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Abstract. We describe and evaluate a computer algorithm that auto-
matically develops a surgical plan for computer assisted mosaic arthro-
plasty, a technically demanding procedure in which a set of osteochondral
plugs are transplanted from a non-load-bearing area of the joint to the
site of a cartilage defect. We found that the algorithm produced plans
that were at least as good as a human expert, had less variability, and
took less time.

1 Introduction

Cartilage degeneration is a widespread problem which occurs predominantly in
the knee, ankle, and shoulder. Articular cartilage is not vascularized and does
not naturally repair when damaged [1]. In the event of traumatic injury, this can
lead to long-term damage and a loss of bearing capacity in the joint surface.

Mosaic arthroplasty is an operation that repairs damaged cartilage by trans-
planting osteochondral plugs from a non-load-bearing part of the joint to the
site of the cartilage defect [2, 3].

Mosaic arthroplasty is a technically challenging operation. The osteochondral
plugs must be delivered so as to exactly reconstruct the original surface. But the
top surface of a plug is curved and may not be perpendicular to the axis of the
plug, so the position and orientation of each plug must be planned and achieved.

Plugs that are too high can result in poor plug integration due to micromotion
and increased contact pressure [4, 5]. Plugs that are too low can result in cartilage
necrosis and fibrocartilage overgrowth [6]. A plug with an angled surface that is
incorrectly delivered may be too high in some parts and too low in other parts.
The percentage of the repair surface that is too high is inversely correlated with
the quality of healing [7].

Computer assisted mosaic arthroplasty (CAMA) uses computer planning and
intraoperative guidance to overcome these problems. The surgical plan indicates
the position and orientation of each plug’s harvest location and delivery location.
The surgeon follows the plan using optically tracked surgical instruments or
patient-specific instrument guides [8].

The surgical plan is critical to the success of the operation. In the surgical
plan:
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– the original articular surface must be predicted as a reconstruction goal;
– the reconstructed cartilage thickness must match the original cartilage thick-

ness to avoid degeneration at the bone/cartilage interface;
– the plug harvest sites must be planned so that surface orientation of each

plug matches the predicted surface orientation at the corresponding delivery
site; and

– an optimal pattern of plugs must be planned to cover the defect site with
minimal overlapping and minimal gapping.

Manual planning for CAMA has been shown to be effective at finding harvest
and delivery sites to reconstruct the original articular surface [9]. But manual
planning is slow and requires a highly skilled human operator with knowledge of
mosaic arthroplasty and the ability to use a 3D computer interface. The quality
of a manually developed plan depends upon the skill of the operator and will be
subject to inter-operator variability.

We describe a computer algorithm that automatically builds a surgical plan
for CAMA. We show that the automatic planner achieves results that are at least
as good as those of a skilled human operator and can reconstruct the correct
surface to an accuracy of 0.3 mm RMS.

2 Related Work

Clinical evalutions have shown that surface congruency is critical to achieving
a good repair. In an animal study [4], plugs that were too high were found to
subside under weight bearing but showed fissuring, bone cysts, and poor bony
incorporation. Elevated angled grafts (with an angled tip of the plug surface
above the surrounding surface) are subject to increased contact pressure [5]
which leads to peak loading and abrasion of the plug’s surface [10]. On the
other hand, plugs that are too low may be disposed to late degradation from
inappropriate pressure [10] and have shown cartilage necrosis and fibrocartilage
overgrowth [6].

Computer navigation of surgical tools has been shown to achieve greater plug
perpendicularity and more appropriate plug depth [11] than with a freehand
operation.

Computer planning and navigation have successfully been used in retrograde
plug delivery in the human talus [12]. The planning consisted of using patient
images to manually choose a path for the surgical drill. Another study using
the talus found better plug harvesting and placement with computer assist [13].
Computer planning has also been used to match plugs from the femoral condyles
to defects in the talus [14].

Computer imaging has been used to match cartilage topography at harvest
and defect sites. One study determined the congruity between the surfaces at
a harvest site and a donor site by finding the rigid transformation between
the surfaces that minimized the RMS error. The study applied this measure to
seven cadevaeric knees to propose the best harvest sites for particular defect



sites [15]. Another study on six dog femurs used similar topographic matching
and considered different plug diameters, finding that larger plug diameters had
fewer good harvest sites [16].

Computer planning requires that the original articular surface be estimated,
since it is no longer present at the site of the defect. A cubic spline can be used
to accurately predict the original articular surface [17].

(a) (b) (c)

(d) (e)

Fig. 1. The automatic planning process. (a) A bicubic spline is placed over the defect.
(b) The defect area and harvest areas are outlined. (c) A pattern of plugs is made over
the defect, and corresponding harvest sites found. (d,e) The final plan.

3 The Planning Algorithm

We found that a surprising simple planning algorithm could obtain results at
least as good as those of a human operator.

The input to the algorithm consists of two coregistered triangle meshes: one
of the cartilage surface and one of the underlying bone. These meshes can be
obtained from segmented MRI or CT-arthrogram images. The output of the
algorithm consists of the harvest and implant positions and orientations of a set
of plugs, along with the plug dimensions.



In a preprocessing step, the original articular surface is estimated with a
bicubic spline: The operator uses a 3D interface to pick four points on the car-
tilage surface around the defect and the algorithm creates a bicubic spline over
the defect that interpolates those points and has the same tangent plan at those
points (Figure 1(a)). This method has been shown to produce a surface within
0.27 mm RMS of the original, pre-defect surface [17].

Next, the operator outlines the defect on the spline surface. This is not done
automatically because the defective cartilage usually extends beyond the area of
visibly depressed cartilage (Figure 1(b)).

Next, the operator outlines areas of the joint from which cartilage plugs may
be harvested (Figure 1(b)). This could be done automatically (but currently is
not) by incorporating known good donor sites [15, 16].

Finally, the algorithm is executed. The first phase of the algorithm builds
an optimal pattern of plugs at the defect site. The second phase finds optimal
harvest locations for each of the plugs. Results are shown in Figure 1(c,d,e).

Phase 1: Build plugs over defect

A hexagon grid is placed on the spline surface over the defect area. The initial
position and orientation of the grid is arbitrary. Hexagon centers are spaced

√
3 r

apart for plugs of radius r (in our case, r = 2.25 mm). A plug is placed at each
hexagon center, oriented perpendicular to the spline surface.

The pattern of plugs should cover as much of the defect as possible while
minimizing the overlapping of plugs, since plug stability may be reduced by
overlapping [18]. To achieve this, the algorithm finds a pattern of plugs to min-
imize the cost function

Auncovered + 0.4
∑
i

Ai

where Auncovered is the area of the defect not covered by any plug and Ai is
the area of the ith plug. An area covered by multiple plugs is counted multiple
times in the sum, which discourages overlapping, but not at the expense of too
much uncovered area. The constant 0.4 was chosen through experimentation to
balance the number of plugs against the uncovered area.

For a given pattern of plugs, the cost function is approximated by sampling
the defect area on a 0.1 mm square grid. Each grid point that is not covered by
a plug counts (0.1 mm)2 and each plug of radius r counts 0.4 π r2.

Ten thousand iterations of simulated annealing are performed to minimize the
cost function. In each iteration, three cases are considered: add a random plug;
remove a random plug; and keep the same plugs. In each of the three cases,
the position of every plug is perturbed uniformly randomly within a kr × kr
square centered at the plug’s current position on the spline surface, where k
is the “annealing temperature” which starts at one and decreases linearly with
each iteration until it becomes zero in the last iteration. Of the three patterns
considered, only the pattern of minimum cost is carried to the next iteration.

Note that plugs over the defect site are placed perpendicular to the surface.
The algorithm could be extended to permit slanted plugs and to penalize sub-
surface plug intersection, in which a plug may be undercut by another plug,



making the undercut plug more likely to loosen. We also consider plugs of only
one radius, although it would be easy for the algorithm to choose random radii
from the set of radii available among the surgical tools.

Phase 2: Find harvest locations

Given a pattern of plugs over the defect, the second phase finds optimal locations
at which to harvest those plugs. This is done in a greedy fashion: The plugs are
randomly ordered and an optimal harvest location is found for each plug, in
order.

Since the order affects the harvest locations (i.e. plugs that are later in the
order have fewer locations from which to choose) the algorithm picks ten random
orderings of the plugs, tries each, and chooses the ordering that results in the
best harvest locations.

To find the best harvest location for a particular plug, a 0.3 mm square grid
is placed over the harvest areas and each grid point is considered as a harvest
location. (Grid points that are within one diameter of an already-harvested plug
are discarded because the joint is weakened when harvest holes are too close
together.) For a particular grid point, the plug from the defect site is translated
so that the middle of its top surface is coincident with the grid point and 49
orientations are considered by varying the angle from perpendicular in 5 degree
increments from -15 to +15 degrees in both the x and y directions of the grid.
At each orientation, the rotation around the plug axis and the translation along
the plug axis are determined that give the best fit between the surface of the
plug and the surface at the harvest site. The best fitting plug is chosen and its
RMS surface error is used as the cost.

A variant of the algorithm tries to match both the cartilage surface and the
bone surface. In this case, 49 orientations are again considered and the best axial
rotation and translation are found for the cartilage surface and, separately, for
the bone surface. Then each angle between the two axial rotations is tested in
0.5 degree increments. At each such angle, the best-fit translation along the axis
is found. In this variant, the cost of a harvest location is the sum of the RMS
errors for the two surfaces.

4 Evaluation of the Algorithm

The algorithm was tested on twelve in-vivo sheep knees for which data was
gathered as part of a larger study. Each knee was scanned using a CT arthrogram
with a slice thickness of 0.625 mm. The bone and cartilage surfaces were manually
segmented from the CT images. In a minimally invasive surgery, a cartilage defect
was induced on the medial condyle with a calibrated impact. Three months later,
a second CT arthrogram was taken and the bone and cartilage surfaces manually
segmented.

The post-defect models were used for planning and the resulting plans were
evaluated in comparison to the pre-defect models. Three conditions were tested
for each knee:



– An expert human operator, who had substantial experience planning mosaic
arthroplasty, manually produced a surgical plan. The operator matched only
the cartilage surface and did not attempt to match the bone surface.

– An inexperienced operator used the planning algorithm to produce a surgical
plan that optimized the fit of only the cartilage surface.

– The inexperienced operator used the planning algorithm to produce a sur-
gical plan that optimized the fit of both the cartilage surface and the bone
surface.

Each plan was evaluated for surface congruency by computing the RMS error
between the planned cartilage surface and the pre-defect cartilage surface of
the pre-defect CT arthrogram. The RMS calculation used six points on the
circumference and one point at the center of each plug surface. A similar RMS
calculation was made for congruency at the bone surface. The percentage of
the defect surface covered by plugs was calculated. The total planning time was
recorded.

5 Results

Table 1 summarizes the results. For manual and automatic planning that con-
sidered only the cartilage surface (evaluating significance with one-sided t-tests):

– No significant difference was found in the RMS errors (manual 0.31 mm,
automatic 0.25 mm, p = 0.085), although the low p value is suggestive of a
trend in favor of automatic planning.

– Automatic planning shows a tighter variance in RMS error (± 0.06, min
0.13, max 0.38) than manual planning (±0.10, min 0.09, max 0.61), but not
to a statistically significant degree using Levene’s test for equal variances (p
= 0.17).

– No significant difference was found in the coverage of the defect surface
(manual 84%, automatic 88%, p = 0.10), although the trend is also in favor
of automatic planning.

– There was significantly less plug overlap with automatic planning (manual
16.1%, automatic 9.7%, p = 0.02).

– The automatic planning time was substantially faster (4.5 minutes) than
the reported manual planning time (30 to 45 minutes), but we cannot make
any statistical claims because the manual planning time was not measured
accurately.

When the automatic planner optimized both the cartilage and bone sur-
faces, the defect coverage remained the same at 88% and the total planning time
remained the same at 4.5 minutes. The RMS error of the cartilage surface in-
creased, as one would expect when the bone surface also had to be considered
in the optimization. Interestingly, the overall RMS error was less when only car-
tilage was considered (although not by a statistically significant amount, so we
cannot attribute any meaning to this).



Table 1. Results showing, for each measure, “average ± 95% confidence interval”. In
the Condition column, “C” denotes cartilage only and “C+B” denotes cartilage and
bone. * Unfortunately, the manual planning was not timed and the 30 to 45 minutes
shown in the table is an estimate provided by the operator. Automatic planning time
includes the time for the operator to set up the spline and regions.

Condition RMSE cartilage RMSE cartilage Coverage Overlap Time
(mm) and bone (mm) (%) (%) (minutes)

Manual, C 0.31 ± 0.10 0.31 ± 0.07 84 ± 7 16.1 ± 4.9 30 − 45∗

Auto, C 0.26 ± 0.06 0.27 ± 0.07 88 ± 3 9.7 ± 4.2 4.5 ± 1.7
Auto, C+B 0.35 ± 0.09 0.29 ± 0.06 88 ± 3 9.7 ± 4.2 4.5 ± 1.9

6 Conclusions

We have described a computer algorithm to automatically develop a surgical plan
for computer assisted mosaic arthroplasty. No statistically significant difference
was found between the RMS error of automatic planning and manual planning,
although the trends suggest that automatic planning gives better coverage, is
more accurate, and has less variance. Automatic planning produces less plug
overlap (a good feature) and the algorithm takes much less time than a highly
trained human expert and can be used by an inexperienced operater. These
results suggest that the automatic planner should be used in place of manual
planning, with the plans being subject to final approval from the surgeon.

In ongoing work, we are augmenting the automatic planner with multiple
plug radii and non-perpendicular plugs at the defect site, and will shortly be
using the automatic planner in human surgeries.
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