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 Abstract

Choropleth maps are commonly used to show statistical variation among map enumeration units. 

Map makers take into account numerous considerations and make many decisions to produce a 

product that will effectively communicate spatially complex information to the map user. One 

design consideration is the choice between classed or unclassed choropleth maps. Unclassed 

maps assign a unique color, shade or pattern based on each unit’s value. These maps are rich in 

information but may not be optimal for visual discrimination of regions or identifying values 

from a legend. Classed maps classify enumeration units based on unit values, and in some cases 

consider geographic area per class or contiguity. These classed maps better delineate regions and 

inter-class variation, but are designed to eliminate visibility of intra-class variations.

We present a method designed to use colors for choropleth classes, and soft shadows for intra-

class variations. We conceptualize the choropleth data as a three dimensional prism model under 

simulated illumination, with the height of each enumeration unit a function of its mapped value. 

Our user studies have demonstrated that participants were able to use soft shadows to better 

identify which of two adjacent units was of greater population density, regardless of whether 

units were in the same or different classes. Additionally, the resulting soft shadows rarely 

interfere with the map reader’s ability to match color classes to a legend, or to compare estimated 

differences in mean and variance of population density between two regions. 
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1 Introduction

Choropleth maps show the variation in quantitative data among enumeration units such as 

countries, states or counties (Robinson et al., 1995; Slocum et al., 2008). The variation 

throughout the mapped area is displayed using such visual variables as hue, spacing, or lightness 

(Slocum et al., 2008). In this sense, such maps are geographic graphs, or spatially arranged 

displays of statistical data (Robinson et al., 1995). 

The utility of a choropleth map to the map user depends upon a number of factors, both within 

and beyond the control of the cartographer. These include, but are not limited to, the geographic 

complexity of the phenomenon to be mapped, the decision to present data as either classed or 

unclassed, the method by which data will be symbolized, and the ability of the map user to 

interpret the resulting map.  In our research, we focus on combining symbology from classed and 

unclassed data. We have devised a method to create illuminated choropleth maps in which soft 

shadows from an unclassed data model are used to add detail to classed choropleth maps 

symbolized by variations in hue. We have conducted user studies demonstrating that this 

technique significantly improves the map reader’s ability to identify local variations between 

adjacent enumeration units. Additionally, our illuminated choropleth maps do not generally 

interfere with the map user’s ability to match map colors to a legend, or to make regional 

comparisons of mean or variance between predefined geographic divisions.
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1.1 Literature Review

The cartographic research of greatest relevance to our method can be categorized into two 

themes. The first focuses on the map user’s ability to interpret map variations based on changes 

in choropleth symbols. This includes users outlining regions (e.g. Muller, 1979; Mak and 

Coulson, 1991), ranking map or region complexity (e.g. Olson, 1975), answering questions 

related to maps, regions, or particular units (e.g. MacEachren et al., 1998; Olson and Brewer, 

1997; Brewer et al., 1997; Brewer and Pickle, 2002; Chang, 1978; Olson, 1975; ), matching unit 

symbology to legends (e.g. Brewer and Pickle, 2002; Mak and Coulson, 1991), and 

discriminating among units (e.g. Mak and Coulson, 1991).

The second theme, inextricably tied to the first, focuses on  techniques designed to optimize the 

map maker’s ability to display areas within regions as homogeneous and other areas as 

heterogeneous (e.g. Dent, 1999; Berry, 1968). This had led to an extensive discussion in the 

literature about how to best symbolize choropleth map units. Although statistical data were 

classified for map display since the first choropleth map in 1826 (Robinson, 1982), they only 

became a focus of study when Jenks and Caspell (1971) introduced methods to optimize the 

values of class breaks. Shortly thereafter, Tobler (1973) suggested assigning unique symbols to 

each enumeration unit to create unclassed choropleth maps. 

1.1.1 Classed choropleth maps

Jenks and Caspell (1971) conceptualized the problem of finding optimal breaks as a series of 

three dimensional (3D) models. A classed choropleth map would have a 3D model which assigns 

the height of each class to the average value within the class. A second 3D model assigns height 
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using each enumeration unit’s value.  Given this construct, the difference between the class mean 

and all enumeration unit values in the class can be measured and summed in various ways.

Jenks and Caspell (1971) summarized variations from the class mean using three different 

“error” metrics: tabular error, overview error and boundary error. Minimizing tabular error is the 

method described in current literature as the “optimal” method (Robinson et al., 1995, Slocum et 

al., 2008). It is based on the statistical research of Fisher (1958). Jenks and Caspell (1971) were 

the first to apply this research to defining class boundaries, an important basis upon which much 

future research was built. Jenks (1977) details the method of iteratively finding class breaks so 

that within-class variations from the mean are minimized. It looks only at the values and 

statistics associated with the tabular data; no geographic data are used.

Jenks and Caspell’s (1971) overview error takes into account geographic area by calculating a 

“volume” based on the 3D models. Each enumeration unit has an area, and a “height” based on 

the difference between the class mean and its value. Variations of this volume can be minimized 

within each class in a manner similar to that described for tabular error. Although 

straightforward to implement using a geographic information system (GIS), most commercial 

algorithms do not account for overview error (Armstrong et al., 2003).

Other choropleth research focuses on issues related to overview error, not only on unit area but 

also on unit location. Monmonier (1972) was the first to tackle the issue of spatial clustering in 

creating clear and simple choropleth maps. Monmonier’s concerns were justified later that 

decade by Chang (1978) who documented the preference of map readers for simpler, less 
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fragmented map patterns.  Monmonier (1972) used a taxonomic clustering algorithm to explicitly 

consider contiguity in selecting class intervals. He also included algorithms to balance statistical 

and geographical considerations. Olson (1975) used measures of spatial autocorrelation to 

analyze aspects of the overall look of classed maps. She found through user testing that concepts 

such as spatial complexity could be related to quantitative measures of autocorrelation.

Jenks and Caspell’s (1971) third measure of error is boundary error. Returning to their 3D 

construct, ideal class boundaries would correspond to the enumeration unit borders with the 

largest changes in the mapped value. In other words, larger steps (or “cliffs”) in the 3D 

enumeration unit model would ideally correspond to class boundaries. They state the following: 

“The boundaries between shading on a choropleth maps tend to dominate the visual impact of 

the representation, because sharp visual contrast occur along these lines. Map readers tend to 

assign significance to these boundaries and, as a result, often assume that they designate breaks 

in the configuration of the statistical surface.” (p. 229). Their strategy was to summarize and 

maximize variations in values at class breaks using various classifications. Varying class 

boundaries to address boundary error resulted in variations in their other two measures of error. 

They chose to give equal weights to all three error measures to define an optimal solution.

Their discussion of boundary error is important to our research for two reasons. First, Jenks and 

Caspell (1971) minimized boundary error to address a specific concern: the potential 

misinterpretation that large variations always occur at class boundaries and lesser or no 

variations always occur within classes. Second, the issue of minimizing boundary error is related 

to spatial contiguity, but is not guaranteed to result in simpler, less fragmented map patterns as 
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are the clustering methods discussed above. For example, a region might consist entirely of a 

single class as defined by tabular and overview error. If one enumeration unit is surrounded by 

units with lower value in that class, the central unit could be promoted to a new class upon 

addition of boundary error into the classification process. Such results could yield a more 

complex, fragmented map pattern.

Recent research identifies additional criteria that can be used to define class breaks. Cromley 

(1996) uses boundary error in a comparison of a number of classification methods. Armstrong et 

al. (2003) use a genetic algorithm which finds an optimal solution based on a number of criteria. 

They minimize measures of Jenks and Caspell’s tabular error, aerial inequality among classes, 

and boundary error as defined by MacEachren’s (1982) face complexity measure, as well as 

maximizing a reformulated Moran’s I as a measure of spatial autocorrelation. They do not assign 

weights to these factors, but rather find “Pareto optimal” solutions, ensuring that one criterion 

does not dominate another. The applications of evolutionary algorithms for comparing 

choropleth maps are discussed by Xiao and Armstrong (2005).

1.1.2 Unclassed Choropleth Maps

All class boundary research can be summarized as methods focused on finding the optimal (or 

set of optimal) class breaks based on one or more criteria. This research stems from the 

assumption that the values of a small number of class breaks is of vital importance. Other 

geographers suggest the possibility of diluting the importance of any particular class break by 

increasing their number, the logical limit being a different class for each value. This sort of map 

is referred to as an unclassed choropleth map.  Tobler (1973) was the first to devise a method for 
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creating such maps with a line plotter. Beginning with that article and comments of concern from 

Dobson (1973), the relative merits of classed versus unclassed choropleth maps have been the 

topic of much discussion.

Mueller (1979) tested the ability of users to categorize areas of high, medium and low density 

from unclassed choropleth maps of 1970 rural population density using the counties of Kentucky 

as enumeration units. Users closely replicated a choropleth map of the same data with three 

optimized classes. Muller (1979) argued that these results implied map users are able to identify 

regions from unclassed maps, and that such maps offer the additional benefit of reproducing the 

data on which the map is based. Dobson (1980) argued Mueller’s (1979) study focused on 

pattern delineation, without evaluation of more advanced map skills such as pattern 

memorization. Mueller (1980) responded by underscoring the importance of recognizing map 

patterns, and the suspect nature of class boundaries. 

Results from more recent research underscore the complexity of issues involved in such 

comparisons. Gilmartin and Shelton (1989) found classed choropleth maps reduced map-

processing time when compared to unclassed maps. Slocum et al. (2008) state that classed maps 

are generally more effective than unclassed maps for the acquisition of specific information. 

They make the point that “The high accuracy of unclassed maps is, however, mathematical, not 

perceptual.” (p. 267). Nonetheless, this conclusion is based on maps with few classes (classed) 

versus maps with many classes (unclassed). Even then, results of such studies as Mersey (1990) 

and MacEachren (1982) are inconclusive about the effect of variation in the number of classes  

on some cognitive skills, such as the recall of specific information. In a non-user based study, 
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Cromley (2005) found more visual complexity of spatial patterns in classed versus unclassed 

maps by performing algebraic-to-graphic transformation lines to highlight the role of the 

maximum contrast principle.

1.1.3 Prism Maps

Our research focuses on adding more detailed information to classed choropleth maps using soft 

shadows from unclassed values. In these illuminated choropleth maps (Figure 1), the hues of the 

unit are based on the class. The shadows are based on an illumination model applied to a 

volumetric model of the enumeration units. In the volumetric model, each unit is extruded to a 

height based on the attribute being mapped. For a given illumination direction defined for the 

former model, the length of the shadows will be a function of the difference in values between 

adjacent units. These shadows act as a second unclassed visual variable, used with the intent of 

adding detail to classed choropleth maps in a manner that is perceptually intuitive.

Shadows are not defined as a visual variable, although they are often represented by changes in 

lightness. In the manner in which they vary, they are most similar to “perspective height,” 

identified as a visual variable by Slocum et al. (2008). The perspective height variable extrudes 

area symbols into the third dimension based on value of some attribute. Such a “prism” display 

was used by Jenks and Caspall (1971) in Figure 1of their seminal article (Figure 2a). In this 

example, shadows are not used to enhance the 3D effect; black areas represent sides of units. 

Also, Jenks and Caspell (1971) made no attempt to combine these extruded maps with classed 

choropleth maps such as their Figure 2 (in our Figure 2b) in a single display. 
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Such prism maps have the advantage of an excellent 3D effect. Interest in constructing such 

maps led to development of optical (Jenks and Brown, 1966) and computer automated (e.g. 

Franklin and Lewis, 1978; Hilbert, 1981) techniques. Prism maps continue to be popular today, 

especially in the mass media. Prism maps, however, also have disadvantages. Any map that is 

not planimetrically correct will have increased distortion in shape, size, distance and direction. 

Additionally, some units may be hidden from view, and these are likely to change based on 

viewing direction. All of these factors may make typical choropleth map uses (such as 

identifying local or regional variations) more difficult.

Some of these issues were addressed by a method using stereoscopic vision to create 2D 

choropleth maps with a true 3D appearance (Jensen, 1978). Such maps overcome many of the 

issues of traditional prism maps. Users of such maps, however, will still be faced with the need 

for stereoscopic vision and the challenge of a limited field of view with such maps.

Our illuminated choropleth maps are planimetrically correct. Since hard shadows would obscure 

some units, we focus on creating soft shadows that vary the tone of class colors in a subtle 

manner. We use rigorously defined illumination models to match theoretical results. In doing 

this, we are attempting to create a map display that is easily and intuitively visually interpreted. 

We realize that other methods, such as labeling population density values for each polygon, 

could provide even more information and can be an effective practice for maps with somewhat 

limited numbers of polygons, such as the states of the United States. We do not, however, feel 

that this would be a visually effective way to display maps with much more numerous polygons, 
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such as our examples using counties of the United States. Finally, we conduct testing to ensure 

that users can correctly interpret shadows with respect to local variations, and that shadowing 

does not interfere with users’ ability to match unit colors to a legend or to make regional 

comparisons of mean and variance among large areas.

Our illuminated choropleth map, in its use of an attribute being displayed using multiple visual 

variables, shares similarities and has important differences when compared with traditional 

cartographic techniques. It is similar to a bivariate choropleth map, but our method maps only 

one attribute in two manners. It is also similar to maps of smoothly varying statistical surfaces 

such as topography that employ layer tinting with hill shading and shadowing. 

1.1.4 The Bivariate Map Analogy

Bivariate choropleth maps combine the display of two attributes on the same map. Initial 

bivariate maps focused on creating a matrix of easily identified color classes. Olson (1981) 

concluded that, although not without issues, students did gain information from such maps and 

find them interesting and appealing.  Eyton (1984) devised a method in which the center of the 

legend-matrix is gray, with corners on the diagonals comprising two complementary colors, and 

black, and white. Brewer (1994) devised color schemes that take into account unipolar or bipolar 

attributes. 

Other studies used an unclassed approach to bivariate choropleth maps. Techniques focused on 

the use of cross-hatched lines, with the spacing of horizontal and vertical lines varying with the 

two attributes of interest (Carstensen; 1986a; Carstensen; 1986b; Lavin and Archer, 1984; 
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Carstensen, 1982). The resulting maps display tonal variations as well as variations in the size, 

dimension and orientation of individual rectangles. 

Illuminated choropleth maps display one attribute using two different visual variables. Although 

colors are assigned based solely on, in our example, population density values, shadows will 

change depending on conditions in the neighborhood. For example, an enumeration unit may 

cast a very short shadow if its neighbor in the direction opposite the illumination direction is 

nearly as densely populated.  A unit in the most densely populated class might cast a long 

shadow if its neighbors have significantly lower population densities. Long shadows are not 

necessarily limited to the adjacent neighbor, depending again on local conditions.

Our tests indicate users are not generally bothered by these shadows in matching class colors to a 

legend or making regional evaluations of mean and variance. Results are consistent with other 

perceptual studies which indicate that users are able to see continuous patterns through shaded 

regions, even if the patterns are represented as shades of gray (Adelson, 2000; Aldelson, 1993). 

We suggest that shadows on illuminated choropleth maps do not offer a perceptual challenge to 

users because they are based on a 3D model illuminated in a predictable manner.

1.1.5 The Topographic Map Analogy

Early researchers pointed out the similarity of choropleth and topographic maps. Jenks and 

Caspell (1971, p. 218) stressed the impression a choropleth map will have on the map reader: 

“First, he may seek an overview of the statistical distribution from the choropleth map, much as 
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he obtains the ‘lay of the land’ from a topographic map.” Monmonier (1972) endorsed 

symbology that helps to display choropleth maps simply and clearly. He drew analogies to the 

varying contour intervals and classes of hypsometric tints used to create topographic maps that 

appear spatially organized. Tobler (1973) drew an analogy between selecting larger class 

intervals to generalizing a topographic surface by, for example, choosing a large contour interval. 

We use contour mapping to discuss some of the similarities and differences between topographic 

and choropleth maps. Contour maps are often displayed with elevation values assigned to 

hypsometric or layer tints in a manner similar to which colors are assigned to classed choropleth 

maps. Contour maps represent the surface by a series of lines representing intersections of the 

terrain with planes evenly spaced in elevation; choropleth maps represent statistical variations by 

enumeration units which may vary in any manner. The former is appropriate for representing a 

surface of smooth variation, the latter for a surface of irregularly steps between otherwise flat 

surfaces (i.e. the tops of the prisms). Given such a construct, a prism map would have contours 

on its vertical faces (e.g. Franklin and Lewis, 1978).

Cartographic techniques include other methods for mapping terrain, such as hill shading and 

associated shadowing. Hill shading generally uses a simple directional illumination model to 

vary the shade of gray of individual map units (Imhof, 1982; Horn, 1982). The shade of gray is 

determined by the angular difference between the direction of illumination and the surface 

normal. Hill shading was first automated by calculating shading values for a small grid (Yoeli, 

1965), relating these shades to the density of black dots on a white background (Yoeli, 1966), 

and using a computer-controlled electronic typewriter to print and overprint characters to match 
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desired hill shades (Yoeli, 1967). Subsequent efforts led to use of special characters on a line 

printer (Brassel et al., 1974) and finally continuous shades of gray on gray tone plotters (Peucker 

et al., 1974).  This type of hill shading would be ineffectual for choropleth maps, as all 

enumeration units have the same (horizontal) orientation.

The same directional illumination model can also be used in terrain mapping to define areas in 

shadow. Although shadows provide important visual cues to local relief, they have a poor 

reputation in cartography because of their tendency to obscure local details (Imhof, 1982). 

Applying a simple directional illumination model to the data in this study, we get a map with 

dark, sharp, hard shadows obscuring more areas (Figure 3). More sophisticated clear sky 

illumination models allow units beneath soft shadows to cast their own shadows, as diffuse 

illumination from other sectors of the sky is not obscured. This is evident comparing the clear 

sky and directional shadowing in Figure 3, as no units in cast directional shadows are creating 

their own shadows. 

Additionally, the illumination model can serve to shade flat units. This shading results from 

diffuse light distributed throughout the sky being partially blocked at certain locales by high 

areas in the prism model that are not in the line of sun illumination. An example of an urban 

elevation model with equal illumination from all directions shows such shading patterns 

(Kennelly and Stewart, 2006). Flat tops of buildings are rendered in many shades of gray, 

depending on how much of the virtual sky is obscured by other buildings. The implication for 

illuminated choropleth maps is that units more obscured will be shaded slightly darker than 

surrounding units in the same class, even if they are not covered by an obvious shadow.  An 
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example of this effect is the relatively darker shade of some class colors in northeastern counties, 

which are not apparently beneath soft shadow.

In summary, illuminated choropleth maps and topographic maps with layer tinting and hill 

shading represent very different types of geographic phenomena, but similar shading methods 

can be used to represent them. In terrain maps, elevation layer tinting applies the same colors 

over continuous regions within specified ranges of values. These colors are modulated by a 

derivative map based on a directional illumination model that defines shading based on local 

relief. Our illuminated choropleth method applies the same colors over potentially less 

continuous, stepped surfaces within specified classes. These colors are modulated by a different 

derivative map based on a more sophisticated illumination model that defines soft shadowing 

based on local attribute variations.

2 User Study

2.1 Methods

We began with U.S. Census Bureau county data for the conterminous United States in a 

geographic information system-based vector format. Data were taken from the last decennial 

report of 2000, and were projected into an Albers equal area map projection. As well as counties, 

independent cities are included as county equivalents. We calculated population density in 

people per square mile for the 3,184 polygons representing 3,109 counties or county equivalents, 
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and converted data into a one kilometer resolution raster format. Using this sample size, all 

polygons are represented by at least one grid cell. We used this grid as input for a custom 

application written in the C++ programming language to “illuminate” the choropleth map, as 

described in Section 2.2.

Population density values ranged from 0 to 55,092 individuals per square mile. We classified the 

data into five categories. One of the goals of our study was to evaluate the user’s ability to 

discern randomly selected units of various class colors with soft shadows. The Jenks optimal 

method, however, did not lend itself to this sort of analysis. Using the Jenks method, for 

example, only four clustered county equivalents of relatively small size fall into the class of 

highest population density of more than 21,170 (the New York City boroughs of Manhattan, 

Brooklyn, the Bronx and Queens) (Figure 4).

We chose to define our own class breaks so that a greater number of counties or county 

equivalents of different classes would be distributed across the map. Although similar to 

concerns of overview error discussed previously, we did not optimize reduction of this error, as 

our goal was not to balance volumes within each class, but to make available more locales of 

classes that might be randomly sampled. Beginning with initial Jenks optimal breaks at 805, 

3166, 8379 and 20705, we adjusted class breaks to 15, 60, 200, and 1500 (Figure 5).

We applied a sequential color scheme based primarily on changes in hue from yellow through 

orange to red to these classes (Brewer, 2005, Brewer et al., 2003, Harrower and Brewer, 2003). 

We opted to keep the lightness of all colors relatively high, with the Value of the Hue-
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Saturation-Value specifications remaining above 97%. This would allow nearly the entire gamut 

of Value variations as soft shadows to overprint the colors in the final color version of the map. 

It can be noted, however, that colors ranging around the color circle from yellow to red have 

very different luminosities (Slocum et al., 2008; Kennelly and Kimerling, 2004; Brewer, 1994). 

While changing Value of our light yellow from 0% to 100% varies luminosity by about 98%, 

doing the same to red only varies its luminosity by about 55% , as red is a less luminous color. 

Assigning red to our areas of highest population density minimizes issues associated with its 

decreased dynamic range of luminosity, as these units are more likely to cast shadows than be 

partially obscured by them.

2.2 Illumination Model

Many realistic sky models have been developed.  The classic “overcast sky” of Moon and 

Spencer (1942) provides the sky radiance in a particular direction as

    0.33 LZ ( 1 + 2 sin θ  ) Equation 1

where LZ is the radiance at the zenith and θ is the angle between the particular direction and the 

horizontal.  This model provides three times as much illumination at the zenith as at the horizon. 

The CIE Standard General Sky (Commission Internationale de l'Eclairage, 2001) provides a 

much more elaborate formula in which five parameters may be set to model various skies, from 

clear to partly cloudy to overcast (Darula and Kittler, 2002). The model we used for Figure 6 is a 

“clear day” illumination model.
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In our illuminated choropleth maps, the gridded data were treated as a surface, with the surface 

height at each point being a function of the population density at that point.  The surface was 

illuminated with a clear day sky in which most light arrived from all directions equally, with 21 

times as much light arriving from the direction of the sun, which was placed at a 45 degree 

elevation above the horizon in the northwest.  The radiance of the sky in a particular direction 

was

  0.05 + cos500 θ Equation 2

where θ is the angle between the particular sky direction and the sun. The cosine term, with its 

high exponent, ensured that the brightest light came from the direction of the sun, and that the 

sun's contribution tapered to zero at about seven degrees away from the sun's direction.  This 

resulted in soft shadows at the base of “cliffs” on the surface (caused by the decrease in the 

amount of visible sky and hence, total shadowing, at the cliff base), and a somewhat diffuse 

shadow cast from the sun by high parts of the surface.

The computation of the surface illumination was done using the method of Kennelly and Stewart 

(2006).  Their method computes an approximation of the horizon at each grid point.  Using the 

horizon, their method computes the illumination at a grid point by integrating the sky 

illumination over the sky area that is above the horizon, and reflecting that light in proportion to 

the surface albedo (0.6 in our case).  We scaled the computed surface illumination to the range 0 

to 255 so that it could be represented compactly as a gridded map display.
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Due to the discrete nature of the horizon approximation, long shadows can appear somewhat 

fanned out, especially in the vicinity of localized spikes in the surface.  That effect can be 

reduced with greater computation time in the horizon algorithm (to produce a more accurate 

horizon), but the subjects in our study did not report this to be distracting.

Our first attempts at illuminating the surface produced poor results.  Most of the height 

differences between adjacent counties occurred in lower, less dense parts of the surface 

(particularly in the Midwestern states) and the scale of those differences was insignificant 

compared to the scale of the largest heights.  Those very small differences were insufficient to 

cast shadows.

In order to enhance small height differences and, hence, to cast shadows in these areas, we 

transformed the heights with an exponential function that increased small heights more than it 

did high heights, and that scaled the heights so that they were of the same scale as our map.  We 

used the formula

   H = 0.0025 (D / Dmax)0.455 Dmax Equation 3

where H is the new “height” of the unit being scaled (measured in people per square mile), Dmax 

is the maximum population density of all units, and D is the original population density of the 

particular unit being scaled. This transformation increases the subtle differences between the 

many units of low population density. At the same time, it suppresses the units of highest 

population density, those most likely to cast long shadows prone to artifacts of the method.  
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These new heights were used only for the illumination model and the resulting shading. Classes 

were assigned based on the original, unadjusted values of population density. The height 

transformation function is shown below as Figure 7.  

2.3 User Testing

The  illuminated  choropleth  method  provides  a  fine-grained  view  of  the  data  (Figure  6). 

Combining these soft shadows with classes symbolized by color reveals relative values within 

the same class, especially between adjacent polygons (Figure 1). The illuminated method also 

lets us see the underlying enumeration units within a class when those samples are sufficiently 

different to cause shadowing. These assumed benefits are balanced by potential disadvantages. 

First, the shadowing may obscure the class coloring. Second, the shadowing may confound the 

perception of aggregated characteristics, such as the mean or variance of a region.

We performed a  formal  user  study to  determine  whether  these  advantages  and potential 

disadvantages were statistically significant. We made the following hypotheses:

H1: The illuminated method improves a person’s ability to determine which of two adjacent 

counties has a higher population density.

H2: The illuminated method does not affect a person’s ability to determine the class of a 

county, given a map legend.
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H3: The illuminated method does not affect a person’s ability to determine which of two 

aggregate regions has a higher mean population density or higher variance in population 

density.

2.4 Test Cases

A computer program was written in C++ to draw on a computer screen a choropleth map of 

population densities in the conterminous United States, both with and without illumination. The 

program randomly selected  sites (counties,  pairs  of adjacent  counties,  or US Census Bureau 

divisions) zoomed to the area of interest, highlighted the sites of interest, recorded mouse clicks, 

and kept track of response time. The program operated in four modes, corresponding to four 

different tasks. For each task, a part of the map was shown shaded or unshaded and the subject 

was asked to click. The four tasks were:

2.4.1 Pair Selection Task

Two adjacent counties were centered on the screen and highlighted with blue circles. The subject 

was asked to click  on the county of higher  population  density.  In  some cases,  the selected, 

adjacent units were in different classes (Figure 8). In other cases, the units were in the same 

class (Figure 9).

2.4.2 Legend Matching Task

A county was centered on the screen and highlighted with a blue circle. A legend of class colors 

was shown on the upper-right corner of the screen. The subject was asked to click in the menu 

on the color that matched that of the highlighted county (Figure 10).
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2.4.3 Region Mean Task

The  conterminous  United  States  was  shown  divided  into  the  eleven  U.S. Census  Bureau 

divisions  and  spatially  separated  for  visual  clarity.  Two  randomly  selected  regions  were 

highlighted, with all other regions assigned one shade of gray. The subject was asked to click on 

the region of greater mean population density (Figure 11). 

2.4.4 Region Variance Task

The same method was used to display two divisions. The subject was asked to click on the region 

of greater variance. The presentation was identical to Figure 11.

2.5 Experimental Setup

We tested 41 subjects who were faculty, graduate students, and staff in geography and computer 

science department. Subjects were divided into experienced and non-experienced groups: We 

considered as experienced those subjects with some graduate experience in computer science 

graphic rendering with shading and those subjects with some graduate experience in geography 

with cartographic  hill  shading.   Of the 41 subjects,  16 were experienced  and 24 were non-

experienced.

Each subject performed four groups of tasks, in this order:

1. Legend matching tasks for 18 counties. Each county was shown once shaded and once 

unshaded for a total of 36 tasks.

2. Pair selection tasks for 12 pairs of adjacent counties from the same class, and for 12 pairs 

of adjacent counties from different classes. Each pair was shown once shaded and once 

unshaded, for a total of 48 tasks.
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3. Region mean tasks for 15 pairs of regions, with each pair shown once shaded and once 

unshaded.

4. Region variance tasks for 15 pairs of regions, with each pair shown once shaded and once 

unshaded.

Within each of the four groups of tasks above, the same tasks (i.e. the same counties, county 

pairs, or region pairs) were used, but the order of the tasks was randomized to reduce learning 

bias.

Before a subject’s trial, the class colors were explained to the subject, as was the "higher is 

denser"  representation  used  in  the  illumination  method.  Each  subject  was  trained  on  four 

matching tasks, six pair selection tasks, four region mean tasks, and four region variance tasks. 

Variance was explained as being the degree to which densities varied from the mean. During the 

trial,  the subject’s  responses  were recorded for  later  analysis.  Each trial  took approximately 

twenty  minutes.  After  the  trial,  the  subject  was  asked  for  subjective  evaluations  of  the 

illumination.

2.6  User Study Results

The two conditions under which each task was performed were “with illumination” and “without 

illumination.”  For each task,  a  subject's  performance was defined as the fraction of correct 

responses made by the subject.  A subject's  completion time was defined as the time between 

the presentation of the task on the screen and the subject’s subsequent mouse click.
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Student's t-test for paired data was used to determine whether the subjects performed differently 

under the two conditions.  Two one-sided tests (TOST) were made to determine whether subjects 

performed equivalently.  We considered a difference in performance of up to ten percent to be 

equivalent.  In the following results, we show the 95% confidence interval of the mean of each 

measure as mean ± 1.96 standard error.  All results are summarized in Table 1.

2.6.1 Pair Selection Task

Subjects performed significantly better (p < 0.02) at selecting the denser of two adjacent counties 

of  the  same  class when  using  illumination  (accuracy  0.75  ± 0.09)  than  when  not  using 

illumination (accuracy 0.65  ± 0.04).    The performance increase was even more substantial 

among experienced subjects (0.88 versus 0.67, p < 0.001).  No conclusion could be drawn about 

the relative performance of non-experienced subjects under the two conditions.

We  also  include  histograms  to  highlight  the  differences  we  detected  with  the  summary 

statistics above (Figure 12). Without shading, subjects have a fairly equal distribution of correct 

choices, with scores varying between 40% and 90%. With shading, over half (21) of the subjects 

scored in  the  90% -  100% range (with  13 perfect  scores).  Another  point  to  note is  that  no 

subjects scored terribly low without shading. With shading, two subjects scored less than 10%. 

These subjects were not experienced with shading techniques, and may have mentally inverted 

the 3D model.

Also worth noting is that subjects scored much better (accuracy 0.65) than random chance 

(accuracy  0.50)  when  not  using  illumination,  even  though  there  was  no  difference  in  the 
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appearance of the two counties. Two subjects reported that they used the strategy of picking, as 

denser, the county that was closer to a major population center.  

For adjacent counties of the same class, subjects took more time when using illumination (3.0 

± 0.7  seconds)  than  when  not  using  illumination  (2.5  ± 0.5  seconds).  The difference  was 

significant (p = 0.010).

Subjects  performed  about  the  same  at  selecting  the  denser  of  two  adjacent  counties  of 

different  classes when  using  illumination  (accuracy  0.92  ± 0.03)  than  when  no  using 

illumination (accuracy 0.94  ± 0.02). The two conditions were equivalent  (p < 0.001) for an 

effect size of ten percent, regardless whether the subject was experienced or non-experienced.

   For adjacent counties of different classes, subjects took more time when using illumination 

(2.2  ± 0.3 seconds) than when not using illumination (1.9  ±0.2 seconds). The difference was 

significant (p < 0.001).

2.6.2 Legend Matching Task

Subjects performed equivalently at classifying counties when using illumination (accuracy 0.89 

± 0.04)  to  when  not  using  illumination  (accuracy  0.91  ± 0.03).  The  two  conditions  were 

statistically  equivalent  for  both  experienced  (p  <  0.002)  and  non-experienced  (p  <  0.003) 

subjects.   Subjects  took  equivalent  time  to  classify  when  using  illumination  (3.41  ± 0.42 

seconds) and when not using illumination (3.38  ± 0.35 seconds) (p < 0.029) considering an 

effect size of ten percent (i.e. 0.34 seconds). 

We did, however, notice that subjects performed poorly when classifying a few particular 

counties: those that fell in the deep shadow of a much denser adjacent county. With the sun 

placed in the northwest, deep shadows were cast on counties to the southeast of counties with 
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much greater population densities. An example of one such site is shown in Figure 13. In these 

cases,  the subjects  had a mean accuracy of 0.40  ± 0.15 with illumination and 0.95  ± 0.07 

without illumination.  The difference was significant (p < 0.001).

2.6.3 Region Mean and Variance Tasks

The two region tasks required the subjects to roughly estimate the aggregate measures of mean 

and variance for regions consisting of many counties. Given a pair of regions, subjects were 

asked to click on the region of greater mean or variance. 

For  the  region  mean task,  there  was  no  significant  difference  in  performance  with 

illumination (accuracy 0.97 ± 0.01) or without illumination (accuracy 0.97 ± 0.02).  The two 

conditions were statistically equivalent (p < 0.001).  For the region mean, subjects took more 

time when using illumination (3.7 ± 0.6 seconds) than when not using illumination (3.3 ± 0.4 

seconds), although no statistical conclusion could be reached.

For  the  region  variance task,  subjects  had  much  more  difficulty,  although  again  the 

performance was equivalent (p < 0.001) with illumination (accuracy 0.61 ± 0.06) and without 

illumination (accuracy 0.63  ± 0.06).  For the region variance, subjects took more time when 

using illumination (5.1  ± 0.6 seconds) than when not using illumination (4.5  ± 0.7 seconds). 

The difference was significant (p = 0.042).

All of the subjects reported that they found the region variance task to be much more difficult 

than the other tasks. Five subjects reported that they tried to envision histograms of the class 

frequency for each region and to estimate the variance from the histogram ... a daunting mental 

task.
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2.6.4 Post-trial Survey Responses

After the trial, each subject was asked to evaluate three statements on a five-point Likert Scale 

with responses “strongly agree” (SA), “agree” (A), “neutral” (N), “disagree” (D), and “strongly 

disagree” (SD). Responses from all  40 subjects were gathered.  The statements are presented 

below, and user responses are presented in  Figure 14 for statements (A), (B), and (C) listed 

below.

(A)“The illuminated choropleth map gave me a better understanding of variations within a 

region (consisting of many counties) than did the unshaded choropleth map.”

(B) “It was more difficult to determine the class of a county in the illuminated choropleth 

map than in the unshaded map.”

(C) “It  was  easier  to  see  the  boundaries  of  counties  on  the  unshaded  choropleth  map, 

compared to the illuminated choropleth map.”

Subjects were also asked if they had any further comments about the illuminated choropleth 

map. Several subjects said that the shaded map “was visually nice” or “looked more accurate” or 

“was easier to interpret”.  One comment came in various phrasings from four subjects, who said 

that the color cue, where deeper colors represent regions of denser population, competed with the 

illumination  cue,  where  lighter  shades  correspond  to  higher,  denser  regions  that  are  not  in 
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shadow. One subject said that the orange class colors were “close” and hard to distinguish in 

shadow.

3 Discussion

The real strength revealed by this study is the users’ ability to use soft shadows to identify local 

variations within classes. It is readily apparent that an illuminated choropleth map is more 

detailed than its counterpart without shadows. Our study shows that this detail adds information 

to the map in a manner that many users, especially experienced subjects, are able to understand. 

We see the statistically significant improvement in performance of non-experienced subjects as 

an indication of the intuitive nature of shadows, and the even greater improvement in 

performance of experienced participants as an indication of a capacity to learn to interpret such 

shadows.

The amount of time users spent in selecting the unit of higher population density also merits 

discussion. In the case of units in the same class, users spent significantly more time making a 

decision. This could be thought of as time used wisely. Instead of guessing which of two units of 

identical orange color is higher, users were busy incorporating information from shadows into 

their decision. This effort shows in their improved performance. 

The significant increase in the amount of time users took to select the unit of higher population 

density when comparing between different classes with illumination is a more unexpected 

finding. We would have predicted that users would have had faster response times, as both of the 
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visual variables, class color and shadows resulting from changes in perspective height, are 

designed to lead them to the same conclusion. We speculate that users may have been using this 

time to integrate these visual cues. 

The user study shows that the illuminated choropleth method does not interfere with map users’ 

ability to utilize choropleth maps for the other tasks tested in the study. The shading of class 

colors does not prevent users from matching colors to a color legend, and does not require 

significantly more time. The only exceptions we found were a few places where small areas were 

entirely overlain and obscured by the darkest parts of these shadows. These shadows could be 

toned down using other illumination models that increase the diffuse brightness at the expense of 

the directional, but such displays would have a less noticeable shadowing effect. We would 

caution against using illuminated choropleth maps with clear day illumination if important areas 

in the map design process are identified as at risk of falling under such umbrage.

Another important functionality of choropleth maps to which our method appears to do no harm 

is the user’s ability to compare the mean or variance of the attribute values between two regions. 

Our study indicates users tend to be able to estimate and compare mean values, although this 

takes more time with soft shadows. Our results imply that all of the additional detail provided by 

soft shadows is not interfering with the user’s ability to synthesize a large amount of data over a 

region. 

Our study also indicates that users tend not to be able to estimate and compare variance values. 

In one respect, finding similar results in selecting the region with greater variance is a good 
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thing. It again implies our method is not decreasing the users’ performance. In another respect, 

however, we had hoped that the information provided by soft shadows of varying lengths would 

improve the users’ ability to compare variance among regions. We suggest that the real problem 

lies in the difficulty of applying the concept of variance, a decidedly more complex statistic than 

the mean, to a choropleth map.

4 Conclusions

Our illuminated choropleth method uses unclassed heights of enumeration units to cast shadows 

that add detail and information to classed choropleth displays.  Our goal is to provide the map 

user with the ability to determine local relative changes between adjacent enumeration units in 

the same class, while not compromising the ability to compare unit colors to a legend or to 

compare aggregate measures between larger regions. 

We note that our results test only a few tasks which a user may choose to perform with an 

illuminated choropleth map. We note also that the most important difference is the user’s ability 

to differentiate between the relative population density of two adjacent enumeration units. 

Further assessment of this method could explore the ability of users to compare the relative 

density of non-adjacent polygons in a similar manner. Although much more complex, we can 

imagine scenarios in which such displays could prove useful. For example, if three square 

counties form an east-west oriented rectangle, and the western county casts a shadow on the 

central county, which in turn casts a shadow on the eastern county, the user could conclude that 

the western county is higher than the eastern. Complexities of shape and more complex 
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variations in relative height, combined with greater numbers of polygons, would certainly 

complicate this task in a manner which is difficult to predict.

There are several different levels of complexity that enter into making and interpreting a 

choropleth map. This complexity often is a reflection of considerations that may be to some 

degree in potential conflict. For example, cartographers hope to reveal map patterns, but 

distributions of geographic data are spatially complex and may be difficult to summarize well on 

any map. Monmonier (1972, p. 208) points out that, even if class boundaries account for all 

numerical values and spatial arrangements, “…it must be recognized that the statistical and the 

geographical distributions are not always cooperative.”

Another example of this complexity and potential conflict is reflected in the broad spectrum of 

studies focused on the number of choropleth classes, including ones endorsing fewer classes, 

more classes, and no classes. From a mapmaker’s perspective, opting to create an unclassed map 

allows display of all potential values, as well as eliminating the assimilating duties of the 

mapmaker. As Muller (1980, p. 107) comments “The embedded classification implies an 

interpretation which is always questionable.” If trying to moderate complexity, however, 

MacEachren’s (1982, p. 31) finding that “the number of class intervals has a greater effect on 

complexity than does the pattern of the distribution mapped.” highlights the benefit of such 

questionable interpretation.

A third example of this complexity and potential conflict is the way in which the map is used. A 

map user may not be concerned whether a map is classed or unclassed, as long as it provides 

Page 31 of 56



useful information. Gilmarten and Shelton (1989, p. 43) point to the challenges of meeting 

potentially disparate needs; “Since it is not possible to predict or control whether map readers 

will use a choropleth map to look for regional trends or to obtain tabular data for specific units 

on the map (or both), the cartographer must, ideally, try to design the map so that it will fulfill 

both potential applications.”

We see our illuminated choropleth map as one attempt to move towards harmony. In our map, 

enumeration units of varying values will be represented by changes in color, shadows, or both, 

but this will not occur in all geographic locations. Areas of relatively high heterogeneity within 

classes will be highlighted by stronger shadows, and boundaries of relatively high homogeneity 

between classes will be demarcated by weaker shadows. Our method also incorporates visual 

variables from classed and unclassed maps in a manner designed to share the visual harmony of 

objects viewed under natural lighting. Our testing indicates users are able to effectively use this 

display in a local and regional sense. 

We realize that our method is not without issues and may not be useful for every potential 

application of choropleth mapping. For example, our testing indicated that users are not able to 

match unit colors inside strong shadows to a legend. Also, we tested the user’s ability to pick the 

higher of two adjacent polygons, but not two polygons in the same class separated by some 

distance. As shadows generally are cast on adjacent polygons, we would assume this task to be 

more challenging. Also, users were tasked with identifying relative changes in population 

density; we would not expect our method to assist in more closely identifying absolute density 

values within a class.
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We also realize that this illumination approach is not the only approach that could exploit the 

prism model to enhance choropleth maps. For example, a perspective view with hidden surfaces 

revealed via semi-transparency could also help to visualize the same information. An area 

obscured from sight by one prism might be more visible using partial transparency than another 

area obscured by two. We suggest this technique would face different but similarly complex 

challenges when compared to our method. For example, as our method allows users to identify 

colors and other shadows beneath soft shadows, a perspective view method may require users to 

identify color and changes in height on overlapping semi-transparent surfaces. Alternatively, a 

dynamic prism map would allow the user to interact with the display, looking at surfaces from 

multiple perspectives. It should be noted, however, that realistic shading and shadowing are often 

used to enhance such computer graphics displays. We opt to focus our methods on creating a 

static, planimetrically correct map.

Tobler’s (1973, p. 264) concluding paragraph on unclassed choropleth maps included the 

following question: “If the assertion [that class intervals increase the readability of a map] is in 

fact valid, why then is grouping of greys into classes not also…used to enhance aerial 

photographs, or television?” We suggest that it is because gray shading and shadowing can add 

high spatial frequency information that visually complements more extensive areas of color 

representing information of lower spatial frequency in a visually intuitive manner.

Jenks and Caspell (1971) conclude that their research is focused on the definition, measurement, 

and reduction of error for classed choropleth data, but that “We have not, on the other hand, 
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provided the cartographer with a measure of the carrying capacity of a map.” Although they do 

not define carrying capacity or how it can be measured, they refer to “visual static” associated 

with an increase in the number of classes. We consider our method an attempt to limit this visual 

static, while at the same time enhancing the visual signal.
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Figure 1: An illuminated choropleth map showing population density of counties in the 

conterminous United States. 
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Figure 2: A comparison of a prism map with a classed choropleth map (from Jenks and Caspall, 

1971. Used with permission from the Association of American Geographers).
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Figure 3: A comparison of illuminated choropleth maps with a clear day illumination model and 

a directional (point source) illumination model.
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Figure 4: A classed population density map of counties in the conterminous United States using 

Jenks’ optimal method.
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Figure 5: A classed population density map of counties in the conterminous United States using 

class breaks that provide a wider distribution of more densely populated classes.
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Figure 6: An unclassed map showing a prism model of county population density, with heights 

normalized by an exponential function in Figure 7.  The  prism model is shaded according to a 

clear day illumination model.
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Figure 7: A graph of prism height vs. population density, illustrating the exponential function 

used to create a more even distribution of population density values for illumination modeling.
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Figure 8:  Selection Mode (Different Classes): The subject was asked to click on the denser of 

the two counties in different classes indicated with the blue circles near the center of the screen. 
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Figure 9:  Selection Mode (Same Class): The subject was asked to click on the denser of the two 

counties in the same class indicated with the blue circles near the center of the screen. 
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Figure 10:  Legend Matching Task: The subject was asked to click on the legend color that 

matched that of the county with the blue circle near the center of the screen. 
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Figure 11:  Region Mean and Variance Modes: The subject was asked to click on the region that 

had greater mean population density (in one test) or greater variance in population density (in 

another test). 
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Figure 12:  Histograms showing performance of subjects in selecting more densely populated of 

adjacent counties in the same class, without and with shading. Black sections of the bars 

represent users experienced with shading; gray sections represent those without experience.
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Figure 13:  An example in which matching is difficult because the county being classified 

(indicated above with the blue circles) is southeast of a county with much greater population 

density, which casts a shadow upon it. 
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Figure 14:  Participant responses to the post-trial survey. See text for statements (A), (B), and 

(C).
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