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Appendix: Supplementary Material

This appendix contains definitions, proofs, and example derivations that didn’t fit in the paper. In line-by-line
proofs, I put a Z next to the final result.

Lemma 9. If Q completes " then dom([Q]I") € dom(T).
Proof. By induction on Q. Since Q completes I', the contexts are the same modulo hints and existential
variables that are declared in both but only solved in Q. In the case when Q = Q’;a=A and I' =T/, a: from

the definition, [Q]T = [Q']([A/&IT’). By IH, dom([Q']([A/&]T’) C dom([A/«lT'’), and substituting for « in T’/
does not change its domain at all. O

Lemma 11. Given a context Q) that completes T, if [Q]I" = [Q]JA wf thenT = A wf.

Proof. To show I' = A wf, we show FV(A) C dom(T").

For all & in FV(A): Suppose & ¢ dom(l'). By definition of completion, dom(I') = dom(Q) so & ¢
dom(Q). Thus, applying Q to A cannot substitute for &, and & € FV([Q]A). By definition of well-formedness,
FV([QJA) C dom([Q]T"), which by Lemma[9]is C dom(T"). Therefore & € dom(T'), a contradiction. O

Lemma 12 (Well-Formedness). If D :=: T ~ ... - T’ then for any solved & € dom(T"), it is the case that
I'=",a=A,T, and Ty + A wf, and likewise for any solved & € dom(T"’).

Proof. By induction on D. In the 6 rules that introduce existential solutions, the well-formedness of the
solution is either explicit (x=L<, x~R<) or is evident from the context (—lx, —wEx, —alLs, —»aRS). O

Definition 14 (Ordering of subtyping judgments). Given /3 =T7 - A1 <B; 4 ...and L =T F A; £
B, - ..., the order < is defined lexicographically by

(1) the numbers of hints in I'} and in I';, under <;

(2) if By =B, and Iy =T, the angst of A; versus Ay; or, if A; = A, and I'y = I, the angst of By versus B;;
(3) {A1,B1} <{A2,Ba};

(4) A; = A, and By = B, where all existential variables in A;(= A;) are solved in 'y but not in I;; or, the
same, swapping B; and B, for A; and A,.
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Definition 15 (Ordering of typing judgments). Given /1 =T F e; /4 C; 4 T{and 7o =T F ez /4
C, - Ty, we define J7 < 7> by the lexicographic ordering of:

(1) e7 and e, (subterm ordering);
(2) the directions, considering {} smaller than |};

(3a) If both are checking judgments:

@ Ci =2Cy;
(ii) 'y =T, and C; has less angst then C;; or

(iii) all existential variables in C;(= C5) are solved in I'; but not in I
(3b) If both are synthesis judgments:

(i) the number of hints in I'{ versus I';; if equal,
(i) C2 = Cy;

(iii) C; has less angst with respect to I'; than C; with respect to T7.

Theorem 16 (Decidability of SubtypingA and Contextual Matching). Given T, A, and B, the existence of T’
such thatT + A < B - I’ in System Bi” is decidable.
Moreover, given Iy, Ao and T, the existence of A such that ('  Ay) < (I' = A) is decidable.

Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclu-
sion. We also note that in each rule, we have enough information to apply the induction hypothesis for each
premise.

VL-hint<’s premise is smaller by part (1) of Definition [T4]

In ExSubstL.< and ExSubstR<, use part (2).

In VL&< (converting & to ), —< and VRS, use part (3).

In —&L< and —aRS, use part (4).

The rules 1<, aRefl<, aRefl<, a~LS, *™R< have no interesting premises.

For contextual matching, the rule empty-o has no premises, while the length of I} is reduced by every
other rule in Figure[6l O

Theorem 17 (Decidability of Typing).
(i) GivenT, e, and C, it is decidable whether there exists I’ such thatT' + e | C 4 T".
(ii) Given T and e it is decidable whether there exist '’ and C such thatT + e C - T".

Proof. We show that the premises of each rule are smaller, under the defined partial order, than the conclu-
sion. We also note that in each rule, we have enough information to apply the induction hypothesis for each
premise. For example, in —E, we have e = eje,, giving us an e; for —»FE’s synthesizing premise; applying the
i.h. there gives a type for the second, checking, premise.

var and 1I have no premises.

By part (1), the premises of anno, —I, —E, hint, »Ex have a smaller term than the conclusion.

sub’s first premise is smaller by part (2); the second premise is decidable by Theorem

VE-hint’s premise is smaller by part (3b)(i). Contextual matching is decidable by Theorem [16]

VI’s premise is smaller by part (3a) (i); VEX’s premise is smaller by part (3b) (ii).

ExSubst|’s premise is smaller by part (3a) (ii); ExSubst{}’s, by part (3b) (iii).

—Ia’s premise is smaller by part (3a) (iii). O
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Theorem 18 (Soundness of System Bia). IfT = J 4 T and Q completes T'' then [Q]I'" + [Q]7’, where
J' is J with any hint ... in e subterms replaced by e and hints in annotations removed.

Proof. Since Q completes I'’, we have O D I'": any variable « that is solved in '’ is also solved, and has the
same solution, in Q). Moreover, it follows from Lemma [I3]that " D T. Since D is a transitive relation, any &
solved in T is solved and has the same solution in Q.

When applying the IH, we must ensure that the Q and I'’ we apply the IH with are in sync. For example, in
the case for VI the output context in the subderivation is ', , '’z while the output context for the derivation
is I'". The given Q completes I'’, not I'’, &, 'z, so it must be extended as follows: Add solutions in I'; to Q;
for unsolved variables E, choose any well-formed type B—1 is the easiest choice since it has no free type
variables and is thus well-formed in every context—and add B=B to Q. This works because VI strips out all
the declarations in 'z, so ﬁ is about to leave this world unsolved, and therefore unconstrained.

In the VEx case, the IH gives [Q]l" - e { V. [Q]JA. Since Q is solved, a=A’ € Q, and by Lemma [12]
I' = A’ wf. By Corollary [10], [QIl' = [Q]JA’ wf. By VE, [QIT e { [[QJA’/x]([Q]JA). By a property of
substitutions, [[QJA’/x]([Q]JA) = [Q][A’/«]A, giving the result.

In the ExSubst| case, the IH yields [Q]I" + e | [Q]I'(«); the variable & cannot be free in I'(&), and we
earlier noted that Q(x) = I'(a), so in fact [Q]l'(&) = [Q]Q(x) = [Q]&, giving the result. ExSubstf and
ExSubst{L,R} < are similar.

In the —Ix case, the IH gives [Q, x:([Qla7) F ep | [Qlas. By =1, [QIT F Ax.eo | ([Qla7) — ([Qlaz).
The declaration X=x; — &> is in T, so by Lemma [I3]it is also in Q. Thus, we have ... || [Q]&, which was to
be shown.

In the *”L< case, we have (x=B) € I'". want [Q]T F [Q]x < [Q]B. By Lemma[I3] (&=B) € Q, so
[Q]a = [Q]B. The result follows by reflexivity of <. The x=R< case is symmetric.

The —alL<, —aR< cases use similar reasoning as the —Ix case.

The remaining cases are straightforward. O
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Figure 14: Corresponding derivations in System Bi (above) and System Bi* (below)

Stipulating that certain occurrences of 1 — int in the middle and right of the derivation do in fact flow
from the occurrence of 1 — int on the left, the System Bi® derivation should look like the one at the bottom
of Figure where I, =T, &7, &2, =01 — 3. For the various judgments I'/ F ... 4 T in the System Bi%
derivation, the contexts '/ and I'; don’t disagree with Q; they may say less—for example, just after we create
« on the left there is no information about x—but they don’t contradict it.

Theorem 21 (Predicative Completeness). For any Q and I'| and predicative derivation D = T + [Q]J in
System Bi, provided that
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(1) Q is predicative (for any «, the type Q(&) is monomorphic) and articulated
(2) Q completes Ty, and [Q]l'{ =T

then QI F [QJA’<[QB’ = T/ FA'<B 4T

QI - el [QJA’ = I{FelA 4T,

[QIry FefC = I FefC 4TIy
for some C’ such that
C = [Q]C’

Proof. By induction on D.

Assuming the given types [Q]A’, etc. are well-formed, by Lemma [I1] the types A’, etc. are well-formed
under T'{. But the type C in the synthesis judgment is well-formed under I', while the type C’ in the conse-
quent of the theorem is well-formed under I';—and not necessarily under I'y, as I'; may contain existential
type variables that I'{ does not.

FrEBi<A; T FAZ<B,

e Case —<: |D: '-A; —A; <B; =B
—_————  ——
[QIA’ [Q]B’

We know that [QJA’ = Ay — A,. Either {—A’ case} A’ = A} — Aj (so [QJA' = [Q]A] — [QJAS =
A7 — Ay) or {aA’ case} A’ = « (so [QJA’ = [Q]a). Similarly, we distinguish {—B’ case} and
{BB’ case} depending on whether B’ is B{ — B or 3. (Note that possibly f = &.)

- {—A’ and —B’ case}:
Mk B/ <A AT By IH
Mk A, <B, HTY By IH
M Al5A,<B| =B, 4T By—<
- {&A’ and —B’ case}:
IMF A} = A <B] —B5 4T3 Aspreceding case
If I' includes a solution for &, then:
w [/ F &x=B;—B) AT ByExSubstL<
Otherwise, I'{ does not include a solution for .
* Q(a) = [QJA’ = A7 — A, must have the form &7 — &3, because Q is predicative and

articulated. We assumed that I'[ does not include a solution for &, so I'{ = I',&, k. Let
rJr = FL) &T) &E) &:&T_)&E) Ir.

My b B <a 4w ByIHonT F By < A;,
taking I, o7, 02, x=0t; —x; as Iy
Mm b o <B) 4T By IH
My Foag—a<B;—=B) 4TI, By—<
It Fax<B; =B, 4Ty By ExSubstL<
w [ Fa<B;—B, 4Ty By —aLs

— {—A’and BB’ case}: Symmetric to the {&A’ and —B’ case}.

- {&A’ and BB’ case}: If either & or p is solved in I/, then the solution in '] has an — at its head
(since the solution in Q does). Using suitably articulated contexts, use the IH, then use ExSubst
and —aL< or —aRE as needed.

If neither is solved and & = E, then the result follows by aRefl<.



Otherwise, neither is solved and & # E So add a solution for whichever of & and E is declared
last in I';. Suppose without loss of generality that I'| =T, &, I'c, B, k.

M+ &<p HM,ale,f=& By & RS

e Case qRefl<: |D: TH al«

We have « = [Q]JA’ = [Q]B’. The types A’ and B’ can each be « or various existential variables.
If A’ =B’ = «, the result follows by aRefl<, giving I'{ F o« < o0 4 TY.

If A’ = o and B’ is some solved B, the result follows by aReflS, yielding I/ + « < o + TY then
ExSubstR< for I F « < B 4 TY.

If B is unsolved: B is well-formed in I/, so I =T, B,Tx. Applying &~ R< gives I, B, Tk - o < B
I, B=o, Ir. Let Ty =T, f=«, k. Substituting gives I} - « < 3 4 I';, which was to be shown.

The subcases where B’ = « and A’ is some solved B are symmetric to the last two.
If A’ =7 and B’ = B, first apply aRefl<, then:

If both are solved in '], apply ExSubstL< then ExSubstR<.
If only v is solved, apply ExSubstL< then x~R<.

If only B is solved, apply ExSubstR< then a~L< (symmetric to the last).

If neither is solved: Both ¥ and [5 are well-formed under F1 Either ¥ comes first or [3 comes first.
Suppose {3 comes first. Then a=L< gives T} F Y < [3 H...,a= (3,

e Case 1=<: Similar to the previous case, using 1= in place of xRefl<.

F [C/x]Ag £ B ' Cwf

e CaseVLS: |D: N'EVa.Ag S B
~—— ~~—
QA7 [Q]BY
We know that [QJA’ = Vo Ag. Either {VA' case} A’ = Va. Aj, so [QJA’ = Va. [QJA], or {VA case}
A’ =% s0 [Q]y = V. ..., which is impossible by the assumption that Q is predicative.
- {VA’ case}:
Choose a fresh «. Let Q' = Q, Artic(a=C).
Ao = [QJA] Above
[C/x]Ay = [C/xl[Q]JA] Applying [C/«] to both sides
= [Q([C/x]A}) Permutation (no ex. vars. in C)
= [Q)([C/a][x/x]Af) « fresh
= [Q, Artlc(oc C)l[a/x]Ay  Definitions of articulation and substitution
= [Q'[a/a]A} Definition of Q' above

Therefore [C/a]Ao = [Q']([a/x]A{), and we can apply the IH:
I,a F [a/x]Ay < B’ 4 Tk By IHwith Q'
k=0, al...1,Tz [&/a] A} well-formed under T, so @ € dom(I'k)
s T/ FVa.A’<B 4T/  ByVLa<
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LB FAZBy

e Case VR<: |D: TF A <VB. B,
~— T ,

[Q]JA [QIB’

We know that [Q]B’ = Vf3. By. Either {VB’ case} B’ = V3. B} (so [Q]B’ = V. [Q]B}) or {yB case}
B’ =7.

- {VB’ case}:
MBF A <B 4Ty By IH
ry =T5,B,Tz By Iy’ =T (follows from Lemma [13)
= /- A’<VR.B, 4T} ByVRS
- {YB’ case}:

Applying Q to B’ = ¥ gives [Q]B’ = [Q]y, which is equal to Q(y). But since [Q]B’ = Vp. By,
we have Q(y) = Vp. By, which contradicts our assumption that Q) is predicative: this case is
impossible.

MNx)=A
e Casevar: |D: TEHFxNA

I' = [Q]I]. Therefore I'(x) = [Q](I{(x)). So I'{(x) = A’ where [QJA’ = A. The result, I'{ F x A’
I/, follows by var.

'-efB ''-B<A
Casesub: |D: 'Fel A

ByIH, I/ - e ft B’ 4 Ty where [Q]B’ = B. We have [QJA’ = A. ByIH,'m + B’ £ A’ 4 T,. The
result follows by sub.

N < (THA) el A
Case anno: |D: ' (e:N)TA

The result follows by the IH and anno. (The < premise of anno in System Bi* does not involve exis-
tential contexts; see Section[3.2.11)

RXZA] Fe U, Az
Case —I: |D: TFAx.el Ay — Ay

——
[QJA’
fA ' =A] - Aé(with [QJA] = A; and [Q]JA)} = A,): The IH gives I'/,x:A] F e |l A, 4 'm. By
Lemmal[5] Th = I7; then, by Lemmal6] 'y = Iy, x:Af, Tr. Applying —I gives '] - Ax.e |} Aj — A} H
I';, which was to be shown.

Otherwise, A’ = & and Q(&) = &7 — &, where A7 = [Q]og and A, = [Q]x;.

— {solved case}: « solved in I'; since I is articulated, x=0; — &, € T;.
M,xwoq F el ag 4 Ty,xa7,lk  ByIH
Mk Ax.ela—a; 4T By—l
- M Axela Ty By ExSubst |/
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- {not-solved case}: « not solved in I'/: decompose I into I'11, &, I'>.
F1 1y X1y X2y X=X1— X2, r12,X:OC1 e lL X2 - r[_, X1y, X2y X=X1— (X2, r]z,X:OC1 y FR By IH
M1, a7, 00, =00 — &2, 12 - Ax.el &7 — o - Ty, 9,02, d=x71—03,l12 By —I

rn,&\],&z,&:&?%&z,nz = 7\X.€lL x - FL,EG,&\Z,&:&TH&E,F]Z By ExSubstiL
= Fn,&,ﬂz F Ax.eiL& = FL,&T,&},&:&TH&E By —>I&

Fr-eisfB=A TFe|B
Case —E: |D:: ' e ezﬂ\A/
[Q]AY
ByIH, ]  e; f+ C’ - Ty where [Q]C’' =B — A.
IfC'=B’— A’ then [Q]B’ =B and [QJA’ = A. By IH, 'y + ez | B’ 4 Tj. The result is by —E.

Otherwise, C' = & and Q(&) = &7 — &>. Since [Q]C’ =B — A, we have [Q]a; = B and [Q]x; = A.
The type C’ must be well-formed under '/ and under 'y, so & must be defined within those contexts:

I’{ = rn,&, F12 and FM = FL,&, FR

Therefore the IH really gave us ', &, T2 = e @ o I't, &, k. Applying the IHto " + e, | B, with
input context I, &7, &, k=07 — &2, [k yields

e~ _ ,
I, aq, 0, a=x1—o0, R Fex o 4T,

—Ea gives Iy, , T2 F ejex f az - Ty, which is the same as I'] + eje, 1 &2 - T'j, which was to be
shown.

Case 1I:  Since A = 1, either A’ = 1 and we just apply 11, or A’ = & where [Q]& = 1, in which case
the result follows by 1I and ExSubst|].

Dok el Ao
CaseVl: |D: T FelVa Ag
~——

[Q]AY

A’ is either Y. A} or B But if A’ = E then [Q}E = Va. Ap, violating the assumption that Q is
predicative. Therefore A’ = Va. Aj, and [QJA§ = Ao.
Myt el Ay 4T3,z BylH
= NkEelvVa. Ay AT, By VI

F'FefVa.Ag T F Bwf
Case VE: |D: I'F e B/aJAo

Extend Q) with the articulation of x=B, yielding Q’. By IH, I'/ - et A’ 4 T'; where [Q']A’ =Vo. Ao.
Since Q) is predicative, A’ must have the form Va. A§ where [QJA§ = Ao. By VEq,

M+ ef [&/alAy 4 Ty &

The context Q' includes the articulation of ®=B, so [Q]x = B. Then [Q][a/x]A{ = [B/«x]A. O



