRAIIL, T F VB.B =: & 4 A.

Suppose not.
Then there is no derivation, since InstRAIIL is the only rule matching V(3. B. O

F’ Decidability of Algorithmic Subtyping

F’.1 Lemmas for Decidability of Subtyping

Lemma 37 (Monotypes Solve Variables). If ' - & 21 4AorTH 15 & A, then if Mt = © and
& ¢ FV([I't), then |unsolved(T")| = |unsolved(A)| + 1.

Proof. By induction on the given derivation.

e Case
Nkt
L InstLSolve

Mn,&MRRkF&:=t-An,&="1Tk
—_—
A
It is evident that |unsolved(T, &, Tr)| = Junsolved(I', & = T, TR)| + 1.

e Case
InstLReach

FRIBIF &:2p 4T@RIIP = &l

Similar to the previous case.
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Case a8, =& —BlF 11 S8 40  OF & : 2@l HA
RlF&: 2t 51 H4A
lunsolved (Ty[&2, &1, & = &1 — &2])

InstLArr

lunsolved(Tp[&])] +1 Immediate

| = (
lunsolved(TH[&2, &1, & = &1 — &2])| = |unsolved(©)| + 1 By i.h.
lunsolved(T")| = |unsolved ()| Subtracting 1
= = |unsolved(A)| + 1 By i.h.

Case

NRH &:SB HA,B,A’
N-&:2VB.B 4A

This case is impossible, since a monotype cannot have the form Vf3. B.

InstLAIIR

Cases InstRSolve, InstRReach:  Similar to the InstLSolve and InstLReach cases.

Case InstRArr:  Similar to the InstLArr case.

Case

ral,p+ B =& 4A,B,A’
MajF vB.B =& 4A

This case is impossible, since a monotype cannot have the form Vf3. B. O

InstRAIIL

Lemma 38 (Monotype Monotonicity). If ' = Ty <: T, 4 A then |unsolved(A)| < |unsolved(T)].

Proof. By induction on the given derivation.

e Cases <:Var, <:Exvar:
In these rules, A =T, so unsolved(A) = unsolved(T"); therefore |unsolved(A)| < |unsolved(T)|.

e Case <:—: We have an intermediate context ©.

By inversion, T1 = T91 — T12 and T2 = T27 — T22. Therefore, we have monotypes in the first and
second premises.

By induction on the first premise, |unsolved(®)| < |unsolved(I")|. By induction on the second premise,
|unsolved(A)| < |unsolved(®)|. By transitivity of <, |unsolved(A)| < |unsolved(T")|, which was to be
shown.

e Cases <:VL, <:VR: We are given a derivation of subtyping on monotypes, so these cases are
impossible.

e Cases <:lInstantiatel, <:InstantiateR: The input and output contexts in the premise exactly match
the conclusion, so the result follows by Lemma [37| (Monotypes Solve Variables). O

Lemma 39 (Substitution Decreases Size). If ' = A then [I' - ['A| < [T FA|.

Proof. By induction on [TFA|. If A=1o0or A = &, or A = & and & € unsolved(I") then [TA = A.
Therefore, [T+ [TA| =T FA].

If A =@&and (& = 1) € T, then by induction hypothesis, [I' - [Tt| < [I'F7|. Of course |I'+1| <
IT' 1| + 1. By definition of substitution, [Tt = [[&, so

re=mrel < Mex+1
By the definition of type size, T &| = |I'+1| 4+ 1, so
r=meal < =g

which was to be shown.
If A=A, — A,, the result follows via the induction hypothesis (twice).
If A =Vou. Ay, the result follows via the induction hypothesis. O
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Lemma 40 (Monotype Context Invariance).
IfT+ t<: 1" 4 A where [Tt =7 and [lt’ = 1’ and |unsolved(T')| = |unsolved(A)| thenT = A.

Proof. By induction on the derivation of ' = t <: t/ H A.

Cases <:Var, <:Unit, <:Exvar:

In these rules, the output context is the same as the input context, so the result is immediate.

Case i rrc.qy 4@ OF @12 <: BT, HA
FTFT =<1 =1, 4A

<i—

We have that [I'(t; — T2) = 71 — T2. By definition of substitution, [I't; = 77 and [t = T3.
Similarly, [ty = 17 and [T, = T5.

Byih.,®=T.

Since O is predicative, [@]1, and [@]1} are monotypes.

Substitution is idempotent: [O][0]T, = [O]t, and [O][O]1} = [O]15.

Byi.h., A =0. Hence A =T.

Cases <:VL, <:VR: Impossible, since T and 1’ are monotypes.

Case 5 4 FV(A) TolalF &:SA A

R &<: A 1A

By Lemma (Monotypes Solve Variables)), |unsolved(A)| < |unsolved(Ty[&])], but it is given that
lunsolved (T [&])] = Junsolved(A)], so this case is impossible.

<:InstantiatelL

Case <:InstantiateR:  Impossible, as for the <:Instantiatel case. O

F’.2 Decidability of Subtyping

Theorem 8 (Decidability of Subtyping).
Given a context I' and types A, B such thatT'+ A and '+ B and [TJA = A and [I'|B = B, it is decidable
whether there exists A such thatT - A <: B - A.

Proof. Let the judgment ' - A <: B 4 A be measured lexicographically by

(S
(52)
(83)

the number of V quantifiers in A and B;
lunsolved(I")|, the number of unsolved existential variables in T';

T=Al+T Bl

For each subtyping rule, we show that every premise is smaller than the conclusion. The condition
that ['JA = A and [I'|B = B is easily satisfied at each inductive step, using the definition of substitution.

Rules <:Var, <:Unit and <: Exvar have no premises.

Case g <.A, H® OF [OJA,<: [OB, 1A
' A - Ay<: By — B, H4A

<i—

If A, or B, has a quantifier, then the first premise is smaller by (S1). Otherwise, the first premise
shares an input context with the conclusion, so it has the same (S2). The types B; and A; are
subterms of the conclusion’s types, so the first premise is smaller by (S3).

If By or A; has a quantifier, then the second premise is smaller by (S1). Otherwise, by Lemma
(Monotype Monotonicity]) on the first premise, |unsolved(®)| < |unsolved(T)].

— If lunsolved(®)| < |unsolved(T")|, then the second premise is smaller by (S2).
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— If lunsolved(®)| = |unsolved(I")|, we have the same (S2).

However, by Lemma (Monotype Context Invariance)), ® =T, so |© - [O]A;| = [T F[TTA,],
which by Lemma [39| (Substitution Decreases Size) is less than or equal to |T' F A;|.

By the same logic, |© - [@]B,| < [I' - B,|.
Therefore,

IO F[@JAz] + [©@F[B]B2] < [FF(A7 — A2)l + [TF (B — By)
and the second premise is smaller by (S3).

e Cases<:VL, <:VR: In each of these rules, the premise has one less quantifier than the conclusion,
so the premise is smaller by (S1).

e Cases <:Instantiatel, <:InstantiateR:  Follows from Theorem|7] O

G’ Decidability of Typing
Theorem 9 (Decidability of Typing).

(i) Synthesis: Given a context I" and a term e,
it is decidable whether there exist a type A and a context A such that
l'Fe=AdA.

(ii) Checking: Given a context ', a term e, and a type B such thatT - B,
it is decidable whether there is a context A such that
'-e&B HA.

(iii) Application: Given a context T, a term e, and a type A such thatT + A,
it is decidable whether there exist a type C and a context A such that
'-Aee=>C HA.

Proof. For rules deriving judgments of the form

N-e=— 44—
'-e&B A4—
F'FAee=— 14—

(where we write “—” for parts of the judgments that are outputs), the following induction measure on
such judgments is adequate to prove decidability:

=
<e, &, [TEB] >
=, [TFA]|
where (...) denotes lexicographic order, and where (when comparing two judgments typing terms of the

same size) the synthesis judgment (top line) is considered smaller than the checking judgment (second
line), which in turn is considered smaller than the application judgment (bottom line). That is,

= < & < =

Note that this measure only uses the input parts of the judgments, leading to a straightforward decid-
ability argument.

We will show that in each rule, every synthesis/checking/application premise is smaller than the
conclusion.

e Case Var: No premises.
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e Case Sub:  The first premise has the same subject term e as the conclusion, but the judgment is
smaller because the measure considers a synthesis judgment to be smaller than a checking judg-
ment.

The second premise is a subtyping judgment, which by Theorem [8]is decidable.

e Case Anno:

It is easy to show that the judgment I' = A is decidable.
The second premise types e, but the conclusion types (e : A), so the first part of the measure gets
smaller.

e Case 1I: No premises.
e Case —l: In the premise, the term is smaller.
e Case —E: In both premises, the term is smaller.

e Case Vl:  Both the premise and conclusion type e, and both are checking; however, |I;x F Al <
[T +Vo. Al, so the premise is smaller.

e Case —App:  Both the premise and conclusion type e, but the premise is a checking judgment,
so the premise is smaller.

e Case Subst&:  Both the premise and conclusion type e, and both are checking; however, since
we can apply this rule only when T has a solution for &—that is, when I' = IH[& = t]—we have
that |I' - [T]&| < I" - &|, making the last part of the measure smaller.

e Case SubstApp: Similar to Subst<.

e Case VApp: Both the premise and conclusion type e, and both are application judgments;
however, by the definition of [I' - —|, the size of the type in the premise [&/x]A is smaller than
V. A.

e Case ®?App: Both the premise and conclusion type e, but we switch to checking in the premise,
so the premise is smaller.

e Case 1lI=: No premises.

e Case —l=: In the premise, the term is smaller. O

H’' Soundness of Subtyping

H'.1 Lemmas for Soundness

Lemma 42 (Variable Preservation).
If(x:A)cAor(x:A)c Qand A — Q then (x: [Q]A) € [Q]A.

Proof. By mutual induction on A and Q.

Suppose (x : A) € A. In the case where A = (A/;x: A) and Q = (Q’,x: Aq), inversionon A — Q
gives [Q']A = [Q']Aq; by the definition of context application, [Q',x : Aql(A’,x : A) = [Q']A/,x :
[Q']Aq, which contains x : [Q']Aq, which is equal to x : [Q']A. By well-formedness of Q, we know that
[Q'TA = [Q]A.

Suppose (x : A) € Q. The reasoning is similar, because equality is symmetric. O

Lemma 43 (Substitution Typing). If '+ A thenT + [T]A.
Proof. By induction on |I" - A| (the size of A under I').

e Cases UvarWF, UnitWF: Here A = x or A =1, so applying I' to A does not change it: A = [[']A.
Since I' = A, we have I' + [I']A, which was to be shown.
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e Case EvarWF: In this case A = &, but I' = I [&], so applying I'" to A does not change it, and we
proceed as in the UnitWF case above.

e Case SolvedEvarWF: In thiscase A = @ and I' = I, & = 7,Tk. Thus [NA = [lNa = [I.]T.
We assume contexts are well-formed, so all free variables in T are declared in I'.. Consequently,
[Tt F | = |I" |, which is less than |I" - &|. We can therefore apply the i.h. to T, yielding I - [I't.
By the definition of substitution, [I't = [T]&, so we have I' - [&.

e Case ArrowWF: In this case A = A; — A,. Byih, ' [MA; and '+ [TJA,. By ArrowWF,
' (['A;7) = ([TTA2), which by the definition of substitution is '+ ['(A; — Az).

e Case ForallWF: In this case A =Vu«. Ag. By i.h., [Ja F [I; a]Ao. By the definition of substitution,
[ adAo = [TMAo, so by ForallWF, T' = V. [I'Ap, which by the definition of substitution is I" -
M(Va. Ap). O

Lemma 44 (Substitution for Well-Formedness). If Q + A then [Q]Q F [Q]A.

Proof. By induction on |Q - Al, the size of A under Q) (Definition [2).
We consider cases of the well-formedness rule concluding the derivation of Q - A.

e Case
UnitWF

QF1

QIOF1 By DeclUnitWF
[Q]Q F [Q]1 By definition of substitution

e Case

W UvarWF
0.8 x

QO—Q By Lemma Reﬂexivia)

x € [Q]Q ByLemma Uvar Preservationl)

QIO F « By DeclUvarWF
QIO F [Qx By definition of substitution
e Case
OB =1F & SolvedEvarWF
~—
Q
[0 Given

Q—Q By Lemma Reﬂexivi&l)

QF [Ql& By Lemma Substitution Typingl)
[QF[Ql&] < |QF&  Follows from definition of type size
QO F [Q][Q]a Byi.h.
[QlQla = [Ql& By Lemma qSubstitution Extension Invariancel)

QIO+ [Q]a Applying equality

—— EvarWF
QBIFa
~——

Q

Impossible: the grammar for Q) does not allow unsolved declarations.

eCase 1 A,  OF A,
QF Al — Ay

ArrowWF
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QF A Subderivation
[OFA<|QFA; = Az]  Follows from definition of type size
QO+ [Q]A, By i.h.

QIO F [Q]A, By similar reasoning on 2nd subderivation

QIO [QJAT; — [QJA; By DeclArrowWF
QO+ [Q]J(A] — Az) By definition of substitution

e Case Q,a

07 0 ErallwF
QF Va. Ag
Q,xF Ap Subderivation
Let Q' = (Q, «).
|Q’ FAol < |QFVa.Ag| Follows from definition of type size
Q(Q, ) F [Q']A By i.h.
Q ]Q o - [Q'A By definition of context application
[Q]Q, x+ [Q ]Ao By definition of substitution
[Q]O F Va. [Q]Ag By DeclForallWF
[Q]O F [Q](Vx. Ag) By definition of substitution O

Lemma 45 (Substitution Stability).
For any well-formed complete context (Q,Q7), if Q + A then [Q]JA = [Q,Q7]A

Proof. By induction on Q7. If Q7 = -, the result is immediate. Otherwise, use the i.h. and the fact that
QF A implies FV(A) N dom(Qz) = 0. O

Lemma 46 (Context Partitioning).
IfA» 4,0 — Q,»s, Q7 then there is aV¥ such that [Q,» 4, Qz](A,»4,0) = [Q]A, V.

Proof. By induction on the given derivation.

e Case —ID: Impossible: A, »4,© cannot have the form -.

e Case —Var:  We have Q7 = (Q5,x: A) and ® = (©’,x : A’). By ih., there is ¥/ such that
([Q,»a,Q%]1(A, »&,0") = [QJA,¥'. Then by the definition of context application, [Q,»4,Q%,x
Al(Ara, O, x:A') = [QIA Y x: [Q]A. Let ¥ = (W', x : [Q]A).

e Case —Uvar: Similar to the —Var case, with ¥ = (¥, «).

e Cases —Unsolved, —Solve, —Marker, —Add, —AddSolved:  Broadly similar to the —Uvar
case, but since the rightmost context element is soft it disappears in context application, so we let
Y=y O

Lemma 49 (Stability of Complete Contexts).
IfT — Q then [Q]T = [Q]Q.

Proof. By induction on the derivation of ' — Q.

e Case
— —ID

In this case, Q =T = .
By definition, [-]- = -, which gives us the conclusion.
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e Case

r—aq’

[QAr = [Q']A

—Var

Mx:Ar — Q' x: A

Q1 =[Q1a’
[Q]Ar = [Q]A

QN = [Q7,x: Al(T',x : Ar)

— [Q/]I"/’

X [Q/]Ar

By i.h.
Premise

Expanding Q and I’

By definition of context application
(using [Q']Ar = [Q']A)

By above equalities

By definition of context application

Expanding Q and I’

Q7

=[QM By definition of context application
=[Q1Q" « By i.h.
=[Q',al(Q’,«) By definition of context application
= [Q]Q By QO =(Q'«a)

e Case r—, 0

; ; —Marker
Mipa— Q' pa
Similar to the — Uvar case.

e Case r—,o’
- iAddSolved
r—QoQia=r1

QIr=[Q",&=r1r Expanding Q

= [Q’r By & ¢ dom(T")
= [Q10Q’ By i.h.
=[Q',a=1](Q’';&=1) By definition of context application
= Qo By Q= (Q\&a=1)

e Case r/ N Q/ [Q/]Tr _ [Q/]T

r/,&:’tr —)Q/,&:T
QI'=[Qa=1(l'",&=1r)

—Solved

Expanding Q and I’

= [Qr’ By definition of context application
= [Q'1Q’ By i.h.
=[Q&a=1(Q’,& =1) By definition of context application
= [0Q]O ByQ=(Q,a=1)
r—aq’

a0 A —Solve
=[Qa=1(" &) Expanding Q and I’
= [Qr By definition of context application
=[Q']Q’ By i.h.
=[Q',&=1l(Q’,;&=1) By definition of context application
= [Q]Q ByQ=(Q,a=n)

r—A
m —Unsolved
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Impossible: Q cannot have the form A, &.

e Case r—A
r—A®
Impossible: Q cannot have the form A, &. O

—Add

Lemma 50 (Finishing Types).
IFQOF A and Q — Q' then [Q]JA = [Q']A.

Proof. By Lemma (Substitution Extension Invariance)), [Q']A = [Q'][Q]A.
If FEV(C) = 0 then [Q/]C = C.
Since Q is complete and Q - A, we have FEV([Q]A) = 0. Therefore [Q'][Q]A = [Q]A. O

Lemma 51 (Finishing Completions).
IfQ — Q' then [Q]Q = [Q']Q’.

Proof. By induction on the given derivation of Q — Q.

Only cases —ID, —Var, —Uvar, —Solved, —Marker and —AddSolved are possible. In all of
these cases, we use the i.h. and the definition of context application; in cases —Var and —Solved, we
also use the equality in the premise of the respective rule. O

Lemma 52 (Confluence of Completeness).
IfA7y — Q and A, — Q then [Q]A7 = [Q]A,.

Proof.
A — Q Given
[Q]A; = [Q]Q By Lemma (]Stability of Complete Contexts[)
Ay — Q Given
[Q]A; = [Q]QQ By Lemma qStability of Complete Contexts|)
[Q]A; = [Q]A; By transitivity of equality O

H'.2 Instantiation Soundness

Theorem 10 (Instantiation Soundness).
Given A — Q and [I'B = B and & ¢ FV(B):

(1) IfT+ & :2B 4 A then [Q)AF [Q]& < [Q]B.
(2) IfT+ B 2: & 4 A then [Q)AF [Q]B < [Q]&.

Proof. By induction on the given instantiation derivation.

D e Case Mok T

To,& T+ &:21 4T, & =1,y
~— ~—
r A
In this case [A]& [A]T. By reflexivity of subtyping (Lemma (3| (Reflexivity of Declarative|

[Subtyping)), [Q]A; Al < [AlT.

InstLSolve

e Case
— —~ — InstLReach
MBI - &:=B AT@RIB =8l
A

We have A = I'[&][p = &). Therefore [A]& = & = [A]B.
By reflexivity of subtyping (Lemma |3| (Reflexivity of Declarative Subtyping))), [QJA F [A]& <
[AIB.
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(2

Case I

TRy, &1, 8 =& — &) F Ay =& AT T'F & :S[TA; HA

InstLArr
Malk &:2A; - A, 4A
[M(A7 — Az) = [M](AT — Az) & ¢ FV(A1 — A3)
&1,Q2 ¢ FV(A7) UFV(A,) &1, &, fresh
ME &, :S[MA, 4A Subderivation
N —A By Lemma (]Instantiation Extension[)
A— Q Given
r-—a ByLemma
MmEA S & Subderivation
[QIAF [Q]JA; < [ ]&1 By i.h. and Lemma (]Conﬂuence of Completeness[)
ME & :S[MA, HA Subderivation
QA [OQ ][F &y < [Q[TM]A, By i.h.
rr—ao Above
[QIAF [Qla, < [Q]AS By Lemma (]Substitution Extension Invariancel)

[QJAF [Q](& — &2) < [QJA] — [Q]JA; By <— and definition of substitution

Since (& = &7 — &) € I and 7 — A, we know that [Q]& = [Q](&1 — &3).
Therefore [Q]A F [Q]& < [Q](A] — A3).

Case sl g a:<By HA,p,A
ral- & :2Vp. By
We have A — Q and [I'[&]](VB. Bo) = VB. By and & ¢ FV(Vp. By).
Hence & ¢ FV(By) and by definition, [I'[&], 1By = Bo.
By Lemma (Filling Completes), A, B, A" — Q, B, |A’|.
By induction, [Q, 3, [A'[I(A, B,A") = [Q, B, A& < [Q, B,]A[]Bo.
Each free variable in & and B is declared in (Q, ), so Q, 3,]A’| behaves as [Q, B] on & and on
Bo, vielding [Q, B, |A[(A, B, A") F [Q, Bl& < [Q, B]Bo.
By Lemma“ (]Context Partitioning) and thmnmg, [Q, BI(A,B) F [Q, [3]& < [Q, BIBo
By the definition of context application, [Q]A, B F [Q, B]& < [Q, B]Bo
By the definition of substitution, [Q]A, B F [Q]& < [Q]B,
Since & is declared to the left of 3, we have 3 ¢ FV([Q] &).
Applying rule <VL gives [Q]JA F [Q]& < V. [Q]Bo

InstLAIIR

Case Mok T

< InstRSolve
Fo,&,ﬂ Frt=a ro,&:’[',ﬁ
— —_———

r r
Similar to the InstLSolve case.

Case

~< —~ InstRReach
=& dATRIB =al

rl
Similar to the InstLReach case.

M&IB) -

Case g, &1, & =& — & F &1 :SA; AT T'F TNA, S8, 1A

Mal- Ay - Ay S & HA
Similar to the InstLArr case.

InstRArr

Case
InstRAIIL

F&l,eg, B [B/BIBo <1 & 4 A, »5,A
F&l - VB.Bo =
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[T[&l](VB.Bo) = VB. Bo Given

[r1&]Bo = Bo
[T[&l,»q, B] [B/B]Bo = [B/BIB
A— Q Given

Aywp, A" — Q,»5,|A"] By Lemma qulling Completes[)

& ¢ FV(VB.Bp) Given
& ¢ FV(By) By definition of FV(—)

F&l,»q, B [B/BIBo <t & 4 A,p5,A Subderivation
Qw6 [A1(A, w5, AY) F [0, m5, IAYNIB/BIBo < [, »5,|A"I&_ By ih.
rial,»g, B— A, >5) A By Lemma qInstantiation Extension[)
By Lemma H (]Declaratlon Order Preservation), & is declared before » 5, that is, in Q.
Thus, IA [l& =
By Lemma - Evar In ut we know that A’ is soft, so by Lemma [47] (Softness Goes Away),
[Q, 5, [A[I(A » 5, A7) = [O_ »31(A,»5) = [Q]A.
Applying these equalities to the derivation above gives

QA [Q,»5,|A'][B/BIBy < [QI&
By distributivity of substitution,
[QIAF [[Q,»5,|AIB/B] [Q,»5,]A]Bo < Q)&
Furthermore, [Q, >4 |IA'[IBo = [Q]By, since By’s free variables are either 3 or in Q, giving
[QIAF [[Q,»5,1A1R/B]LQIB, < [Q]&

Now apply <VL and the definition of substitution to get [QJA F [Q](Vf. Bo) < [Q]&. O

H’.3 Soundness of Subtyping

Theorem 11 (Soundness of Algorithmic Subtyping).
IfTH A<: B 4A where[lNA =A and [lB =B and A — Q then [Q]A F [Q]A < [Q]B.

Proof. By induction on the derivation of ' A <: B H A.

e Case
; ; <:Var
Mo - a<: o0 4 T[]
A R
r A
xeA A=T"[«]
€ [Q]A Follows from definition of context application
[QIAF o < o By <Var

[QIAF [Q]a < [Q]x By def. of substitution
e Case <:Unit:  Similar to the <:Var case, applying rule <Unit instead of <Var.

e Case

<:Exvar

FL,&,FR Fa<:a - FL,&,FR
[Q]& defined Follows from definition of context application
QA F [Qla Assumption that [Q]A is well-formed
[QIAF [Q]la < [Q]& By Lemma (]Reﬂexivity of Declarative Subtypingb

—
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e Case g <A HO

O+ [@]Az <: [@]Bz H4HA
F A 5A,< By =B, 1A T
A B
'EBy<: A; 40 Subderivation
A—Q Given
0 —Q By Lemma
[Q]e F [Q]By < [Q]A; By i.h.
[QJA - [Q]B7 < [QJA; By Lemma (]Conﬂuence of Completenessl)
OF [BJA; <: [B]B; A Subderivation
[QIAF [Q][B]A; < [Q][O]B; By i.h.
[Q]B]A; = [Q]A> By Lemma Substitution Extension Invariance
[Q][B]B, = [Q]B, By Lemma Substitution Extension Invariance
[QIAF [Q]A; < [Q]B> Above equations
[QIAF ([QJA7) — ([QJA2) < (1Q]B1) — ([Q]B2) By <—
[QIAF [Q](A] — Az) < [Q](B7 — By) By def. of substitution

o Case A [&/aJAo<: B 4A,»s,0
IF V. Ag<: B 1A
Let Q' = (Q, |»a, O)).

Lra,8F [@/a]Ag <: B 1A »4,0

A— Q
(A,»a,@) — Q'

Q1A »5,0) F [Q'][&/a]As < [Q']B
[Q'](A,»5,0) F [Q][&/x]Ao < [Q]B
[Q'](Ap4,0) F [[Q718/a] [Q1A0 <
Nra,@F &
Lra, & — A »s,©
A, OF &
(A$ ’&)8) — Q’
Q1O+ [Q'a
Q1A »,0) - [Q]&
[Q'1(A»5,0) F V. [Q']A, < [Q]B
Q1A »5,0) F V. [Q ] < [Q]B
[QIA - V. [Q tx]Ao [Q]B
[QIAF Va. [Q]Ay < [Q]B
[QIAF [Q ](Voc.Ao) <[Q]B

e Case pyy Ac.By A0, ©
TF A<:Va.Bo 44

[Q]B

<:VL

Subderivation

Given

By Lemma (]Filling Completesl)

By i.h.

By [Q']B = [Q]B (Lemma (]Substitution Stabilityb)
By distributivity of substitution

By EvarWF
By Lemma
By Lemma
Above

By Lemma
By Lemma

By <VL
By Lemma
By Lemma

Subtyping Extensionl)

Extension Weakeningl)

Substitution for Well-Formedness[)

Stability of Complete Contexts))

Substitution Stabilityb

Context Partitioning[) and thinning

By def. of substitution
By def. of substitution
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NakA<: By 1A, x,0 Subderivation

Let Q7 = Q).

Let Q' = (Q,,Q7).
(A, 0) — Q By Lemma (IFilling Completes|)

[Q1(A, o, ©) F [Q]A < [Q']Bg By i.h.
[Q, (A, ) F [Q,x]A < [Q,x]By By Lemma (]Substitution Stabilityl)
[Q, o] (A, &) F [Q]JA < [Q]Bg By def. of substitution
[Q]A - [QJA < Va. [Q]Bg By <VR
[

[Q]A F [QJA < [Q](Vx. Bp) By def. of substitution

e Case s 4FV(B) TF&:SBHA
F &< B A

<:InstantiatelL

I
—
0

&
'-&:=B 4A Subderivation
[QJAF [Q)& < [QB By Theorem|10)

A 3

e Case <:InstantiateR: Similar to the case for <:Instantiatel.
Corollary 53 (Soundness, Pretty Version). f Y - A <: B 4 A, then¥Y+ A <B.
Proof. By reflexivity (Lemma [20] (Reflexivity])), ¥ — V.

Since ¥ has no existential variables, it is a complete context Q.

By Theorem|[11] [W]¥ + [W]A < [W]B.

Since V¥ has no existential variables, Y]¥ =V, and [W]A = A, and [V]B = B.
Therefore Y - A < B.

I’ Typing Extension

Lemma 54 (Typing Extension).
IfTFe&sAdAorTHFe=A 4AorTF Aee=>C 4 Athenl — A.

Proof. By induction on the given derivation.

e Cases Var, 11, 11=:
Since A =T, the result follows by Lemma [20] (Reflexivity).

eCase pi . . B 4@ ©OF [OB<: OIA H4A
FrFe=A A

'— ©® Byih.
® — A BylLemma Subtyping Extensionl)

w [ — A Bylemma Transitivit_yl)

*Cae LA ThescA-A

Sub

Anno
- (e:A)=A 4A
w [ — A Byih.
e Case Pt Ay HA, 4,0
'k e&Va. Ay A
Lo — Aja,® Byi.h.
= r— A By Lemma(]Extension Order[) ()
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* Case rat [R/adAgee=>C HA
N Va.Agee==>C 4A
na— A By i.h.
—T& By—Add

= r— A By Lemma

eCase ny . A e Ay HAX:A1,O

VApp

—l
' Ax.e <A 5 Ay 1A
Nx:A; — A;x:A;,0 Byih.
= r— A By Lemma (]Extension Ordet1) W)

Case rf o ~B4O@ OF OBee;=>A 4A .
—
'Feex;=A A

By the i.h. on each premise, then Lemma 2] (Transitivity).

Case o Bx:&Fe<=p 41A,x:&0
N-Axe=&—p 4A
L& p,x:& — Ax:&0 Byih.

—l=

I &, P— A By Lemma (]Extension Ordeti) W)
r—nap By —Add (twice)
= r— A By Lemma
* Case M-ecA A
—App

I'FA—>Cee=CHA
e [— A Byih.

Case g, &1, 8 =81 - &l F e 4A
NM&l- Gee==&, 1A
I&, &, =& — &) — A Byih.
el — Ir'&a, 1,& = &1 — &2] By Lemma _(]S_olved Variable Addition for Extension|)
then Lemma |29| (Parallel Admissibilityp (iD)

= r— A By Lemma i[!ransitivit_yl) O

J’  Soundness of Typing

&App

Theorem 12 (Soundness of Algorithmic Typing). Given A — Q:
(D IfTH e< A HAthen [QJAF e < [Q]A.
(i) IfTH e= A 4 Athen[QJAF e = [Q]A.

(iii) IfTH Aee == C 1A then[QJA} [Q]A e e == [Q]C.

Proof. By induction on the given algorithmic typing derivation.

o Case (x:A)eT
'Ex=A-AT

ar
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=

(x:A)eT

(

(x:

x:A)EA
A— Q
[QJA) € [QIT

Premise
Bylr=A

Given

By Lemma (1Variable Preservationl)
Q' x = [Q]JA By DeclVar

cCase oA 40 OF [OIA<: [OB HA
Fe<B A Sub
l'Fe=A 40 Subderivation
OF [B]JA<: BB 1A Subderivation
@ — A By Lemma (TTyping Extension[)
A— Q Given
00— Q By Lemma
QO+ e= [Q]JA By i.h.
[Q]e = [Q]A By Lemma QConﬂuence of Completenessl)
[QIAF e = [Q]A By above equalities
OF [BJA<: OB 4A Subderivation
[Q]JA - [Q]B]IA < [Q][@]B By Theorem |11
[Q]BIA = [Q]A By Lemma |18| (Substitution Extension Invariance
[Q][O]B = [Q]B By Lemma Substitution Extension Invariance
[QIAF [Q]A < [Q]B By above equalities
= [QIAF e < [Q]B By DeclSub
eCase LA Ipe,oAHA
FF (e A Ada ™
l'Feg &= A HA Subderivation
[QJIAF ep & [Q]A By i.h.
'EA Subderivation
r— A By Lemma (ITyping Extensionb
A— Q Given
r—Q By Lemma Transitivia)
QFA By Lemma Extension Weakening)
Q1O F [Q]JA By Lemma Substitution for Well-Forrnedness[)
QA = [Q]Q By Lemma Stability of Complete Contexts[)
[QJA F [Q]JA By above equality
[QJAF (eo: [QJA) = [Q]JA By DeclAnno
A contains no existential variables Assumption about source programs
[QJA=A From definition of substitution
i [QJAF (eg: A) = [Q]JA By above equality
e Case
11
r- 0«14 \F/
A
QAF O &1 By Decl1l
ww  [QJAF () & [Q]1 By definition of substitution

e Case py Ay e Ay HAX:AL,O
TFAxeeA; 5 A; 1A
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A— Q
Ayx: A — Q) x: [Q]A;,
Ox: A7 — Ajx:A,0

O is soft

Ayx:A1,0 — Q,x: [Q]A4,]0]

A Q'

Nx:A1Fey & A A’

[QIA"F eo <= [Q']A;
[Q']A2 = [Q]JA2
[Q']A" €0 < [Q]A,

Ax:A7,0 — Q,x:[Q]A7,|0]
A Q
O is soft
[Q']A" = [Q]JA,x : [Q]A,
[Q]A,x : [Q]AT F eq & [Q]A,

Given

By —Var

By Lemma Typing Extension|)

By Lemma Extension Order) (v)
(with I'r = -, which is soft)

By Lemma Filling Completes

Subderivation

By i.h.
By Lemma QSubstitution Stabiliryi)
By above equality

Above

Above
By Lemma (]Softness Goes Awayb
By above equality

[QIAF Ax.eo < ([QJA1) — ([QJA2) By Decl—l

i [QJAF Ax.eg < [Q](A] = A))

By definition of substitution

e Case TFe = A 40 OF Ajee; == Ay 1A E
4)

'k ejex=A; 1A

kel = A 10
OFA;<:B HA
e —A
A— Q
e — Q
[QIOF e = [Q]A;
[Q]e = [Q]A
[QIAF e = [Q]A;

OF Ajee; == A 1A
A— Q
[QJAF [Q]A7 e 2 == [Q]A;
i [QJAF ejer; = [QJA;

eCase ot e Ay HA, 0, O
MF e eV Ag 1A

Vi

Subderivation

Subderivation

By Lemma QTyping Extension|)
Given

By Lemma

By i.h.

By Lemma (IConﬂuence of Completenessl)
By above equality

Subderivation
Given

By i.h.

By Decl—E

(Similar to —l, using a different subpart of Lemma (Extension Order)) and applying DeclVI;

written out anyway.)
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A— Q Given
Ao — Qo By —Uvar
Noa— Ajx,0 By Lemma Typing Extension|)
O is soft By Lemma Extension Order) (i) (with 'z = -, which is soft)
Ao, — Q0| By Lemma Filling Completes
S~ ———
A, Q/
Nake& Ay 4A' Subderivation
QA+ e & [Q'Ag By i.h.

Q1A = [Q]Ao
QA" F e <= [QlAo

Ao, — Q) «, |0 Above
~—— ———
A, Q/
O is soft Above
[QJA,

QA" =
[QIA, aF e < [Q]Ao

[QIAF e & Va. [Q]A)
[QJAF e & [Q](Va. Ap)

=

e Case rot [a/adApee=>C A
TFVaAgee—>C JA
Nak [@/x]Agee==C HA
A— Q
[QIA F [QI[8/adAg o € =5 [QIC
Q1A+ [[QJ&/ o [QJAo o e = [QIC

VApp

nae— A
na— Q
Naka
QFa
QIO [Q]a
[Q]Q = [Q]A
[QlAF [Ql&

[QJAF V. [Q]Ay @ e == [Q]C

= [QIAF [Q](Va. Ag) e e == [Q]C
o Case M-e<BHA
—App
IFBoCee—=>C 1A
FrFe<B A
A— Q
[QIAF e & [Q]B
[QJAF ([Q]B) — ([Q]C) e e == [Q]C
w [QIAF [Q(B = C)ee==[Q]C

o Case ro[&z,&h&:&] S Fe&sd; 1A

By DeclVI
By definition of substitution

No@lF &ee=>a 1A
r

By Lemma (]Substitution Stabilityb
By above equality

By Lemma qSoftness Goes Awayb
By above equality

Subderivation

Given

By i.h.

By distributivity of substitution

Typing Extensionl)
Transitivig)

Extension Weakening)

By Lemma [44| (Substitution for Well-FormednessD
By Lemma |49 (Stability of Complete Contextsl)
By above equality

By Lemma |54]
By Lemma |21
By EvarWF

By Lemma |25

By DeclVApp
By definition of substitution

Subderivation

Given

By i.h.

By Decl—App

By definition of substitution

&App
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r’

ro[az,&],&=&1 —®kFe&s) 1A

A— Q
[QJIAF e < [Q]&,

Subderivation
Given
By i.h.

[QlAE ([Q]&1) — ([Q]R2) e e == [Q]&, By Decl—App
By Lemma (]Typing Extensionl)
Given

By Lemna

By definition of [I''](—)

Applying Q to both sides

By Lemma (]Substitution Extension Invariancel), twice
By definition of substitution

By above equality

[QJAF O = [Q]1 By Declll= and definition of substitution

r-—aA
A— Q
rr—ao
Ma = [T"(& — &2)
[QIMa = [1Qlr'i(a; — &)
[.Q]&: [Q}(&] — &2)
= ([Q]&1) = ([Q]&z)
e [QIAF [Q]& e e == [Q]&,
e Case
1=
r-Q0=1 —|\I:/
A
e Case

L& P,x:&— Ax: &0

Ax:,0 — Q,x:[Q]&, |0
— —_———

N&PB,x:&F e =B 4A,x:80

Mk Ax.eo =& — P 4A

—=

By Lemma Typing Extension[)

) O is soft By Lemma Extension Order{) (v) (with Tg = -, which is soft)
r} &) [?’ — A "
A— Q Given
Ayx:a— Q,x: [Qla By —Var

A, Ql
N&ap,x:aFe<=f 4A,x:&,0
[QA’+ ey < [Q]1B
Q1B = [0,x: [QJa]p
= [Q]p

By Lemma Filling Completes

Q1A = [0, x: [QJ&] (A, x : &)

(
— [Q]Ax: [Q]&

[QIA,x: [Ql& F eo < [QIB

=

L&p— A
L&p— Q
L&Bra&
OF&
[QIAF [Qa

[QIAF QIR
[QIAF ([Q1&) — ([QIB)
[Ql&, [Q]P monotypes

[QIAF Ax.eo = ([QI&) — ([Q]
[QIAF Ax.ep = [Ql(& — B)

B

)

Subderivation

By i.h.

By Lemma (]Substitution Stabilityl)
By definition of substitution

By Lemma (]Softness Goes AwayD
By definition of context substitution
By above equalities

Above
By Lemma 3] fanscs)
By EvarWF

By Lemma Extension Weakening))
By Lemma [44] (Substitution for Well-Formedness)
and Lemma |49| (Stability of Complete Contexts)

By similar reasoning
By DeclArrowWF
Q predicative

By Decl—l=
By definition of substitution [
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K’ Completeness

K’.1 Instantiation Completeness

Theorem 13 (Instantiation Completeness).
GivenT" — Q and A = [T']A and & € unsolved(T') and & ¢ FV(A):

(D) IFIQIT + [Q]a < [QJA
then there are A, Q' such that Q — Q' and A — Q' and T+ & : S A HA.

(2) If[QIT - [QJA < [Q]a
then there are A, Q' such that Q —s Q' and A — Q' and T+ A £: & 4 A.

Proof. By mutual induction on the given declarative subtyping derivation.

(1) We have [Q]I' - [Q]& < [Q]A. We now case-analyze the shape of A.

e Case A = f3:
It is given that & ¢ FV(B), so & # P.
Since A = /G, we have [Q]T - [Q]& < [Q]ﬁ.
Since Q is predicative, [Q]& = T; and [Q]B =1, so we have [QIT'+ 11 < 15.
By Lemma [9] (Monotype Equality)), T =Ta.
We have A = 8 and [[A = A, so [Ip = . Thus B € unsolved(T").

Let Q' be Q. ByLemma.W Q— Q.
Now consider whether & is declared to the left of {3, or vice versa.

- Case ' = (Tp, &, F1A,[3, I):

Let Abelo, &, 11, =&, T%.

By rule InstLReach, T & : 2B - A.

It remains to show that A — Q.

We have [Q]& = [Q][AS. Then by Lemma (]Parallel Extension Solutionb, A — Q.
- Case (I'= roA,G,n,a, r):

Let A be Iy, B, T7,& = B, Ts.

By rule InstLSolve, T+ & : =B 4 A.

It remains to show that A — Q.

We have [Q]B = [Q]&. Then by Lemma (Parallel Extension Solution), A — Q.

e Case A = «a:
Since A = «, we have [Q]T [ & < [Q]a.
Since [Q]a = «, we have [Q]T' - [Q]& < «
By inversion, <Var was used, so [Q]& =
the left of & in Q.
We have I' — Q.
By Lemma |17| (Reverse Declaration Order Preservation|), we know that « is declared to the left
of & in T; thatis, I' = Iy [][&].
Let A = Thlod[®@ = @] and Q' = Q).
By InstLSolve, To[ed[&] F & :< o0 4 A.
By Lemma (Parallel Extension Solution)), I'y[a][& = o] — Q.

e Case A=A — Ay:
By the definition of substitution, [Q]A = ([Q]A;) — ([Q]A3).
Therefore [Q]T + [Q]& < ([QAJA7) — ([QJA).
Since we have an arrow as the supertype, only <VL or <— could have been used, and the
subtype [Q]& must be either a quantifier or an arrow. But Q is predicative, so [Q]& cannot be
a quantifier. Therefore, it is an arrow: [Q]& = 17 — T2, and <— concluded the derivation.
Inverting <— gives [Q]I' - [Q]A, < 17 and [Q]T'F 11 < [Q]A;.

&
Qla

r—wr—|

therefore since Q) is well-formed, « is declared to

Since & € unsolved(TI"), we know that I" has the form T [&].
By Lemma (Unsolved Variable Addition for Extension) twice, inserting unsolved variables
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&, and &, into the middle of the context extends it, that is: IH[&] — TH[&2, &1, &).

Clearly, & — ®&; is well-formed in (..., &, &), so by Lemma (Solution Admissibility for]
[Extension)), solving & extends the context: Ty[&2, &1, & — To[&2, &7, & = &1 — &2]. Then by
Lemma 21| (Transitivity]), Io[&] — To[&2, &1, & = &1 — K2].

Since & € unsolved(T") and ' — Q, we know that Q has the form Qy[& = To]. To show that we

can extend this context, we apply Lemma [27] (Solved Variable Addition for Extension]) twice to
introduce &, = T, and &; = 17, and then Lemma (Solution Admissibility for Extension)) to

overwrite Tg:

Qo[&ZTo] —>_O_o[&2 =T2,&1 =T1,&= &1 — &2]
—_———
Q

We have I' — Q, that is,
Nl — Qo = 70|

By Lemma (Parallel Admissibility]) (i) twice, inserting unsolved variables &, and &; on both
contexts in the above extension preserves extension:

0[R2, &1, 8] — Qol®2 = 12,81 = T1, & = To] By Lemma Parallel Admissibility[) (ii) twice
lo[®2, &1, & = &1 —=R2] — Qol&2 = 12,81 =T1,& = ®1—R2] By Lemma Parallel Variable Update
™ [oF}

Since & ¢ FV(A), it follows that [I71]A = [I'A = A.

Therefore &; ¢ FV(A1) and &1, & ¢ FV(A3).

By Lemma [51] (Finishing Completions) and Lemma [50| (Finishing Types), [Q;]T} = [QIT and
Q1] =15.

By i.h., there are A, and Q, such that I'; - A <. & 1A, and A; — Q, and Q7 — Q,.
Next, note that [A;][A2]A> = [AL]AS.

By Lemma Left Unsolvedness Preservation|), we know that &, € unsolved(A;).

By Lemma Left Free Variable Preservationl), we know that &, ¢ FV([A3]A3).

By Lemma 21| (Transitivity), Q — Q,.
We know [Q]A, = [Q]T" because:

[Q,]A; = [Q3]Q, ByLemma (Stability of Complete Contexts)
= [QJQ By Lemma|51| (Finishing Completions)
[Qr By Lemma [49| (Stability of Complete Contexts])

By Lemma Finishing Types)), we know that [Q;]&, = [Q1]&; = T3.

By Lemma Finishing Types), we know that [Q;]A; = [Q]A,.

Hence we know that [Q,]A; F [Qs]&r < [Q5]A,.

By i.h., we have A and Q' such that A, - & 2AJA; HAand Q;, — Q' and A — Q.

By rule InstLArr, TH & :S A A,

By Lemma [21] (Transitivity), Q — Q'.

Case A =1:

We have A =1, so [Q]T' + [Q]& < [Q]1.

Since [Q]1 =1, we have [Q]T'+ [Q]& < 1.

The only declarative subtyping rules that can have 1 as the supertype in the conclusion are <VL
and <Unit. However, since Q is predicative, [Q]& cannot be a quantifier, so <VL cannot have
been used. Hence <Unit was used and [Q]& = 1.

Let A=T[@a=1]and Q' = Q.

By InstLSolve, T[&] - & :=1 4 A.

By Lemma (Parallel Extension Solution)), '@ = 1] — Q.

Case A =V[. B:

We have [Q]T F [Q]& < [Q](VB. B).

By definition of substitution, [Q](VB. B) = V. [Q]B, so we have [Q]l' F [Q]& < Vf. [Q]B.
The only declarative subtyping rules that can have a quantifier as supertype are <VL and <VR.
However, since Q is predicative, [Q]& cannot be a quantifier, so <VL cannot have been used.
Hence <VR was used, and we have a subderivation of [Q]T} § - [Q]& < [Q]B.
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Let Q; = (Q,B) and I = (I B).

By —Uvar, I — Q.

By the definition of substitution, [Q]B = [Q]B and [Q;]& = [Q]&.

Note that [Q4]7 = [Q]T; B.

Since & € unsolved(T"), we have & € unsolved(Ty).

Since & ¢ FV(A) and A = V{3. B, we have & ¢ FV(B).

By i.h., there are O, and A, such that T, - & :=B 4 A, and A, — Q5 and Q7 — Q5.
By Lernrna (Instantiation Extension), I — A;, thatis, [ — A;.

Therefore by Lemma [24] (Extension Order)), A, = (A’, 3, Q") where I' — A’.

By equality, we know A’; ,A” — Q.

By Lemma [24] (Extension Order), Q, = (Q’, 3, Q") wheress A’ — Q/.

We have Q; — Q,, that is, Q, — Q’,$,Q"”, so Lemma (Extension Order)) gives
= 0 — Q.

By rule InstLAIIR, T+ & :SVB.B 4 A’.

(2) [QITF [Q]JA < [Q]a

These cases are mostly symmetric. The one exception is the one connective that is not treated
symmetrically in the declarative subtyping rules:

e Case A =Vu. B:
Since A = Vu. B, we have [Q]' F [Q]VA. B < [Q]&.
By symmetric reasoning to the previous case (the last case of part (1) above), <VL must have
been used, with a subderivation of [Q]' - [Q]& < [t/B][Q]B.
Since [Q]I" I T, the type T has no existential variables and is therefore invariant under substi-
tution: T = [Q]t. Therefore [t/B][Q]B = [[Qlt/B][Q]B.
By distributivity of substitution, this is [Q] [t/B]B. Interposing /B, this is equal to [Q][t/ ﬁ] [ﬁ /BIB.
Therefore [Q]T' F [Q]& < [Q] [/BIIB/BIB. R
Let Qg be Q,»4, =T and let I be [wg, 5.
— By the definition of context application, [Q]7 = [Q]T".
— From the definition of substitution, [Q1]& = [Q]&.
— It follows from the definition of substitution that [Q][t/ G}C = [(Q1]C for all C. Therefore
[QI[t/BIB/BIB = [1](B/BIB.
Applying these three equalities, [Q4]T I; Oq]a < [Qﬂ[ﬁ /BIB.
By the definition of substitution, [T, > BIB = [I'NB = B, so & ¢ FV([I1]B).
Since & € unsolved(I"), we have & € unsolved(T).

By i.h., there exist A, and Q, such that I - B S8 4A;and Q7 — Qy and Ay — Q).

By Lemma (32| (Instantiation Extension), I' — A, which is, I} » 3, B — A,

By Lemma [24) (Extension Order), A; = (A',»3,A") and ' — A"

By equality, A’, >3, A" — ).

By Lernrna (Extension Order), Q, = (Q',»3,Q") and = A" — Q.

By equality, Q,»3, =1 — Q',»3,Q".

= By Lemma [24] (Extension Order), QO — Q.

By InstRAIIL, T+ V3. B S a A O
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K'.2 Completeness of Subtyping

Theorem 14 (Generalized Completeness of Subtyping). If ' — Q and T+ A and T + B and [Q]T" -
[QJA < [Q]B then there exist A and Q' such that A — Q' and Q — Q' andT F [IMA <: [IB 4 A.

Proof. By induction on the derivation of [Q]T" - [Q]A < [Q]B.
We distinguish cases of [I']B and [I'JA that are impossible, fully written out, and similar to fully-

written-out cases.

B
VB.B’ 1 o B B1 — B3
Yo. A’ 1 (B poly) 2.Poly 2.Poly 2.Poly 2.Poly
1 1 (B poly) 2.Units impossible 2.BEx.Unit impossible
[F]A @ 1 (B poly) impossible 2.Uvars 2.BEx.Uvar impossible
o4 1 (B poly) 2.AEx.Unit 2.AEx.Uvar ;25:(8)2}1 iﬁi 2.AEx.Arrow
A1 = A, 1 (Bpoly) impossible impossible 2.BEx.Arrow 2.Arrows

The impossibility of the “impossible” entries follows from inspection of the declarative subtyping

rules.

We first split on [I']B.

e Case 1 (B poly): [I'|B polymorphic: [I'/B = V3.B’:

B = VB.Bo
B’ = [T'By
[Q]B = [Q](Vf. Bo)
— VB. [Q]B,
QT+ [Q]JA < [Q]B
D: [QIT - [Q]JA < V. [Q]By
D' [QIT B F [Q]JA < [Q]Bo
D' <D
[Q, BT B) F [Q, BIA < [Q, BIBo
LB ILRIA<: [IBIBy 4A’
A — Q)
Q,B — Q)
MRk MA <:

D’

MBoy A’

Np— A
A=A B,0O
r— A

A BB — Q)
Q(/):Q/)B)QR
A— Q

NpF[MA<: By 4A,B,0
Q)B S O—/)B)QR
Q— Q'

M [MA <: VB.[MBo 44
M- [MA<: VB.B' 4A

I predicative

I" predicative

Applying Q to both sides
By definition of substitution
Given

By above equality

By Lemmal] meriois)
"

By definitions of substitution
By i.h.

"

"

By definition of substitution

By Lemma
By Lemma
"

Instantiation Extension[)
Extension Order) (i)

By A’ — Q} and above equality
By Lemma (]Extension Orderl) (D)
"

By above equality
By above equality

By Lemma o1 (i)

By <:VR
By above equality
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e Cases 2.*: [I']B not polymorphic:
We split on the form of [IA

— Case 2.Poly: [T']A is polymorphic: [IA = Va. A’:

A =Va. Ay I" predicative
A’ = [TMAg I predicative
[Q]JA = [Q](Va. Ao) Applying Q to both sides
[Q]JA = V. [Q]A By definition of substitution
QN [Q]JA < [Q}B Given
QT F Va. [Q]Ay < [Q]B By above equality
B # (VB.--) We are in the “[I']B not polymorphic” subcase
B # (VB....) I predicative
[QIT F [t/ad[Q]Ao < [Q]B By inversion on <VL
QN+ T "
r— Q Given
Nra — Q,pa By — Marker
Lra, @ — Qpa,&=T By —Solve
[ —

Qo

QI = [Qo]( > &, &)

[QIT - [t/a][Q]A, < [Q]B
[Qol(ly»&, &) F [T/a][Q]A, < [Q]B
[Qol(F»a, &) F [[Qo] &/oc][ ]A <[QJB
[Qol(lpa, &) F [[Qola/a] [QolAp < [Qo]B
[Qo] ([ »a, &) F [Qo] &/OCAOS[ ]
Nea, & [[ea, &[&/a]Aq <: [ rs, &IB 4 Ao
Ao — Q7
Qo — Q"

Bea, & F [M&/alAg <: [TIB 4 Ao
R»&,& — Ao
Ao = (A, »4,0)
r— A
Q"= (Q/)>&>QZ)
= A— QF
Qo — Q"
Qpsg, =T — Q' ea, Q7
= Q— Q'

Dra, & F [M[&/dAp <: TIB 4A,»4,0
Dra, @ F [&/a][TAy <: TIB 4A,»4,0
I Yo [MAg <: [TB 4 A
- M- V. A’ <: [MB 4 A

— Case 2.AEx: A is an existential variable [['A = &:
We split on the form of [I']B.

By definition of context application (lines 16, 13)

Above

By above equality

By definition of substitution
By definition of substitution
By distributivity of substitution

By i.h.

1

"

By definition of substitution

By Lemma Subtyping Extensionl)
By Lemma Extension Order) (ii)
1

By Lemma (]Extension Orderl) (ii)
1

Above
By above equalities
By Lemma (]Extension Orderl) (i)

By above equality Ag = (A, » 4, 0)

By def. of subst. ([I'N& = & and [« = «)
By <:VL

By above equality

* Case 2.AEx.SameEx: [['|B is the same existential variable B = &:
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r-a<:a-r By <:Exvar
= I'EMA<: [TB AT By[lTMA=[TB==8&
w A— Q A=

r
o Q0 -— Q ByLemma and Q' =Q

* Case 2.AEx.OtherEx: [I'|B is a different existential variable B = /B where [AS #+Q:
Either & € FV([T1B), or & ¢ FV([I'B).
- REFV(IMP):
We have & < [I'J.
Therefore & = [F][g, or & < [F}@.
But we are in Case 2.AEx.OtherEx, so the former is impossible.
Therefore, & < [F}/B.
Since T is predicative, [I [AS cannot have the form Vf3. - - -, so the only way that & can
be a proper subterm of [I'] (3 is if [P has the form B; — B, such that & is a subterm
of By or By, thatis: & 2 [’ 1B.
Then by a property of substitution, [Q]& Z [Q] [I"]ﬁ.
By Lemma . (]Substitution Extension Invariancel) Q] [F]ﬁ = [Q]/B, so [Qla 2 [Q}/B.

We have [Q Q]B, and we know that [Q]& is a monotype, so we can use
Lemma M (11) to show that [Q]& Z [Q [3, a contradiction.
- & ¢ FV([IN
r }— & =N —| A ByTheorem(l)
=3 M-a<:p - By <:lInstantiateL
= A— Q "
= Q0 — Q "
* Case 2.AEx.Unit: [I'B = 1:
r— Q Given
1=[Q]1 By definition of substitution
& ¢ FV(1) By definition of FV(—)

QT [Qla < [Q]1 Given

TrFa:214A ByTheorem(l)
= Q0 — Qf "
= A— Qf "

1=11 By definition of substitution
& ¢ FV(1) By definition of FV(—)

= '-&<:1-4A By <:InstantiatelL

x Case 2.AEx.Uvar: [['|B = f3:
Similar to Case 2.AEx.Unit, using 3 = [Q]B = [T and & ¢ FV(B).

x Case 2.AEx.Arrow: [['/B = B; — B;:
Since [I'|B is an arrow, it cannot be exactly &.
Suppose, for a contradiction, that & € FV([I']B).
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& ¢ FV([IB)

& € FV([I'B)
By a property of substitution

Given
By Lemma (]Substitution Extension Invariance|)

By above equality

Given (2.AEx.Arrow)
By a property of substitution
By Lemma (]Substitution Extension Invariance|)

Follows from < and #
[Q]A has the form -+ — ---
Given

Q is predicative

By Lemma (i)

By contradiction

Fr'F&a:2[MB 4A By Theorem D
1"

w A — Q

= Q— QF "

= '-a<: [MNB HA By <:lInstantiateL
—
B]—?Bz

- Case 2.BEx: [['A is not polymorphic and [I']B is an existential variable: [I'B = [AS

We split on the form of [I'A.

x Case 2.BEx.Unit ([INA = 1),
Case 2.BEx.Uvar ([IA = &),

Case 2.BEx.Arrow ([I'A = A7 — Ay):
Similar to Cases 2.AEx.Unit, 2.AEx.Uvar and 2.AEx.Arrow, but using part (2) of Theo-
rem |13|instead of part (1), and applying <:InstantiateR instead of <:InstantiateL as the

final step.
— Case 2.Units: [TJA =[I"B =1:
= '-1<:14T By<:Unit

r— Q Given
i A—Q A=T

w Q0 — Qf ByLemma and Q' =Q

— Case 2.Uvars: [INA =[T"B = «:

xeQ By inversion on <Var
r—Q Given
xel By Lemma (]Extension Order|)

= N'-o<: a4 By<:Var
= A— QO

A=T
e Q0 — Q ByLemma and Q' =Q

— Case 2. Arrows: A =A; - A and B =

Only rule <— could have been used.

B] — Bz:
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QT+ [Q]By < [Q]A; Subderivation

=By <: MNA; 40 By i.h.
0 — Qo "
Q— Qo "
r—Q Given
r— Qo By Lemma [21] (Transitivity)
0 — Q Above
QI = [Q]O By Lemma (]Conﬂuence of Completenessp
[QIT F [Q]A, < [Q]B, Subderivation
Q] F [Q]A,; < [Q]B, By above equality
[Q]JA; = [Q][TMA, By Lemma Substitution Extension Invariance
[Q]B, = [Q][B, By Lemma Substitution Extension Invariance
[Q]O + [Q]MA, < [Q]lNB; By above equalities
OF [O][TIA; <: [O][NB, 4A Byi.h.
= A— Q "
Qo — QO "

I'E([MA7) — (IMA2) <: ([FBq) — ([MB2) HA By <:—
= ' THA7 — Ay) <: [TI(B; — By) A By definition of substitution

= Q-— 0 By Lemma 21] (Transitivity) O
Corollary 55 (Completeness of Subtyping). If ¥ - A < B then there is a A such that W+ A <: B 4 A.

Proof. Let Q =Y and ' =Y.

By Lemma [20] (Reflexivity), ¥ — ¥, so T — Q.

By Lemma@ ell-Formedness)), Y - Aand Y+ B;sincel'=V¥,wehave "' Aand '+ B.

By Theorem [14] there exists A such that '+ [[JA <: [[]B A,

Since I' = ¥ and V is a declarative context with no existentials, [Y]C = C for all C, so we actually have
Y+ A<: B HA, which was to be shown. O
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L’ Completeness of Typing
Theorem 15 (Completeness of Algorithmic Typing). Given ' — Q and '+ A:

1) IfFIQIT F e & [Q]A
then there exist A and Q'
such that A — Q' and Q — Q' andT F e & [TA HA.

) IfIQITF e= A
then there exist A, Q', and A’
such that A — Q' and Q — Q' andTF e= A’ 4Aand A =[Q']A".

(i) IfF[QITF [Q)JA ee == C
then there exist A, Q', and C’
suchthat A — Q' and Q — Q' andTF [NMA ee==>C’' 4A and C=[Q']C’.

Proof. By induction on the given declarative derivation.

o Case (x:A) e QI

—[O_]F X A DeclVar
(x:A) e [QIT Premise
r— Q Given
(x: A’) € T'where [QJA’ = [QJA  From definition of context application
Let A=T.
Let Q' = Q.
= r— Q Given
= Q—0 By Lemma
= l'Ex= A" AT By Var
[QJA" = [Q]A Above
= =A FEV(A) =10
*Case Or-e=B [QFF B<I[QA
DeclSub
QT e & [Q]JA
QIlr'Fe=B Subderivation
l'~e=B' 40 By i.h.
B = [Q]B/ "
0 — Qo "
Q— _O_o "
r— Q Given
'— Qp By Lemma
Q' B < [Q]JA Subderivation
QI = [Q]e By Lemma (]Conﬂuence of Completeness[)
Qe F B < [Q]JA By above equalities
0 — O Above
OF [OIB' <: [BJA HA By Theorem
A N Q/ "
QO 5 Q "
o A— Qf By Lemma Transitivity|
= 0 -— Qf By Lemma [21| (Transitivity]
= lNFe&sAdA By Sub
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e Case (Oir- A [QITF ep < A
[QTF (eg: A)= A

DeclAnno

A= [Q]JA Source type annotations cannot contain evars
= MA "
QITFey & A Subderivation
[QIT'F eq & [Q]A By above equality
lFeo&MAHA By i.h.
s A— Q "
= 0 — Qf "
'EA Given
N -(eg:A)=A 1A By Anno
A =[Q1A Source type annotations cannot contain evars

= ' (eo: [Q']A) = [Q']A 4A By above equality

e Case

——— Decl1l
Qre- 0 <1

We have [Q]A = 1. Either [I'JA =1 or [I'A = & € unsolved(T").

In the former case:

Let A=T.
Let Q' = Q.
= r—Q Given

= Q— Q' ByLemma

' O«14T  Byll

= rEQ«m1+Hr 1=[n
In the latter case:
'O =14r By 1=
QrrFi1<i By <Unit
1=[Q]1 By definition of substitution
= [Q]MN& By [QJA =1
= [Q]&a By Lemma qSubstitution Extension Invariance|)
QI = [Q]1 < [Q]& By above equalities
rF1<:a24A ByTheorem(l)
1=1I1 By definition of substitution
& =[a & € unsolved(I")

' [1<: ['& 4A By above equalities
w Q0 — Q "
w A — Q "

rEOQ<a-dA By Sub
= 'O «TMA4A ByllNA=a&

° Case Orak e« A,

DeclVI
OTF e = Vo Ag ¢

72



[ ] Case [Q]rl_ T

[QJA = Va. Ap Given
= Va. [QJA’ By def. of subst. and predicativity of Q
Ao = [Q]JA’ Follows from above equality
QI ke & [QJAY Subderivation and above equality
r——Q Given
Na— Q,«x By —Uvar

[QIT, o = [Q, o (T} )
[Q, ] (T,x) - e < [QJA’
[Q, (o) e & [Q, A’

By above equality

By definition of context substitution

By definition of substitution

Nake& [[oJA" HA! By i.h.
A/ — Qé 1
0,0 — Q) 4
Lo — A By Lemma Typing Extension[)
A=A o0 By Lemma Extension Order{) @
Ao, ® — Q) By above equality
Qf=0Q" 0,Q7 By Lemma (]Extension Orded) 1
= A— Q "
= Q— 0 By Lemma (Extension Order) on Q, x — Q}
Late& [[a]A" 4HA, o, By above equality
Late&[MNA HA &, 0 By definition of substitution
NFe&Vva [TMA HA By VI
= N-e&MvVa.A) 4A By definition of substitution

[QIT'F [t/a]Ag e e = C

DeclVA
[QINF Vo Ag e e == C ecivapp

——

[Q]A

QM- T
[Q]A = Va. Ao

— Va. [QJA
[QIT - [t/o][QJA @ e == C
r— Q

na— Q,a=r

ar=[0,a=1(a)

[

Q,&a=1](;&) F [t/ad[Q]JA" e e == C
Q,&a=1(&)F [t/d[Q,& =T]A’ e e == C

([[Qlt/a] [, & =1]A") = ([Q,& = T][&/x]A’)

T=[Q]t
([t/e] [Q, & =T]A) = ([Q,& = T[&/a]A’)
[Q,a=1(&)F [Q,&=1R&/«]A"ee==C
Lat[@/a]A’ee=>C" 4A Byih.

= C = [Q]C’ "

= A — Q "

= 00— QF "

w  TFVYaA'ee=>C' 4A  ByVApp
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Subderivation

Given

By def. of subst. and predicativity of Q
Subderivation and above equality
Given

By —Solve

By definition of context application
By above equality

By def. of subst.

By distributivity of substitution
FEV(t) =0

By above equality

By above equality



o Case [QITx: Al eg & A)

[QITF Ax.eo <= A} — A}

Decl—I

We have [Q]JA = A] — AJ. Either [NA = A; — A, where A} = [Q]A; and A} = [Q]A,—or

MA =& and [Q]& = A] — AJ.
In the former case:
[QINx: A ey < AS

A} = [QJA;
= [Q][TA,
[QJA] = [QI[Q][TA;
= [Q][IA;

[Q,x: Af(Tx: A F eo & Aj

r— Q
Lx:[TA; — Q,x: Af

RXZ[F]A] Fey&s Ay A

A — Q)

Q,x: A — Qf
Qy=0Q',x:A;,0

= Q— Q

RXZ[”A1 — A
A=Ax:---,0
Ax:--,0— Q') x: A,0

= A— Q

F,XZ TA; - ey & MA, H A, OC,@

Subderivation

Known in this subcase

By Lemma (]Substitution Extension Invariance[)
Applying Q on both sides

By idempotence of substitution

By definition of context application
By above equality

Given

By —Var
By i.h.

1

"

By Lemma (]Extension Orderl) W)
"

By Lemma Typing EXtension[)
By Lemma Extension Order)) (v)
By above equalities

By Lemma (]Extension Orderl) W)

By above equality

I Ax.eo & ([MA1) — ([MA2) HA By —l

= ' Ax.eqg & [T(A7 — Az) 1A
In the latter case:
Qla=A; = A}
[QINx:AjF ey & A)
r— Q
La,p— Q,a=A!B=A)
[QJ& = [QJA]
Na,Byx:&— Qa=A}B=A5x:A]

[QINx: A} = [Q,&=A},B=A)x: A (L& B,x:

Let Qp = (Q,& = A},
[Qol( &, Byx: &) F ep & A}
N&P,x:&Fe < B 44’
A — Qf
_O.o—)_o.(/)

=Alx:A}).
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By definition of substitution

Known in this subcase
Subderivation
Given
By —Solve twice
By definition of substitution
By —Var
&) By definition of context application

By above equality
By i.h. with Qg

"

"



N&p,x:a— A By Lemma Typing Extension[)
AN =Ax:%0 By Lemma Extension Order) (v)
Ax:,0 — Q By above equality
Qp=0Q"x:---,Qz By Lemma quping Extension|)
= A — QI/ "
N&,p— A §
Qo — Q"/x:---,Qz By above equality

Qg

Q,a=A}B=A}x: A} — Q" x:---,Q7 Bydef of Qp
Q"=Q&a=...,... By Lemma QExtension Orderl) (iii)
"

N&B,x:&ke < B 41A,x:8,0 By above equality
TEAx.eo =& — B A By —l=

mMae==a& By definition of substitution
Mg =p By definition of substitution
' Ax.eq & ([T ([F]/B) -4 A By above equalities
= ' Ax.eq < [T( B)HA By definition of substitution

*Case Or- e, =B  [QIFF Bee; == A
QI e1ex = A
QIl'+e; =B Subderivation
r—Q Given
e =B 40 By i.h.
B = [QIB’ d

Decl—E

[QIT'Bee; == A Subderivation
QT [Q]B’ ee; == A By above equality

I— Q} By Lemma |21 Transitivia)
QI = [Q]Q By Lemma [49| (Stability of Complete Contextsl)

= [Q4]Qf By Lemma 51| (Finishing Completions)

[OXS1N By Lemma [49| (Stability of Complete Contextsb
510 By Lemma |52 (Confluence of Completeness)
IB"ee; == A By above equality

! By Lemma [50| (Finishing Types)
[B]B’ By Lemma |18| (Substitution Extension Invariancel)
JOIB" e e; == A By above equalities

OF [OIB'ee; == A’ 4A Byih. with Q}
A =[QJA/ "

"

"
Q—Q’ By Lemma

= lejex;=A" H4A By —E
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o Case Q- e =B

QF-FB—=Cee==>C
[Q]A

Decl—App

We have [Q]A = B — C. Either [TA = By — Co where B = [Q]By and C = [Q]Co—or [TA = &
where & € unsolved(T") and [Q]& =B — C.

In the former case:
QIr'-e < B
B = [Q]Bo

r— Q

lFe&[MBy 1A

M= ([MBo) — ([MCo) e e == [NCo 4A

= A— Q'
= Q— Q'
Let C’' = [ Co.
C =[Q]Cy
= [QITCo
= = [Q]C’
= =T

Subderivation
Known in this subcase

Given

By i.h.
By —App

"

"

Known in this subcase

By Lemma qSubstitution Extension Invariance|)
MCo=C’

By definition of substitution

In the latter case, & € unsolved(T"), so the context I' must have the form Iy [&].

r— Q
L — Q
[QJA=B —C
Qla=B—C

Q= Qo[&:Ao] and [Q]Ao =B—C
Let T = Ty[&y, &1, & = &1 — Ra].

Let _O.(/) = Qo[&z = [_O.]C, &1 = [Q]B, & = &1 — &2]

I — Q}
Q'Fe<B

Q— 0}

[QIF = [Q]Q
= (05104
= [

B = [Q)]&
Q4+ e & [Q4)&

MNre&l'e; 4A
= A— QF
QL — Q7
= Q— Q'

Ma; = &y
MNkrFe&so 1A

Given

I=Tolal

Above

A=2Ra

Follows from [Q]& =B — C

By Lemma (]Parallel Admissibﬂity[) (ii) twice

Subderivation

By Lemma ﬂiolved Variable Addition for Extension|)

then Lemma 29| (Parallel Admissibility) (iii)

By Lemma Stability of Complete Contexts[)

By Lemma 51| (Finishing Completions)

By Lemma Confluence of Completenessb

By definition of Q)

By above equalities

By i.h.

"

1
By emma 2] i)

Q1 € unsolved(T")
By above equality
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l-QRee==a, 1A By &App

Let C' = Qxs.
C = [Q}l&, By definition of Q]
- 10, By Lemnmal50 Finishing Typed
= = [Q’]C’ By above equality
= F-TJAee=sC'H4A &=[NAand &, =C’
e Case
m Declll=
1=A Given
-0 =14r Byll=
Let A=T.
Let Q' = Q.
r— QO Given
= A— Q By above equality
= Q— Q' ByLemma
Let A’ =1.
= 't () = A’ HA By above equalities
= 1=[Q]A’ By definition of substitution

*Case Or- g 51 [QNx:ok ep et

Decl—l
[QITF Ax.eg = 0— T ecll=
(c—-T1)=A Given
[QIlx:0F e &1 Subderivation

Let I'" = (&, B,x: &).
Let Qo = (Q,&=0,p =1,x:0).

r— Q Given
I — Qo By —Solve twice, then —Var
[Qoll = ([Q]I“, X: G) By definition of context application
T= [Qo]f:’» By definition of Q,
[QoIT" F eo < [QolB By above equalities
IMbey &< B 4A By i.h.
A — Qf "
Qo — Qf "
A= (Ax:&,0) By Lemma (]Extension Orderb )
N&P,x:akFe <P 4A,x:4,0 By above equalities
(Ayx:,0) — Qg By above equality
Ql=0Q"x:0,Qz7 By Lemma (]Extension Ordet{) W)
= A— Q) "

TEAx.eo=&—p 4A By —l=
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Let A’ = (& — P).

= N'EAx.ep = A" HA By above equality
o — 1= ([Qo]&) — ([QolB) By definition of Q,
o—1=[Qol(& — ﬁ) By definition of substitution
A = [Qp]A’ By above equalities
= A=[Q]A’ By Lemma (Finishing Types)
r— A’ By Lemma Typing Extensionl)
= Q-— Q' By Lemma Transitivit O
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