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A b s t r a c t  
Spacetime constraints are a new method for creating char- 
acter animation.  The animator  specifies what the char- 
acter has to do, for instance, "jump from here to there, 
clearing a hurdle in between;" how the motion should be 
performed, for instance "don't  waste energy," or "come 
down hard enough to splatter whatever you land on;" the 
character's physical structure--the geometry, mass, con- 
nectivity, etc. of the parts; and the physical resources, 
available to the character to accomplish the motion, for 
instance the character's muscles, a floor to push off from, 
etc. The requirements contained in this description, to- 
gether with Newton's laws, comprise a problem of con- 
strained optimization. The solution to this problem is a 
phyJically valid motion satisfying the "what" constraints 
and optimizing the "how" criteria. We present as exam- 
pies a Luxo lamp performing a variety of coordinated mo- 
tions. These realistic motions conform to such principles of 
t radit ional  animat ion as anticipation, squash-and-stretch, 
follow-through, and timing. 

K e y w o r d s  - -  Animation,  Constraints 

I. I n t r o d u c t i o n  
Computer  animat ion has made enormous strides in the 
past several years. In  particular, Pixar 's  Luzo, Jr. [13] 
marked a turn ing  point as perhaps the first computer- 
generated work to compete seriously with works of tra- 
ditional animat ion on every front. Key among the reasons 
for Luzo, .)'r. 's success is that  it was made by a talented 
animator  who adapted the principles of traditional anima- 
t ion to the computer medium. Luzo, Jr., in large measure, 
is a work of tradit ional  animat ion that happens to use a 
computer to render and to interpolate between keyframes. 
John Lasseter speUed this out clearly in his presentation to 
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Siggraph '87 [12]. Although £uzo, Jr. showed us that  the 
team of animator ,  keyframe system, and renderer can be 
a powerful one, the responsibility for defining the motion 
remains almost entirely with the animator.  

Some aspects of an imat ion--personal i ty  and appeal, 
for example---will surely be left to the animator 's  artistry 
and skill for a long time to come. However, many of the 
principles of animat ion are concerned with making the 
character's motion look real at a basic mechanical level 
that  ought to admit to formal physical t reatment.  Con- 
sider for example a jump exhibiting anticipation, squash- 
and-stretch, and follow-through. Any c rea tu re - -human  or 
l a m p - - c a n  only accelerate its own center of mass by push- 
ing on something else. In jumping,  the opportuni ty  to con- 
trol acceleration only exists during contact with the floor, 
because while airborne there is nothing to push on. Antici- 
pat ion prior to takeoff is the phase in which the needed mo- 
men tum is acquired by squashing then stretching to push 
off against the floor. Follow-through is the phase in which 
the momen tum on landing is absorbed. 

Such physical arguments make nice poJt hoe explana- 
tions, but  can physics be brought to bear  in creating the 
complex active motions of characters like Luxo? If so, how 
much of what we regard as "nice" motion follows directly 
from first principles, and how much is really a matter  of 
style and convention? 

This paper  presents a physically-based approach to 
character animat ion in which coordinated, active motion 
is created automatically by specifying: 

• What the character has to do, for instance "jump from 
here to there." 

• How the motion should be performed, for instance 
"don' t  waste energy," or "come down hard enough 
to splatter whatever you land on." 

• What  the character's physical structure i s - -what  the 
pieces are shaped llke, what they weigh, how they're 
connected, etc. 

• What  physical resources are available to the charac- 
ter to accomplish the desired motion, for instance the 
character's muscles (or whatever an animate lamp has 
in place of muscles,) a floor to push off from, etc. 

@ 1 9 8 8  ACM-0-89791-275-6/88/008/0159 $00.75 "Luxo" is a trademark of Jac Jacobsen Industries AS. 
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Our initial experiments with this approach have aimed 
at making a Luxo lamp execute a convincing jump just by 
telling it where to start mad where to end. The results 
we present in this paper show that such properties as an- 
ticipation, follow-through, squash-and-stretch, and timing 
indeed emerge from a bare description of the motion's pur- 
pose and the physical context in which it occurs. Moreover, 
simple changes to the goals of the motion or to the phys- 
ical model give rise to interesting variations on the basic 
motion. For example, doubling (or quadrupling) the mass 
of Luxo's base creates amusingly exaggerated motion in 
which the base 1oo~ heavy. 

OvLr method entails the numerical solution of laxge 
constrained optimization problems, for which a variety of 
standard algorithms exist. These algorithms, while rela- 
tively expensive, spend most of their time solving sparse 
linear systems, and are therefore amenable to accelera- 
tion by array processors and other commonly available 
hardware. The greatest difficulty arises not in comput- 
ing the numerical solution, but in setting up the intricate 
sparse matrix equations that drive the solution process. To 
address this problem we implemented an object-oriented 
symbolic algebra system that automates this difficult task 
almost entirely. We therefore believe the method described 
here can become a practical animation tool requiring no 
more mathematical sophistication of the end user than do 
current keyframlng systems. 

The remainder of the paper is organized as follows: 
the following section discusses the previous use of physical 
methods in animation. The spacetime method is then in- 
troduced using a moving particle as a toy example. Next, 
our extension of the method to complex problems is dis- 
cussed. Finally, the Luxo model and the results obtained 
with it are described. 

II.  B a c k g r o u n d  a n d  M o t i v a t i o n  

Recently, there has been considerable interest in incorpo- 
rating physics into animation using simulation methods. 
[10, 17, 18, 2, 16, 7, 9] The appeal of physical simulation 
as an animation technique lies in its promise to produce re- 
alistic motion automatically by applying the same physical 
laws that govern real objects' behavior. 

Unfortunately, the realism of simulation comes at the 
expense of control. Simulation methods solve initial value 
problems: the course of a simulation is completely deter- 
mined by the objects' initial positions and velocities, and 
by the forces applied to the objects along the way. An an- 
imator, however, is usually concerned as much with where 
the objects end up and how they get there as where they 
begin. Problems cast in this form are not initial value 
problems. For instance, while simulating a bouncing ball is 
easy enough, making the ball bounce to a particular place 
requires choosing just the right starting values for posi- 
tion, velocity, and spin• Making these choices manually is 
a painful matter of trial and error. Problems such as this 
one, in which both initial and final conditions are partially 

or completely constrained, are called two-point boundar!l 
problems, requiring more elaborate solution methods than 
forward simulation.[6] 

Character animation poses a still more difficult prob- 
lem. Animals move by using their muscles to exert forces 
that vary as a function of time. Calculating the motion by 
simulation is straightforward once these tlme-dependent 
force functions are known, but the difficult problem is to 
calculate force functions that achieve the goals of the mo- 
tion. Specifying these functions by hvaad would be hope- 
less, equivalent to making a robot move gracefuLly by man- 
ually varying its motor torques. 

In an effort to reconcile the advaaatages of simula- 
tion with the need for control, several researchers [2, 10] 
have proposed methods for blending positional constraints 
with dynamic simulations. The idea behind these meth- 
ods is to treat kinematic constraints as the consequences 
of unknown "constraint forces," solve for the forces, then 
add them into the simulation, exactly canceling that com- 
ponent of the applied forces that fights against the con- 
straints. 

Constraint force methods permit parts, such as a 
character's hands or feet, to be moved along predefined 
keyframed trajectories, but provide no help in defining 
the trajectories, which is the central problem in creat- 
ing character animation. While allowing a character to 
be dragged around manually like a marionette, constraint 
forces sidestep the central issue of deciding how the char- 
acter should move. 

These shortcomings led us to adopt a new formula- 
tion of the constraint problem, whose central characteris- 
tic is that we solve for the character's motion and time- 
varying muscle forces over the entire time interval of in- 
terest, rather than progressing sequentially through time. 
Because we extend the model through time as well as space, 
we call the formulation spacetim¢ constraints. 

The spacetime formulation permits the imposition of 
constraints throughout the time course of the motion, 
with the effects of constraints propagating freely back- 
ward as well as forward in time. Constraints on initial, 
final, or intermediate positions and velocities directly en- 
code the goal~ of the motion, while constraints limiting 
muscle forces or preventing interpenetration define prop- 
erties of the physical situation. Additionally, Newtouian 
physics provides a constraint relating the force and po- 
sition functions that must hold at every instant in time. 
Subject to these constraints we optimize functions that 
specify how the motion should be performed, in terms of 
efficiency, smoothness, etc. Solving this constrained opti- 
mization problem yields optimal, physically valid motion 
that achieves the goals specified by the animator. 

III .  A spacetlme particle 
As a gentle but concrete introduction to the spacetime 
method, this section describes a minimal example involv- 
ing a moving particle, influenced by gravity, and equipped 
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with a "jet engine" as a means  of locomotion.  W i t h  no 
res t r ic t ions  on the forces exer ted  by  its engine, the par t i -  
cle can move any way it likes. The p rob lem we formulate  
here is tha t  of making  the  par t ic le  fly from a given s ta r t -  
ing po in t  to a given des t ina t ion  in a fixed per iod  of t ime,  
with min imal  fuel consumpt ion.  This toy  p rob lem is too  
simple to  produce  any really in teres t ing mot ion,  bu t  i t  ex- 
hibi ts  all the  key e lements  of the  me thod ,  and  will a id  in 
under s t and ing  what  follows. 

A .  P r o b l e m  f o r m u l a t i o n  
Let the  par t ic le ' s  pos i t ion  as a funct ion of t ime be x ( t ) ,  
and  the t ime-vary ing  je t  force be  f ( t ) .  Suppose for sim- 
pl ic i ty  tha t  the  mass  of the fuel is negligible compared  to 
tha t  of the  par t ic le ,  so the  to ta l  mass  may  be t r ea t ed  as a 
cons tant ,  ra, wi th  a constant  g rav i ta t iona l  force rag.  Then  
the  parrticle's equat ion  of mot ion  is 

m ~ -  f -  m g  = 0, (1) 

where i is the second t ime derivat ive of posit ion.  Given 
the funct ion f ( t ) ,  and  ini t ia l  values for x and ± at  some 
t ime to, the  mot ion  x( t )  f rom to could be ob ta ined  by  
in tegra t ing  equat ion  1 to solve the  ini t ia l  value problem.  

Ins t ead  we wish to make  the par t ic le  fly from a known 
point  a to  a known poin t  b in a fixed per iod  of t ime.  Sup- 
pose for s implici ty  tha t  the  ra te  of fuel consumpt ion  is Ill z. 
In  tha t  case, we have const ra in ts  x( t0)  = a and x ( t l )  = b 
subject  to which 

R = I f ( t ) l  2 dt 

must  be minimized.  The  p rob lem then is to  find a force 
funct ion f ( t ) ,  defined on the interval  (t0, t l ) ,  such tha t  the  
posi t ion funct ion x ( t )  ob ta ined  by  solving equat ion I satis-  
fies the  b o u n d a r y  const ra ints ,  and  such tha t  the  objec t ive  
funct ion R is a const ra ined min imum.  

There  exist a var ie ty  of s t a n d a r d  approaches  to solv- 
ing problems  of this  form. Prevalent  in the  op t ima l  con- 
t rol  l i t e ra ture  are i t e ra t ive  methods  tha t  solve the  ini t ia l  
value p rob lem wi th in  each i te ra t ion ,  using the  equat ions 
of mot ion  to  ob ta in  the  posi t ion function from the force 
funct ion (see [15] for a good  survey.) We choose ins tead  to 
represent  the  funct ions x ( t )  and  f ( t )  independent ly .  The  
equat ion of mot ion  then  enters  as a cons t ra in t  tha t  re- 
la tes  the  two functions,  to  be satisfied along with  the  other  
const ra ints  dur ing the so]at ion process.  Each funct ion is 
discret ized,  t ha t  is, represented  as a sequence of values, 
wi th  t ime derivat ives  app rox ima ted  by  finite differences. 
This  approach  leads to  a classical p rob lem in const ra ined 
opt imiza t ion ,  for which a var ie ty  of s t anda rd  solut ion al- 
gor i thms  are available.  

Let the  discret ized functions x ( t )  and  f ( t )  be repre- 
sented by sequences of values xl and  fi, 0 < i < n, wi th  
h the  t ime interval  be tween samples.  To approx imate  the  
t ime derivatives of x ( t )  we use the finite difference formulas 

Xi = Xi - -  Xi--1 h (2) 

x i  = Xi+l -- 2 x i + x i - 1  
h~ (3) 

Subs t i tu t ing  these re la t ions into equat ion 1 gives n 
"physics cons t ra in ts"  re la t ing the  z i ' s  to the  f i ' s ,  

X i + l - - 2 x i + x i - l - - f i - - T n g = O  , l < i < n .  (4) 
Pl ---- ra h2 

In add i t ion  we have the two b o u n d a r y  constra ints  

Ca=Xl--a=O 

and  
C b = X n - - b = 0 .  

Assuming tha t  f ( t )  is constant  between samples,  the  ob- 
ject ive  funct ion R becomes a sum 

R = h ~  If~l' (5) 
i 

which is to  be minimized  subject  to the constra ints .  The  
discret ized ob jec t ive  and cons t ra in t  functions are now ex- 
pressed in te rms of the  x i ' s  and  the fi 's ,  which are  the  
independen t  variables to  he solved for. 

B. N u m e r i c a l  Solution 
From the s t andpo in t  of the numer ica l  solut ion process  it  is 
useful to  suppress  the  s t ruc ture  of tbe  pa r t i cu la r  problem,  
reducing it to  a canonical  form consist ing of a collection of 
scalar  independen t  variables S j ,  1 ~ j ~ n,  an objec t ive  
funct ion R(Sj) to  be minimized,  and  a collection of scalar  
constraint functions Ci(Sj), 1 < i < m, which must be 

driven to  zero. In  the  current  problem,  the  Sj's are the  
z, y,  aud  z components  of the  x i ' s  and  the  fi 's ,  while the  
Ci ' s  are  the  components  of the  p i ' s ,  ca,  and  cb. TypicMly, 
se t t ing up  the  Hnearlzed indices is the  responsibi l i ty  of a 
p rog ram tha t  keeps t r ack  of the  independent  variables and 
the cons t ra in t  functions.  

In  these te rms,  the  s t anda rd  cons t ra ined  opt imiza-  
t ion p rob lem is "F ind  S j  t ha t  minimizes  R(Sj) subject  
to Ci(Sj) = 0. For the  sake of modtdar i ty ,  the  humeri-  
cat me thod  tha t  solves the p rob lem is best  regarded as an 
object  t ha t  requests  answers to cer ta in  s t anda rd  questions 
about  the sys tem,  and  i te ra t ive ly  provides u p d a t e d  vMues 
for the  solut ion vector  Sj .  Any  m e t h o d  must  be pe rmi t t ed  
to request  the  values of R and C~ at  a given Sj .  In  addi-  
t ion,  most  effective me thods  require access to derivativeJ 
of R and  Ci wi th  respect  to  S j ,  in order  to move toward  a 
solution.  

The  solut ion me thod  we use is a variant  of Sequential  
Quadra t i c  P r o g r a m m i n g  (SQP) ,  descr ibed in de ta i l  in [6]. 
Essentially,  the  m e t h o d  computes  a second-order  Newton- 
Raphson  s tep in R, and  a f i rs t -order  Newton-Raphson  step 
in the  Ci ' s ,  and  combines the two steps by  pro jec t ing  the 
first onto  the  null  space of the  second ( tha t  is, onto the 
hyperplvme for which all the  Ci ' s  are constant  to first or- 
der.)  Because i t  is f i rs t -order  in the  const ra in t  functions 
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and second-order in the objective function, the method re- 
quires that we be able to compute two derivative matrices: 
the dacobian of the constraint functions, given by 

J q  = ~ ,  

and the Hessian of the objective function, 

O2 R 

In addition, the first derivative vector OR/OSj must be 
available. The SQP step is obtained by solving two linear 
systems in sequence. The first, 

OR 

J 

yields a step S$ that  minimizes a second-order approxima- 
tion to .R, without regard to the constraints. The second, 

J 

yields a step Sj that  drives linear approximations to the 
Ci's simultaneously to zero, and at the same time projects 
the optimization step Sj onto the null space of the con- 
straint Jacobian. The final update is AS s = S# + ~#. The 
algorithm reaches a fixed point when Ci = 0 and when any 
further decrease in R requires violating the constraints. 

C.  Linear system solving 
The choice of a method for solving these linear systems is 
critically important, because the matrices can be large. 
Although inverting a general n x n matrix is O(ns), 
the matrices arising in spacetime problems are nearly al- 
ways extremely sparse. Exploiting the sparsity is essen- 
tial to make the problem tractable. Moreover, over- and 
under-constrained systems, whose matrices are non-square 
and/or rank-deficient, can easily arise, in which case the 
inverse is undefined and the system cannot be solved. The 
latter problem is well treated by the pseudo-inverse [11, 7], 
which provides least-squares solutions to overconstrained 
problems, and minimal solutions to underconstrained ones. 
To compute the pseudo-inverse while exploiting random 
sparslty, we adapted a sparse conjugate gradient (CG) 
algorithm described in [14}, which is O(n z) for typical 
problems. The CG algorithm solves the matrix equation 
a = M b  by iteratively minimizing [ a -  Mb[  z, giving a 
least-squares solution to overconstrained problems. Pro- 
vided that a zero starting-point is given for b, the solution 
vector is restricted to the null-space complement of M.  

D .  Matrix evaluation. 
Applying the SQP algorithm to the moving particle exam- 
ple requires evaluation of the sparse derivative matrices, 

as well as the objective and constraint functions them- 
selves. Apart from the bookkeeping required for indexing, 
these evaluations are straightforward. The Jacobian of the 
physics constraint is given by 

Opi _ 2ra/h2 ' i - -  j 
Oxi 

= - m / h  2, i = j r k l  

= O, otherwise 
Opt 

= 1,  i = j  0fj 
= 0, otherwise. 

The Jacobians of the boundary constraints are trivial. The 
gradient of R is 

and the Hessian is 

0fi0fi 

OR 
= 2f,, 

= 2 ,  i = j  

= O, otherwise. 

Although it happens that  the toy problem we chose 
constrains initial and final positions, nothing in the solu- 
tion approach depends on this configuration: initial and 
final conditions could be left free, and constraints at arbi- 
t rary internal points could be  added. Moreover, arbitrary 
constraints of the form F(S~) = 0, not just position con- 
straints, may be added provided that  the constraint func- 
tions and their derivatives can be evaluated. 

IV .  E x t e n s i o n  to  c o m p l e x  m o d e l s  
In principle, the procedure described in the last section ex- 
tends to complex models, constraints, and objective func- 
tions. In practice, as the model grows more complex, the 
problem becomes prohibitively difficult. The difficulty lies 
not so much in calculating the numerical solution as in cre- 
ating code to evaluate the constraint and objective func- 
tions and their sparse derivatives, and in coercing the eval- 
uatlons into the form of a canonical constrained optimiza- 
tion. In particular, the required differentiations can lead to 
enormous algebraic expressions that are all but impossible 
to derive and code by hand. 

To make the method practical, we developed a lisp- 
based system that performs these difficult tasks automat- 
ically. The system consists of three principle elements: a 
specialized math compiler that performs symbolic differ- 
entiation and simplification of tensor forms, and generates 
optimized code to perform the evaluations; a runtime sys- 
tem that  allows the generated functions to be composed 
dynamically, automatically building the vectors and sparse 
matrices that drive the numerical solution; and an SQP 
solver. 

Because the mathematical  operations required to de- 
fine a new primitive object or constraint are highly styl- 
ized, it is possible to reduce the programmer's  job to a 
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simple cookbook procedure. Once the primitives are de- 
fined, a user with little or no knowledge of the underlying 
mathematics can wire them together dynamically to cre- 
ate animation. Although a full description is beyond the 
scope of this paper, this section briefly outlines the system 
and the operations it performs. 

A .  Funct ion  Boxes 
A function boz, the lowest level construct in the system, 
consists of a set of input quantities, which may be scalars, 
vectors, matrices, or higher-order re,sots, and a collection 
of output quantities each defined as a mathematical func- 
tion of the inputs. To define a function box, the program- 
mer specifies the inputs, the outputs, and the functions 
that relate them. The function definitions are mathemati- 
cal expressions that may include differentiations as well as 
algebraic operations. Non-scalar quantities are expressed 
and manipulated using index notation with the summation 
convention. For each output, the system performs sym- 
bolic differentiation as called for, simplifies the resulting 
expression, extracts common sub-expressions, and gener- 
ates an optimized lisp function that evaluates the output 
given the inputs. In addition, the system symbolically dif- 
ferentiates each output with respect to each input on which 
it depends, creates a lisp function to evaluate the deriva- 
tive, and analyzes its sparsity. These functions form the 
Jacobians of the outputs. The generated functions, input- 
output dependencies, spaxsities, etc., are recozded in a data 
structure accessible to the runtime system. 

B .  User  In te r face  
Once defined, function boxes are manipulated using a 
graphical interface in which they appear as literal boxes 
on the screen, with ports representing the input and out- 
put quantities.[5] The user may instaatiate boxes, con- 
necting the ports to form a graph whose ares represent 
function composition. In this way, complex systems are 
built dynamically by composing pre-compiled primitives. 
By default, input ports to which nothing has been con- 
nected axe treated as internal constants whose values may 
be inspected and modified interactively, and unconnected 
output ports are ignored. However, inputs may also be 
flagged by the user as state variables to be solved for, and 
outputs may be flagged either as constraints or as terms 
to be summed into the objective function. 

C .  R u n t i m e  Sys t em 
Once the graph representing the model has been con- 
structed, and the state-variables, constraints, and objec- 
tive terms declared, a pre-runtime computation is per- 
formed to set up the constrained optimization. The user- 
declared state vaxiables, constraints, and objective terms 
axe collected and indexed to form the quantities Sj, C~, 
and R required by the solver. The sparse derivatives 
are formed by propagation through the graph using the 
chain rule, with the individual Jacobian functions associ- 
ated with function boxes combined by a hierarchy of sparse 

matrix multiplications and additions. An optimal sequence 
of adds and multiplies is pre-computed for each sparse ma- 
trix operation, and the sparslty patterns of the resulting 
global matrices are also precomputed. Evaluation of Ci, R, 
and their derivatives, then proceeds by recursing through 
the graph, calling the individual value and 3acobian func- 
tions, and performing the sparse matrix operations. The 
solver communicates with the model by requesting these 
evaluations and updating the state vector. 

D .  Defining Objec ts  

~ullt on top of the basic system is a layer handling the 
specifics of physical object models, whose main job is to 
construct the object's equations of motion. In the case of 
the moving particle this just involved direct application of 
f = ma. However, deriving the equations of motion for 
more complicated objects can be difficult. 

We derive the equations automatically using La- 
granglan Dynamics [8], a classical cookbook procedure in 
which an expression for a body's kinetic energy is sub- 
jected to a series of symbolic differentiations. Lagrange's 
equations of motion are given by 

d 0T 0T 
~ ( ~ q )  -- qo"-- - q = 0, (6) 

where T is kinetic energy, q is a vector of generalized co- 
ordinates, and Q is a generalized force. The components 
of the generalized coordinates axe whatever variables con- 
trol the positions and orientations of parts of the body 
(e.g. translations, rotations, joint angles, etc.) The gen- 
eralized force is just the sum of ordinary forces applied to 
body, transformed into generalized coordinates. For point 
forces, this transformation is accomplished by multiplying 
the force vector by the Jacobin" of the point at which the 
force is applied with respect to q. 

To define an object, the user is required to supply ex- 
pressions for T, and for the coordinates of points on the 
body to which forces or constraints may be applied. Al- 
though T must be derived manually, this is a manageable 
job and need only be done once when a primitive object is 
defined. Given these expressions, automatic construction 
of a function box representing the objects is straightfor- 
ward: the kinetic energy expression is subjected to the 
rote symbolic differentiations called for in equation 6, with 
an additional derivative with respect to q used to define 
the 3acobian of the physics constraint. The expressions for 
material points are also differentiated with respect to q to 
create "force converter" functions, small Jacobin, matri- 
ces that map applied forces into generalized coordinates. 
The function box takes as inputs values for q, el, and/ t ,  
for applied forces, and for constants such as masses and di- 
mensions. It produces outputs for the "physics constraint" 
defined by the equations of motion, and for the positions 
and velocities of the material points defined by the user. 
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Figure  1: Luxo 
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E .  D i s c r e t i z e d  f u n c t i o n s  o f  t i m e  

In  developing the  par t ic le  example  of the  last  section, dis- 
cret ized funct ions represent ing forces and posi t ions  over 
t ime were incorpora ted  in to  the  equat ions  of mot ion  by di-. 
rect  subs t i tu t ion .  Given the  abi l i ty  to  compose functions 
and  the i r  sparse  Jacohians  au tomat ica l ly ,  we adop t e d  the 
a l t e rna t ive  of cons t ruc t ing  special ized funct ion boxes to 
represent  d iscre t ized functions.  These  boxes conta in  the  
sequence of values represent ing  the function,  and  o u t p u t  
the  values and the  t ime-der iva t ives  ob ta ined  using finite- 
difference formulas .  The  Jacobians  of these ou tpu t  func- 
t ions are t r iv ia l  cons tan t  d iagonal  or  banded  matr ices .  The  
values and  der ivat ives  are  connected to the  cor responding  
inputs  on the  ob jec t  model ,  causing the d iscre t iza t ion to 
be effected au toma t i ca l ly  at  runt ime.  

V. Space t ime  Luxo 
We axe now equ ipped  to proceed to  a space t ime model  of  
an an ima te  Luxo Lamp.  The  model  is composed  of  r/gid 
bodies  of uni form mass  connected  by  frictionless joints .  
Each jo in t  is equipped  wi th  a "muscle" m o d d e d  as an an- 
gular  spr ing whose stiffness and  rest  angle are free to  vary 
with  t ime.  The  l a m p  is subject  to  the  forces of  i ts own 
muscles,  in add i t ion  to  the  ex te rna l  force of  gravi ty  and 
the  contact  forces arising f rom i ts  in te rac t ion  with  objec ts  
such as floors and  ski jumps.  A pic ture  of  the  model  ap- 
pears  in F igure  1. In  our  ini t ia l  examples ,  Luxo 's  mot ion  is 
res t r i c ted  to  a plane.  This  expedient  simplifies the  mathe-  
mat ics ,  while still  al lowing the  crea t ion  of  complex,  subtle,  
and  in te res t ing  mot ion .  Extens ion of the  model  to three  
dimensions involves no fundamen ta l  difficulties, a l though 
i t  leads  to  systems t ha t  axe somewhat  laxger, somewhat  
slower, and  more  difficult to  debug. The  definit ion of  the  
model  consists of  less t han  a page of tensor  expressions,  
which e x p a n d  into  roughly  4000 lines of au tomat ica l ly  gen- 
e ra ted  lisp code. 

A .  K i n e t i c  E n e r g y  

As discussed in the  last  section, our  principle task in defin- 
ing the  mode l  was to  formula te  an expression for the  kinet ic  

F igure  2: Luxo 's  paxameters :  P0 is a t r ans la t ion ,  and  01 
is the  o r ien ta t ion  of the  i - t h  l ink .  Poin ts  P l - P 3  axe com- 
p u t e d  from these  pa ramete rs .  

energy, T. In  general ,  T is the  volume in tegra l  over the  
body  of the  kinet ic  energy of each paxticle,  1 ~p I±i z, where 
p is the  mass  dens i ty  at  poin t  =. The kinet ic  energy of an 
a r t i cu la ted  objec t  is the  sum of the  kinet ic  energies of the  
par t s .  Each  of Luxo 's  l inks is modeled  as a rigid body  ro- 
t a t ing  abou t  an axis of fixed direct ion t ha t  passes th rough  
the origin in b o d y  coordina tes  (see Figure  2.) Because the  
axis is fixed, the  o r ien ta t ion  of the  i - th  l ink m a y  be denoted  
by  a single angle 01, wi th  angular  veloci ty wi = 0 is ,  where 
a is a uni t  vector  in the  direct ion of the  axis. In  add i t ion  to  
ro ta t ion ,  the  b o d y  origin undergoes  a t r ans la t ion  Pl,  wi th  
t r ans la t iona l  veloci ty  v l  = d p i / d t .  Each  link has mass  ml ,  
a cons tant  moment  of  iner t ia  _ri about  the ro ta t ion  axis,  
and  a cen te r  of mass  ci expressed as a d isplacement  from 
the body  origin. In  these terms,  the  kinet ic  energy of  the  
i - th  link is 

1 1 [wilzZi. Ti = ~ m ,  Ivil 2 + m l w i  • Vi × Ci "1- (r) 

To connect the  links, each l ink inher i t s  as i ts  t r ans la t ion  
the  pos i t ion  of the  previous  Unk's endpoin t ,  wi th  the  base ' s  
t r ans la t ion ,  P ,  serving as a t r ans la t ion  paxameter  for the  
whole modal .  The  t r ans la t iona l  veloci ty v~ of the  i - th  l ink 
is thus  

Vi 
d P  

- -  i = 0  
dt  ' 

= Vi_ 1 + r i_  1 X Wi--l, otherwise 

where r i - 1  is a vec tor  from the  (i - 1)- th l ink 's  center  of 
ro t a t ion  to  i ts  poin t  of a t t a c hme n t  wi th  the  i - th  link. The  
to ta l  kinet ic  energy T is ob ta ined  by  recursively subs t i tu t -  
ing this expression in to  equa t ion  7 to ob ta in  the Ti 's ,  and  
summing  over i.  
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B .  M u s c l e s  

Luxo's muscles are three angular springs, one situated at 
each joint. The spring force on the joint connecting the 
i-th and (i + 1)-th links is defined by 

F~ = k~(¢~ - p~), 

where ki is the stiffness constant, ¢i is the joint angle, and 
pi is the rest angle. Our model is parameterlzed by ]ink 
orientations rather than joint angles. The joint angle is 
~bi ---- 0i+t - 01, the difference between the orientations of 
the surrounding links. The generalized force on 01, the 
orientation of the i-th link, due to the j - th  muscle is 

dOj 
J 

= k ~ ( ¢ ~ - p ~ ) ,  j = i + l  
= - k ~ ( ~  - p~), j = i 

= O, otherwise 

Unlike passive springs whose stiffness and rest state are 
constants, /el and Pl vary freely over time, allowing arbi- 
trary time-dependent joint forces to be exerted. 

V I .  R e s u l t s  

A .  J u m p i n g  L u x o  

Jumping motion was created using kinematic constraints 
to specify initial and final poses, with linear interpolation 
between the poses to create a trivial initial condition for 
the spacetime iteration. Another constraint was used to 
put Luxo on the floor during the initial and final phases of 
the motion. Subject to these and the physics constraint, 
we minimized the power due to the muscles, Fs0. In one 
variation, we adjusted the mass of Luxo's base, leaving the 
situation otherwise unchanged. In another, we additionally 
constrained the force of contact with the floor on landing, 
to produce a relatively soft landing. In a final variation, we 
added a hurdle, together with a constraint that the jump 
clear the hurdle. 

The pose constraints consisted of values for the three 
joint angles, and were applied to the first two and last two 
fraxnes of motion. Because we measure velocity using a 
finite difference, this incorporates the additional constraint 
that Luxo be at rest at the beginning and end of motion. 
Initial values for the orientations were obtained by linear 
interpolation between the two poses. 

The floor enters both as a kinematic constraint and as 
a force. In general, collision constraints appear as inequal- 
ities, but to simplify matters, we chose to specify explicitly 
the time intervals during which Luxo was on the floor, im- 
posing during those times the equality constraints 

7f 
80 - ~ = 0 , P  - P / =  0 

where 00 is the orientation of the base, P is the position of 
the center of the base, and P / i s  a constant point on the 

floor. In other words, the position and orientation of the 
base are nailed. The limitation of this formulation, com- 
pared to an inequality, is that the times at which contact 
occurs must be pre-specified, rather than allowing things 
to bounce freely. The floor constraint was enabled for the 
first and last five frames , allowing time for anticipation and 
follow-through. Of course, two different values were used 
for P!  at the start and finish, defining the start end points 
of the jump. 

The floor constraint represents a mechanical interac- 
tion involving the transmission of force between the base 
and the floor. This contact force must be taken into ac- 
count to satisfy the physics constraint. The simple contact 
model used for the jump has the base colliding with the 
floor inelastically with infinite friction, which means that 
the base comes to rest, losing its kinetic energy, at the mo- 
ment of contact. The contact force is therefore whatever 
arbitrary force on the base specifically, on P and 0e--is 
required to satisfy physics in light of the :floor constraint. 
No special provision need be made to solve for the contact 
forces beyond introducing additional state variables to rep- 
resent them. Their values are then determined during the 
constraint-solving process. This method of solving for con- 
straint forces applies to other mechanical constraints, such 
as joint attachments, and is closely related to the method 
of Lagrange multipliers. 

The choice of optimization criteria is an area we have 
just begun to explore. In the examples shown, we sought 
to optimize a measure of the morton's mechanical efficiency 
by minimizing the power consumed by the muscles at each 
time step, which for each joint is the product of the muscle 
force and the joint's angular velocity. Our preliminary 
observation is that this criterion produces relatively fluid 
and natural motion, compared to kinematic smoothness 
criteria in terms of velocity and acceleration, which tend 
to come out looking somewhat arthritic. 

Figure 3 shows a series of iterations leading from an 
initial motion in which Luxo translates, floating well above 
the floor, to a finished jump in which all the constraints 
are met and the objective function is minimized. Note 
that the elements of realistic motion already appear after 
the first iteration. The final motion shows marked an- 
ticipation, squash-and-stretch, and follow-through. From 
its pre-defined initial pose, Luxo assumes a crouch provid- 
ing a pose from which to build momentum. The crouch is 
followed by a momentum-building forward-and-upward ex- 
tension to a stretched launching position. While in flight, 
the center of mass moves ballistically along a parabolic arc 
determined by the launch velocity and by the force of grav- 
ity. Toward the end of the flight, Lu.xo once again assumes 
a crouched position in anticipation of landing, extending 
sIightly while moving toward impact. This "stomp" ma- 
neuver has the effect of transferring kinetic energy into the 
base, where it vanishes in the inelastic coUision with the 
floor. Following impact, luxo extends forward while com- 
pressing slightly, dissipating the remaining momentum of 
flight, then rises smoothly to its pre-specified final pose. 
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Figure  3: F r o m  top  to  bo t tom,  a series of i te ra t ions  
leading from an  ini t ia l  mot ion  in which Luxo t rans la tes ,  
f loating above the floor, to  a finished j ump  in which aR 
the  const ra in ts  axe met  and  the op t imlza t ion  funct ion is 
minimized.  The  final mot ion  shows marked  ant ic ipat ion,  
squash-and-s t re tch ,  and  follow-through. 

In the  first var ia t ion  on the basic j ump ,  we add  an 
addi t iona l  const ra in t  fixing the contact  force on landing.  
The  value we choose provides control  over a hard- to-sof t  
landing  d i m e n s i o n - - a  large landing force leads to an exag- 
ge ra ted  s tomp,  as if  t ry ing  to squash a bug,  while a small  
value leads to  a soft landing,  as if t ry ing to avoid breaking 

Figure  4: A var ia t ion  on the  basic j u m p  in which the  
contact  force on landing  is conscralned to be  small .  The  
force of impac t  is reduced by  squashing jus t  before land-  
ing, reducing  the  veloci ty and l:.ence the  kinetic  energy 
of the  base.  In  con t ras t ,  the  j u m p  in F igure  3 ex- 
hibi ts  a sl ight ~tretch before impac t ,  p roduc ing  an en- 
e rgy-absorb ing  s tomp.  

Figure  5: The  mass  of Luxo 's  base  has been doubled.  In  
o ther  respects ,  the  condit ions are the  same as those  pro-  
ducing the basic  j ump .  

something  fragile. F igure  4 shows a re la t ively soft landing,  
genera ted  under  the  same condit ions as the  basic j u m p  
except  for the  contac t  force constra int .  Compar ing  the 
mot ion  to  the  basic j ump ,  we see tha t  Luxo softened the 
blow of impac t  by  squashing while moving toward  impac t ,  
reducing the  velocity,  and  hence the  kinetic  energy of the  
base. In  cont ras t ,  the  basic j u m p  has a small  atreteh before 
impac t ,  p roduc ing  an energy-absorb ing  s tomp.  

The  next  var ia t ion  has the  same condit ions as the  ba- 
sic j ump ,  bu t  the  mass  of the  base has been doubled.  The  
final mot ion  is shown in F igure  5. As expected ,  bo th  the  
an t ic ipa t ion  and  fol low-through are  exaggera ted  in com- 
pensa t ion  for the  grea ter  mass.  

A final var ia t ion ,  shown in Figure  6, has the  condi t ions 
of the  sof t - landing jump ,  bu t  wi th  a hurdle  in terposed be- 
tween s t a r t  and  finish, and  an addi t iona l  const ra int  t ha t  
Luxo clear the  hurdle.  As one would expect ,  the  ex t r a  
height  required is gained by squashing vigorously on ap- 
proaching  the  wall. 

The  jumping  examples  each took under  10 minutes  
to compute  on a Symbolics  3640. Whi le  this  is ha rd ly  
in terac t ive  speed,  i t  cons t i tu tes  a t iny  f ract ion of the  cost 
of h igh-qual i ty  rendering.  
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Figure 6: Hurdle Jump 

Figure 7: Ski Jump 

B. Ski Jumping 
Figure 7 shows Luxo d,~scending a ski jump.  As in the 
previous case, Luxo is constrained to  be on the ski jump 
and the landing at  par t icular  t ime samples. The biggest 
difference between the ski-jump and the infinite-friction 
goor of the previous example is that  Luxo is free to slide~ 
with the exact  posi t ions on the ski j ump  and the landing 
left unspecified except at  the  top and b o t t o m  of the ski 
jump.  In addit ion,  there is a constraint  that  the or ientat ion 
of the base must  be tangent  to the surface it is resting on. 

Both  the ski j ump  and landing exert  forces on Luxo. 
There is a normal  force which keeps him from falling 
through and a frictional force which is tangent  to the sur- 
face and propor t ional  to  the  tangent ia l  velocity. The  coef- 
ficients of friction were s ta te  variables in the opt imizat ion.  

At one t ime ins tant  while Luxo is in the air, the  height 
of his base is constrained.  In  addit ion,  there is a t e rm in 
the object ive  function which gives him a preference for a 
par t icular  pose while in the air. This is a "style" optimiza- 
t ion without  which Luxo is content to go through the air 
in a bent position. 

Luxo is also given pose constraints at the beginning 
and end of the motion.  Unlike the previous jumps,  how- 
ever, his ini t ial  velocity is unconstrained.  

Figure 8: Spacet ime constraints:  a car toonis t ' s  view. (c) 
1988 by Laura  Green, used by permission. 

The  ini t ial  condit ion for the opt imiza t ior  ~as  ~ uni- 
form t rans la t ion  in the  air above both the  ski j ump  and 
the landing.  In the first i terat ion,  Luxo puts  hi~ feeet on 
the  ski j ump  and landing.  By i te ra t ion  4, there is signifi- 
cant  ant ic ipat ion and follow through.  Figure 7 is the  result 
after 16 i terat ions.  

Both the ski j ump  and landing are buil t  from two B- 
spline segments.  The entire j ump  was computed with 28 
t ime samples in the  opt imizat ion.  There were 223 con- 
s t raints  and 394 s ta te  variables. The Jacobian contained 
3587 non-zero entries,  about  4 ~  of the to ta l  number  of en- 
tries. The  ent ire  motion was computed  in 45 minutes on a 
Symbollcs 3600. 

V I I .  D i s c u s s i o n  

Our results show tha t  spacet ime methods axe capable of 
producing realist ic,  complex and coordinated motion given 
only minimal  kinematic  constraints.  Such basic a t t r ibutes  
as ant ic ipat ion,  squash-and-stre tch,  follow-through, and 
t iming emerge on their  own from the requirement tha t  the 
kinemat ic  constraints  be met  in a physical ly valid way sub- 
ject  to simple optimizat.lon criteria.  

The principle advantage of spacet ime methods  over 
simple keyframing is tha t  they  do much of the  work tha t  
the an imator  would otherwise be required to do, and  tha t  
only a skilled an imator  c a n  d o  Motions tha t  would require 
highly detai led keyframe information may  be sketched out 
at the level of "s tar t  here" and "stop there." This is a 
profoundly different and more economical means of control  
than  conventional keyfrarning affords, an advantage tha t  
easily outweighs the greater  mathemat ica l  complexity and 
computa t ional  cost of the  method.  

Beyond sparser  keyframing, spacet ime methods  offer 
really new forms of mot ion control. For example,  we saw 
in the previous section tha t  constraints  on forces, such as 
the force of a collision, can be used in a direct and simple 
way to say "hit  hard"  or "hit  softly," producing subtle  but  
very effective changes in the  motion.  

Of the new oppor tuni t ies  for motion control, perhaps  
the most excit ing is the  selection of opt imizat ion cri ter ia  
to affect the  motion globally, an area we have only begun 
to explore. Wi th  a l i t t le  thought ,  it  is clear that  a magic 
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"right" criterion, whether based on smoothness, efficiency 
or some other principle, is unlikely to emerge and would 
in any case be undesirable. This is because the "optimal" 
way to perform a motion, as with any optimization, de- 
pends on what you're trying to do. Consider for example 
several versions of a character crossing a room: in one case, 
walking on hot coals; in another, welklng on eggs; in an- 
other, carrying a full bowl of hot soup; and in still another, 
pursued by a bear. Plainly the character's goals--and at- 
tendant cr~te~a of optimall ty--are very different in each 
case. We would hope to see these differing goals reflected 
in the motion. The possibility of controlling motion di- 
rectly in terms of its goals, not just where it goes but how, 
is one we intend to explore. 
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