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In functional programming languages, the classic form of annotation is a single type constraint on

a term. Intersection types add complications: a single term may have to be checked several times

against different types, in different contexts, requiring annotation with several types. Moreover, it is

useful (in some systems, necessary) to indicate the context in which each such type is to be used.

This paper explores the technical design space of annotations in systems with intersection types.

Earlier work (Dunfield and Pfenning 2004) introduced contextual typing annotations, which we now

tease apart into more elementary mechanisms: a “right hand” annotation (the standard form), a “left

hand” annotation (the context in which a right-hand annotation is to be used), a merge that allows

for multiple annotations, and an existential binder for index variables. The most novel element is

the left-hand annotation, which guards terms (and right-hand annotations) with a judgment that must

follow from the current context.

1 Introduction

The origin of intersection lay in the analysis of the solvability of λ-terms; the key early result was that,

in a system with → and ∧, typeability and strong normalization coincide (Coppo et al. 1981). While

pure type assignment is thus undecidable for intersection types, systems that check types of lightly-

annotated programs, including systems based on bidirectional typechecking, have had some success.

But constructing a type-checking system from a type assignment system is not trivial. A key issue is the

design of the annotations. The classic annotation form (e :A), which merely marks a term with a single

type, fails in intersection type systems that must check the same term several times, in different contexts.

Furthermore, in systems with indexed types, we run into problems with the scope of index variables;

the simple mechanism of a term-level binder fails, because intersections can be formed from types with

different numbers of quantifiers.

For guidance, we can look to logic and the form of hypothetical judgments: in Γ ⊢ ∆ we have, on the

left, assumptions Γ (implicitly conjoined, because we wish to make several assumptions, each definite);

on the right, we have conclusion ∆. In the sequent calculus (Gentzen 1969), the conclusion is plural and

implicitly disjoined: from a conjunction of assumptions, we conclude a disjunction of conclusions. This

conforms to the internal duality of the sequent calculus.

The classic annotation form, e : A, seems to be “on the right”. It is an obligation that constrains the

type of e: “I insist that e have type A, and if you cannot satisfy this demand, typechecking should fail.”

(The term e might have some other type B, but unless B is a subtype of A the demand is not met. Also, in

typecheckers that backtrack, like the intersection-type checkers considered in this paper, the requirement

that “typechecking should fail” means that the particular typing subproblem fails—the program could

still typecheck.) Writing (e :A) does not correspond to having an assumption e :A, because that would

let us assume that e has type A, even if it should not have that type. Further evidence in support of

right-handedness is that several systems with intersection types allow lists of types in annotations, and

http://dx.doi.org/10.4204/EPTCS.121.3
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these lists are interpreted disjunctively, consistent with the sequent calculus where lists of conclusions

are interpreted disjunctively.

If the classic annotation (e :A) is “on the right”, what form of annotation is “on the left”? It is hard

to imagine an annotation that is not an obligation, or does not contribute to an obligation (leaving aside

the sort of annotation that is an explicit direction to ignore truth and charge ahead, as with the admit of

Coq (Coquand et al. 2012) or the %trustme of Twelf (Pfenning et al. 2012)).

We can, however, distinguish annotations that carry an obligation with respect to the term on the

right of the turnstile, such as (e :A), from those that carry an obligation with respect to the assumptions

on the left of the turnstile. Writing such a “left-hand” annotation says, “I insist on something about the

assumptions you have when you type this term, and if you cannot satisfy me, give up.” Since the point

of an assumption is to help conclude things, the “something about the assumptions” should be about

what those assumptions entail. The most direct entailment is the use of a hypothesis: if Γ = {Γ1, . . . , Γn}

then Γ ⊢ Γk for 1 ≤ k ≤ n, suggesting that we should be able to write part of a context as a left-hand

annotation.

The last piece of the puzzle is a way of writing more than one (right-hand) annotation. It suffices to

support a well-behaved special case of the unruly merge construct (Dunfield 2012).

Contents We start by giving an overview of annotations in intersection type systems (Section 2), then

describe a language whose most notable features are the left-hand guard annotation (Section 3) and a

merge construct (Section 4). Next, we extend that language with indexed types (Section 5); the presence

of index variables leads us to another construct (an existential binder for index variables). In Section 6,

we show that the features of the extended language—left- and right-hand annotations, plus the merge

construct and the existential binder—collectively subsume the contextual typing annotations developed

in earlier work (Dunfield and Pfenning 2004), replacing one complicated construct with several simpler

ones. Section 7 compares our approach to contextual modal types. Finally, we briefly discuss a prototype

implementation (Section 8) and speculate on the usability of the approach (Section 9).

2 Overview

For languages based on the ordinary λ-calculus, the usual form of annotation is a single type, either

around a term (e : A) or on a bound variable (λx : A.e). In such languages, the single type corresponds

to typing: exactly one subderivation types each subterm e.

In languages with intersection types, the introduction rule for intersection replicates the same term

in each premise:

D1

Γ ⊢ e :A1

D2

Γ ⊢ e :A2

Γ ⊢ e :A1 ∧A2

∧I

Both D1 and D2 have as conclusion a typing for e; in general, neither Ak is a subtype of the other.

In general, we need both derivations because the differences between A1 and A2 can lead to structural

differences in D1 and D2, and even in the contexts used inside D1 and D2.

Assume a subtyping system in which the type bits of bitstrings is refined by odd and even, denoting

bitstrings of odd and even parity (having an odd or even number of 1s). Appending a 1 (written x · 1)

should flip the parity, so

(λx.x ·1) : (odd→ even)∧ (even→ odd)
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In the typing derivation, we assume x : odd inside the first branch of ∧I and x : even inside the second:

x : odd ⊢ x ·1 : even

· ⊢ (λx.x ·1) : (odd→ even)

x : even ⊢ x ·1 : odd

· ⊢ (λx.x ·1) : (even→ odd)

· ⊢ (λx.x ·1) : (odd→ even)∧ (even→ odd)
∧I

This function λx.x · 1 is very simple; assuming the goal type (odd→ even) ∧ (even→ odd) is already

known, any reasonable typechecker should handle it without annotations inside the function body. But

more complicated code might require internal annotation. Anyway, programmers should be able to write

unnecessary annotations if they want to.

Here, there is no single type we can write for the use of x in x ·1: in the left side of the derivation, x

has type odd, and in the right side, x has type even. To handle this issue, several systems with intersection

types allow lists of types in annotations: Forsythe (Reynolds 1988, 1996) and Pierce (1991, p. 21) allow

λ arguments to be annotated with a sequence of types: λx : odd|even.x · 1; the refinement typechecker

SML-CIDRE (Davies 2005) allows terms to be annotated with lists of types, so we could write λx.(x :

odd,even) ·1.

Intersection type inference is undecidable, but even intersection type checking is PSPACE-hard. Un-

fortunately, unlike Hindley-Milner inference, which is intractable in theory but polynomial in practice,

intersection typechecking is expensive in practice (Dunfield 2007a). A system should, therefore, give the

user a rich set of tools—such as annotations—to help make typechecking practical.

Finally, in systems with indexed types and index-level variables, we need to resolve a conflict be-

tween orderly variable scoping and intersection types.

Earlier work (Dunfield and Pfenning 2004) described a contextual typing annotation that combined

several features:

• contextuality, guarding the type in the annotation with the context in which it makes sense;

• multiplicity, allowing more than one typing to be given, corresponding to different branches of

intersection;

• index variable linking, maintaining index variable scoping even with intersection types.

We now recast the contextual typing annotation, separating it into constituent mechanisms that col-

lectively subsume it. For contextuality, we introduce a guard construct. For multiplicity, we use a merge

construct (Dunfield 2012). For index variable linking, we propose an existential binder.

3 A Language with Guard Annotations

We’ll use a small functional language with intersection types, a merge construct, and two kinds of anno-

tations (Figure 1).

3.1 Bidirectional Typechecking

Our type system is bidirectional (Pierce and Turner 2000; Dunfield and Pfenning 2004; Dunfield 2009);

see Dunfield (2009) for background. This technique offers two major benefits over Damas-Milner type

inference: it works when annotation-free inference is undecidable, and it produces more localized error

messages. Unlike constraint-based type inference, bidirectional typechecking does not inherently require
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Types A,B,C ::= unit |A→ B |A∧ B

Terms e ::= x | () | λx.e | e1 e2
| (e:A) standard (“right-hand”) annotation

| d >:> e guard (“left-hand”) annotation

| e1 ,, e2 merge

Declarations d ::= x :A

Contexts Γ ::= · | Γ,d

Figure 1: Types, terms, declarations and contexts

unification, nor the generation or manipulation of any constraints. The basic idea of bidirectional type-

checking is to separate checking of a term against a known type from synthesis of an unknown type:

Γ ⊢ e⇐A means that e checks against known type A, while Γ ⊢ e⇒A means that e synthesizes type

A. In the checking judgment, Γ , e and A are inputs to the typing algorithm. In the synthesis judgment,

Γ and e are inputs and A is output. As usual, declarations of the form x : A are added to Γ through

→-introduction (rule →I); unlike in the Damas-Milner framework, the type added is not a unification

variable but a closed type. In →I, the type A comes from the type A→B that the λ-expression is checked

against.

Bidirectional typechecking does need more type annotations than type inference. However, by fol-

lowing the approach of Dunfield and Pfenning (2004)—checking introduction forms (like λx.e) and

synthesizing the types of elimination forms (like e1 e2)—annotations are required only on redexes like

(λx.e1)e2 and recursive function declarations. The need for annotations is thus predictable; variations

and refinements of this basic approach (such as trying to synthesize the types of introduction forms) can

further reduce the volume of annotations.

While we omit parametric polymorphism from this paper to focus on issues specific to intersection

types, it is straightforward to support parametric polymorphism, if type abstraction and application are

explicit: given e : ∀α.B, write e[A] to instantiate α at A. Such explicit instantiation is very inconvenient

for the programmer. It is possible, but not entirely straightforward, to extend bidirectional typechecking

with a form of existential type variable Dunfield (2009). This algorithm removes the need for explicit

instantiation, yet does not use unification, relying instead on a form of matching.

3.2 Merging

If either e1 or e2 has type A, then the merge e1 ,, e2 has type A. This construct first appeared in

Forsythe (Reynolds 1996). Used in full generality (Dunfield 2012), the merge can encode a variety

of type system features, requires an elaboration-based semantics, and leads to ambiguity if e1 and e2
have different operational behaviour. In the present setting, the purpose of the merge is just to let us

annotate the same term in different ways. Used in this restricted fashion, erasing annotations from e1
and e2 yields the same term; thus, e1 and e2 have the same operational behaviour. We discuss this point

further in Section 4.

Since the merge is neither an introduction nor an elimination form, we can give a synthesizing rule

in addition to a checking rule; see Figure 2.

Using a merge, the example λx.x ·1 from the introduction can be annotated as follows:

λx. (x ·1 : even) ,, (x ·1 : odd)
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Subtyping

Γ ⊢ A≤A
refl≤

Γ ⊢ B1 ≤A1 Γ ⊢ A2 ≤ B2

Γ ⊢ A1 →A2 ≤ B1 → B2

→≤

Γ ⊢ Ak ≤ B

Γ ⊢ A1 ∧A2 ≤ B
∧Lk≤

Γ ⊢ A≤ B1 Γ ⊢ A≤ B2

Γ ⊢ A≤ B1 ∧ B2

∧R≤

Variables, unit, →

Γ1,x :A,Γ2 ⊢ x⇒A
var

Γ ⊢ ()⇐ unit
unitI

Γ,x :A ⊢ e⇐ B

Γ ⊢ λx.e⇐A→ B
→I

Γ ⊢ e1 ⇒A→ B Γ ⊢ e2 ⇐A

Γ ⊢ e1 e2 ⇒ B
→E

Intersection, subsumption, merge

Γ ⊢ e⇐A1 Γ ⊢ e⇐A2

Γ ⊢ e⇐A1 ∧A2

∧I
Γ ⊢ e⇒A1 ∧A2

Γ ⊢ e⇒Ak

∧Ek

Γ ⊢ e⇒A Γ ⊢ A≤ B

Γ ⊢ e⇐ B
sub

Γ ⊢ ek ⇐A

Γ ⊢ e1 ,, e2 ⇐A
merge⇐k

Γ ⊢ ek ⇒A

Γ ⊢ e1 ,, e2 ⇒A
merge⇒k

Annotations
Γ ⊢ e⇐A

Γ ⊢ (e:A)⇒A
right-anno

Γ ⊢ x⇐A Γ ⊢ e⇐ B

Γ ⊢ x :A >:> e⇐ B
left-anno⇐

Γ ⊢ x⇐A Γ ⊢ e⇒ B

Γ ⊢ x :A >:> e⇒ B
left-anno⇒

Figure 2: Subtyping and typing rules

so it checks against (odd→ even)∧ (even→ odd).

3.3 Guard Annotations

Checking a function against intersection type leads to the function body being checked several times

against different return types, and even under varying typings of the function’s argument. The latter

motivates guards. A guard d >:> e protects a term e (say, the body of a function) with a declaration, so

that the current typing context Γ must support the guarding declaration d. For variable declarations x :A,

this amounts to Γ ⊢ x⇐A.

We have both synthesis and checking typing rules for guards, ensuring that guards can be placed

anywhere the user chooses.

Using guards, we can annotate the example λx.x ·1 so that the choice of branch is fully determined:

λx.
(

x : odd >:> (x ·1 : even)
)

,,
(

x : even >:> (x ·1 : odd)
)
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3.4 Free Annotation

Given a term e that can be typed with the bidirectional rules—that is, a term that already has enough

annotations for the typechecker—the user can freely choose to put in more annotations, either right-

hand annotations or guards. If different annotations are needed in the subderivations of ∧I, the user can

duplicate the term with a merge.

4 Operational Semantics of Annotations and Merges

We are working with a bidirectional type system. For such a system, the easiest way to translate the usual

notions of preservation and progress is to give an equivalent type assignment system. That is, we want

rules deriving Γ ⊢ e :A such that:

(1) if Γ ⊢ e⇐A, then Γ ⊢ e :A;

(2) if Γ ⊢ e⇒A, then Γ ⊢ e :A.

To show equivalence, we would also need to consider the other direction: given some Γ ⊢ e : A,

can we derive appropriate bidirectional judgments? We need not answer this question to describe the

operational semantics; see Dunfield and Pfenning (2004) for one answer.

4.1 Left- and Right-Hand Annotations

For standard and guard annotations, we can give a small-step operational semantics, but we have a choice

of approaches. The first approach—standard in typed functional languages—is to erase the annotations,

so that the operational semantics does not mention them at all. In this approach, we define an erasure

function |e|:

|x| = x

|()| = ()

|λx.e| = λx. |e|

|e1 e2| = |e1| |e2|

|(e:A)| = |e|

|d >:> e| = |e|

The typing rules for left- and right-hand annotations have premises typing the inner expression e, so this

erasure function clearly preserves types. Since (e:A) and d >:> e get erased, they need no reduction

rules.

The second approach is to extend the definition of values:

v ::= x | λx.e | (v:A) | d >:> v

and give reduction rules that drop the annotations.

(e:A) 7→ e d >:> e 7→ e

As just noted, the typing rules for these constructs have premises typing e, so we can readily extend an

existing proof of type preservation to handle these new reduction rules. Moreover, progress is maintained:

if (e:A) is well-typed and not a value, then e is not a value, and we can use the induction hypothesis

on the premise typing e to show that e, which (e:A) steps to, is well-typed.
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4.2 Merges

We still have to deal with the merge construct. In this paper, we are interested in merges only as an

annotation mechanism; merges e1 ,, e2 used for that purpose must have similar branches e1 and e2. That

is, e1 and e2 are differently-annotated versions of some unannotated “parent” e. We can apply the first

approach—erasing annotations before evaluation—by extending the definition of erasure:

|e1 ,, e2| = |e1| if |e1|= |e2|

If merges are indeed always used purely as an annotation mechanism, the side condition will always

hold.

We can also try to apply the second approach of reducing annotations during evaluation, with reduc-

tion rules

e1 ,, e2 7→ e1 e1 ,, e2 7→ e2

These reduction rules introduce nondeterminism. If we continue to assume, however, that e1 and e2 are

differently-annotated versions of the same term, this nondeterminism is harmless: we will end up with

the same value, no matter which rule we apply. Thus, we could omit one of the preceding two reduction

rules, removing the nondeterminism.

4.3 Merges Without Restriction

Giving an operational semantics to arbitrary uses of merge, where e1 and e2 may be entirely different, is

more involved. Dunfield (2012) gives such a semantics in two parts. The first part is a system of reduction

rules, including the two above, for which the usual notions of preservation and progress fail to hold. The

second part is an elaboration (more involved than erasure) to target terms M, which are evaluated by

a completely standard operational semantics. This elaboration translates intersections to products (and

unions to sums); the elaborating version of ∧I generates a pair, and the elaborating versions of ∧Ek

generate projections.

The central result in that paper is that if e elaborates to M, evaluating the target term M produces a

value W such that there exists some sequence of reductions of e that yield an equivalent value v—one

such that v elaborates to W.

5 Extension to Indexed Types with Index Variables

The above constructs collectively yield annotations that work when terms are checked repeatedly under

different contexts. But this does not quite subsume contextual typing annotations (Dunfield and Pfenning

2004), which were designed in the setting of a system with indexed types as well as intersection (and

union) types, and treat index-level variables a, b differently from term-level variables (x, y, etc.).

After setting the stage with some background on indexed types, we look at two alternatives in lan-

guage design and show how our approach works for both; for one of the alternatives, one more language

construct is needed.
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Index variables a,b

Index sorts γ ::= int | · · ·

Index expressions i ::= a | · · ·

Index propositions P ::= i
.
= i | · · ·

Types A,B,C ::= · · · | τ(i) | Πa:γ.A

Declarations d ::= · · · | a : γ

Figure 3: Indexed types

5.1 Indexed Types

The kind of indexed types we consider here is exemplified by DML (Xi and Pfenning 1999; Xi 1998),

and some of its descendants (Dunfield and Pfenning 2003, 2004; Dunfield 2007b), which added several

features, most notably intersection and union types. In these systems, users can index datatypes with

index expressions from a constraint domain with decidable equality (at least). The canonical example of

such a domain is linear inequalities over integers; dimensions (metres, seconds, etc.) form another useful

domain (Dunfield 2007a).

In contrast to dependent types, indices do not appear in terms e (except within annotations) and

disappear completely during compilation; terms e can never appear in indices. Indexed type systems are

parametric in the index domain.

We mostly follow (Figure 3) the notation of Dunfield and Pfenning (2004). Index expressions i have

index sorts γ (e.g. int or dim); a and b are index-level variables standing for index expressions; P stands

for propositions over index expressions, such as equality
.
=. Types are extended with indexed datatypes

τ(i) (where τ is some inductive datatype list, tree, etc.) and universal quantification over index variables.

(The use of Π is traditional and, to readers used to dependent types, has the advantage of suggesting the

appropriate quantifier, with the disadvantage of being easily confused with a genuine dependent Π.) In

practice, we also need existential quantification Σa:γ.A, which we omit since it has no effect on the

techniques described in this paper.

We assume that the constraint domain defines when two kinds of judgments are derivable: Γ ⊢ P

(index assumptions in Γ entail index proposition P) and Γ ⊢ i : γ (index expression i, which might

include index variables declared in Γ , has index sort γ). The only mandatory syntax in an index domain

is
.
=, which is needed for subtyping. In practice, the index expressions i might include literal integers

and operations like i+ i; the index propositions would include comparisons like i < i.

Practical bidirectional typechecking with indexed types, unlike bidirectional typing for the language

in previous sections of this paper, does involve constraints. However, these constraints are just over

index expressions, not types, so the basic structure of the bidirectional approach need not change. For a

discussion of the techniques involved, see Xi (1998) and Dunfield (2007b).

5.2 Indexed Types Without Binders

The most syntactically economical formulation of indexed types does not extend the term syntax at all

(apart from the extension of the type language, which changes the syntax of annotations). Its subtyping

and typing rules are shown in Figure 4. Implicitly, we assume that ΠR≤ and ΠI rename the variable

introduced into the context if it already occurs in Γ .

Is that the end of the story? No. We have actually introduced a serious problem: What does it mean
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Γ ⊢ i1
.
= i2

Γ ⊢ τ(i1)≤ τ(i2)
iLR≤

Γ ⊢ i : γ Γ ⊢ [i/a]A≤ B

Γ ⊢ Πa:γ.A≤ B
ΠL≤

Γ,b : γ ⊢ A≤ B

Γ ⊢ A≤ Πb:γ.B
ΠR≤

Γ,a : γ ⊢ e⇐A

Γ ⊢ e⇐ Πa:γ.A
ΠI

Γ ⊢ e⇒ Πa:γ.A Γ ⊢ i : γ

Γ ⊢ e⇐ [i/a]A
ΠE

Figure 4: Subtyping and typing for indexed types (without term-level binders)

Γ ⊢ i : γ Γ ⊢ [i/b]e⇐A

Γ ⊢ some b : γ. e⇐A

Γ ⊢ i : γ Γ ⊢ [i/b]e⇒A

Γ ⊢ some b : γ. e⇒A

Figure 5: Typing for the some binder

to mention an index variable a in an annotation when there are no term-level binders? The only thing

that binds a is Π, and the scope of the binder Πa:γ.A is just A. And what if the implicit condition in

ΠR≤ and ΠI is triggered and we have to rename the variable? The user would be unable to refer to the

variable in annotations.

One way to solve this is to introduce an odd sort of binding construct, some a ′ : γ. e, which binds

its variable a ′ to some unwritten index expression—one chosen by the typechecker to make everything

work out. An example:

(

λx. . . .(some b : γ. x : list(b∗2) >:> e) . . .
)

⇐ Πa:int. list(a∗2)→ list(a)

Within the inner term e, we can write (right-hand) annotations that mention b: the typechecker chooses

b to be a, which satisfies the guard condition x⇐ list(b∗2).

The typing rules in Figure 5 substitute an index i for b in e, where i is well-sorted in the actual

context Γ . Thus, all annotations that mention b will be renamed so they make sense under Γ . These rules

do not require i to be a variable: the following code is acceptable, choosing i to be a∗2.

(

λx. . . .(some b : γ. x : list(b) >:> e) . . .
)

⇐ Πa:int. list(a∗2)→ list(a)

Non-renaming substitutions achieve a measure of robustness: the type being checked against can, in

some circumstances, change without requiring changes to internal annotations.

5.3 Indexed Types With Binders

Alternatively, we can have an explicit term-level introduction form for Πa:γ.A:

Γ,b : γ ⊢ e⇐A

Γ ⊢ Λb : γ. e⇐A
ΠI-explicit

Dunfield and Pfenning (2004) did not take this route, because typing would fail for intersections of

differently-quantified types. For example, the first conjunct of (Πa:γ.A → A ′) ∧ (B → B ′) can type

a term if it has a binder (for a), but the second conjunct cannot type a term with a binder (since B→ B ′

has no Π). With our merge construct, we can write the term twice, with and without a binder.
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(· ⊢ A) . (Γ ⊢ A)
.-empty

Γ ⊢ i : γ0 ([i/a]Γ0 ⊢ [i/a]A0) . (Γ ⊢ A)

(a:γ0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-ivar

Γ ⊢ Γ(x)≤ B0 (Γ0 ⊢ A0) . (Γ ⊢ A)

(x:B0, Γ0 ⊢ A0) . (Γ ⊢ A)
.-pvar

(Γ0 ⊢ A0) . (Γ ⊢ A) Γ ⊢ e⇐A

Γ ⊢ (e : . . . ,(Γ0 ⊢ A0), . . .)⇒A
ctx-anno

Figure 6: Rules for contextual typing annotations

trans(x) = x

trans(()) = ()

trans(λx.e) = λx. trans(e)

trans(e1 e2) = trans(e1) trans(e2)

trans(e : (Γ1⊢A1), . . . ,(Γn⊢An)) = trans(Γ1 ⊢ A1) ,, . . . ,, trans(Γn ⊢ An)

where trans(d1, . . . ,dn ⊢ A) = d1 >:> . . .dn >:> (trans(e):A)

Figure 7: Translating contextual typing annotations

5.4 Free Annotation Revisited

Whether we have some binders or Λ binders, we maintain the property mentioned in Section 3.4: the

user can always add an extra annotation if desired.

• If we have some, the user will need to add a some binder for any index variable mentioned in

annotations (left- and right-hand).

• If we have Λ and rule ΠI-explicit instead of ΠI, the user must already have put in the Λ forms, and

can refer to those bound index variables in annotations.

6 Comparison to Contextual Typing Annotations

We briefly review contextual typing annotations, introduced by Dunfield and Pfenning (2004). Such an

annotation has a list As of typings (Γ1 ⊢ A1, . . . , Γn ⊢ An). The typing rule ctx-anno (Figure 6) chooses

a typing Γ0 ⊢ A0 and then uses a contextual subtyping relation (Γ0 ⊢ A0) . (Γ ⊢ A), which is derivable

when Γ is at least as strong as Γ0, that is, when Γ satisfies all assumptions listed in Γ0. Declarations in

Γ0 thus should correspond to a sequence of guard annotations. Declarations of index variables in Γ0,

however, are treated differently: the rule .-ivar behaves like the typing rules for the some binder (Figure

5), effectively binding variables declared in Γ0 so they can be used in A0.

In hindsight, contextual typing annotations combine all the mechanisms in this paper—guard an-

notations, standard annotations, and merges: program variable declarations x : A in Γ0 correspond to a

sequence of guard annotations, the type A0 corresponds to a standard annotation, and the multiplicity of

typings corresponds to merges. Translating contextual typing annotations (Figure 7) preserves typing:

Theorem 1 (Encoding Contextual Typing Annotations).

If Γ ⊢ e⇐A (resp. ⇒) with rule ctx-anno available then Γ ⊢ trans(e ′)⇐A (resp. ⇒) without applying

rule ctx-anno.
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Proof. By induction on the derivation. All cases are straightforward except when ctx-anno concludes

the derivation.

In that case, apply the i.h. resulting in trans(e ′0). This application of ctx-anno uses one of the con-

textual typings, say (Γk ⊢ Ak) where Γk = d1, . . . ,dn; the kth branch of the merge created by trans(−)

is d1 >:> . . .dm >:> (trans(e ′0):A).

By rule right-anno, Γ ⊢ trans(e ′0)A⇒A.

By m applications of left-anno,

Γ ⊢ d1 >:> . . .dm >:> (trans(e ′0):A) ⇒ A

Finally, apply merge⇒ as needed to pick out the kth branch of the merge created by trans(−).

Given that we subsume contextual typing annotations, which approach should be preferred when

designing a language? It is hard to give a universal answer. Generally speaking, simpler constructs are

better than complicated ones, but fewer constructs are better than many. By the former criterion, the

mechanisms proposed in this paper win; by the latter, contextual typing annotations win. The particular

design setting matters: if we need some of these mechanisms already, their marginal cost is reduced.

This was the case in the work that directly inspired this paper, elaboration-based typing of intersections

and unions (Dunfield 2012), where the merge construct was already present.

7 Comparison to Contextual Types

There are several approaches to typing open code. In one such approach, contextual modal type the-

ory (Nanevski et al. 2008), the contextual type A[Ψ] represents data of type A closed under a context Ψ.

Providing a substitution for the variables in Ψ allows a term of type A[Ψ] to yield a term of type A[·],

closed under the empty context—that is, a closed term.

Contextual types appear to subsume both guard annotations and our use of merges. For example,

instead of the guard annotations in λx.
(

x : odd >:> (x ·1 : even)
)

,,
(

x : even >:> (x ·1 : odd)
)

we could

write

λx. let r=(y ·1) : even[y : odd]∧ odd[y : even] in

r[x/y]

Checking (y ·1) against the first conjunct of the (ordinary right-hand) annotation, even[y : odd], shows

that (y · 1) has type even when y is substituted with a value of type odd. The second conjunct is sym-

metric. In the body of the let, we plug in x. When we check the whole function against (odd→ even)∧

(even→ odd), the variable x will have type odd in one subderivation of ∧I, and type even in the other.

In each subderivation, using intersection elimination gives r a contextual type that can be eliminated by

substituting x for y.

Contextual types are versatile. For example, they enable us to lift the binding of r outside the func-

tion, and instantiate r with different concrete contexts (different substitutions for y : even) at several

program points. Extending typecheckers and compilers with such types, however, is nontrivial (Pientka

2008). Introducing contextual types just to support type annotations seems extravagant. If contextual

types are already available in a language, of course, it could make sense to encode the annotation mech-

anisms of this paper as contextual types, or for programmers to write contextual types directly.
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8 Implementation

Several of the ideas described above have been implemented in Stardust, a typechecker (and compiler)

for a small language in the Standard ML tradition. In addition to intersection types and indexed types,

Stardust supports union types, datasort refinements and parametric polymorphism.

The implementation, with some examples, can be downloaded from http://stardust.qc.com.

The syntax diverges slightly from the above presentation:

• the left-hand annotation d >:> e is written where d do e;

• type annotations can be given separately from their bindings; these annotations are similar to

contextual type annotations, but with the d >:> e syntax for variable typings;

• the some binder is (presently) only implemented for separate type annotations on bindings, not as

an ordinary expression form.

An early version of Stardust was described in Dunfield (2007a,b), but the current version adds a

number of important features, incorporating ideas from Dunfield (2009, 2012).

9 Usability

We briefly consider some practical issues around the usability of our annotation mechanisms.

The approach to bidirectional typechecking developed in Dunfield and Pfenning (2004) guarantees

that right-hand annotations are needed only at redexes (most commonly, recursive function declarations).

Once the user decides to add an annotation (whether strictly required for typechecking, or for the purpose

of documentation), the next step—of adding a merge with left-hand annotations (or perhaps a contextual

typing annotation)—is fully determined: if the term needs to have different types under different contexts,

the user must add a merge and left-hand annotations.

The overall size of the annotations is hard to characterize. Some examples of annotated programs can

be found in Xi (1998) for bidirectional typechecking with indexed types (but without intersections or con-

textual typings), Davies (2005) for bidirectional typechecking of refinement types and intersection types,

and Dunfield (2007b) for bidirectional typechecking of refinement types, indexed types, intersection and

union types. Our experience with our implementation is that for nontrivial uses of intersection and union

types, the performance of typechecking becomes highly problematic long before the annotations become

unacceptably long. It is difficult to see how truly complex annotations could be substantially reduced: if

the annotations are complex, it is probably because the program specification is nontrivial.
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