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Abstract

We propose a modification of the widely known Benjamin-Johnson-Hui (BJH)
cellular automaton model for single-lane traffic simulation. In particular, our
model includes a ‘slow-to-stop’ rule that exhibits more realistic microscopic
driver behaviour than the BJH model. We present some statistics related to
fuel economy and pollution generation and show that our model differs greatly
in these measures. We give concise results based on extensive simulations using
our system.

1. Introduction

An almost universal daily annoyance in most North American cities is get-
ting slowed down or stuck in traffic. Many people spend hours each day in
traffic, slowly losing their money and sanity while generating unnecessary pol-
lution. Unfortunately, in many cities the addition of more highways to reduce
the growing amount of congestion is far too expensive since the land is already
developed. Because of these limitations, if traffic management is to be improved,
it is important to understand the dynamics of car traffic flow extremely well to
facilitate the planning and prediction of high density traffic. The earliest traffic
flow models were based on fluid dynamics, but more recently cellular automata
(CA) based models have been gaining popularity. This is partly because simula-
tions are easy to develop and run very quickly (especially on designated parallel
hardware), but also since cars in traffic operate under their own power and do
not emulate particle flow based on the laws of physics particularly well.

The first study using CA for car traffic simulation was conducted by Nagel
and Schreckenberg [1], who develop a simple stochastic CA model to simulate
single-lane highway traffic. Essentially, the model says that all cars follow the
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same basic transition rules, and then move v sites at each time interval. They
increase their velocity v by 1 up to some limit as long as there are no cars v
spaces ahead of them, slow down to speed i− 1 if they see a car i spaces ahead
of them, and randomly slow down by one speed unit with some probability p.
The authors observe nontrivial, realistic simulation, particularly the transition
from laminar traffic flow to start-stop waves as density increases.

In this paper, we focus on the microscopic behaviour of cars in the BJH
model (a modification of the Nagel-Schreckenberg model) - specifically the fact
that they decelerate in a very unrealistic way. Since cars only decelerate to avoid
collisions, it is a frequent occurrence that cars drive up to a jam at maximum
speed and slow down to a stop in a single time step. In order to more closely
simulate the behaviour of human drivers, we propose a modification to the BJH
model where cars begin slowing down earlier by an amount which is a function
of their speed, the speed of the car ahead, and the distance to the car ahead.
In our simulations we investigate alternate methods for introducing new cars to
the section of road used for simulation, and also attempt to measure the average
fuel efficiency of the cars by recording the number of acceleration steps each car
takes.

In Section 2, we give a summary of selected papers relating to CA-based
traffic modelling, and we present a brief comparison of our model with other
(similar) recent extensions of the NaSch model. We describe our model in detail
in Section 3 and present simulations that compare it with the BJH model.
We experiment with an alternate method for introducing new cars to the road
during simulation in Section 4. Finally, we summarize and conclude the paper
in Section 5.

2. Summary of CA-based Traffic Simulation Models

The Nagel-Schreckenberg (NaSch) model [1] has been studied quite exten-
sively in several papers [2, 3, 4, 5, 6].

Another model developed by Benjamin, Johnson, and Hui (BJH model) [7]
is quite similar to the NaSch model, but with the addition of a ’slow-to-start’
rule. That is, a vehicle which has come to a complete stop moves forward at its
first available opportunity with probability 1−pslow, and on the time step after
that with probability pslow. The authors used this model to study the effect
of junctions on highways, finding that setting a speed limit near junctions on
single lane roads can greatly decrease the queue length to enter the road.

Since almost all major highways have two lanes or more, several researchers
have constructed multi-lane models for highway traffic. The first work in this
area was done by Rickert et al. [8], who designed a working model based on
the NaSch model. They noticed that checking for extra space when switching
lanes (’look-back’) is an important feature of their model in order to get the
realistic behaviour of laminar to start-stop traffic flow. Wagner et al. [9] design
a two-lane simulation which accounts for a faster left lane which is to be used for
passing. Using simple rules, they are able to obtain the realistic behaviour that
at higher overall densities, the left lane has a higher density than the right one.
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They remark that this correct macroscopic behaviour is fairly easy to obtain
using a CA model, and cite some failed attempts to simulate multi-lane traffic
using other types of models. Knospe et al. [10] study heterogeneous two-lane
traffic and find that even at low densities, a very small amount of slower cars
effectively cause both lanes to slow significantly. Also, they note that a system
with mostly slow cars and a small percentage of fast cars is almost identical to a
system with all slow cars. Finally, Nagel et al. [11] summarize the existing lane-
changing CA models and propose a general scheme according to which realistic
lane-changing rules can be developed.

Esser and Schreckenberg designed a complete simulation tool for urban traf-
fic in [12]. The model accounts for realistic traffic light intersections, priority
rules, parking capacities, and public transport circulation. The simulation of
large traffic networks can be performed in multiple real-time. Several other
researchers have devised related schemes [13, 14, 15, 16, 17, 18, 19].

After most of the work for this paper had been completed, a slightly more
extensive search of the literature yielded a few strongly related papers. We feel
that it is important to address some of the differences in our work, since there
are several papers which present modifications to the NaSch model.

One of the first papers to propose a modification of the NaSch model was
by Emmerich and Rank [20]. They devise a scheme which describes the change
in velocity by a matrix M , whose indices correspond to the velocity of the
current car and the gap (distance to the next car) and whose entries correspond
to the speed of the car on the next time step. This model indeed provides a
very general braking scheme, but does not depend on the velocity of the car
ahead. A model by Knospe et al. [21] suggested many modifications to the
NaSch model, the most relevant to our work being the braking according to
an ‘effective gap’. This term is defined to be a function of the ‘anticipated’
velocity of the car ahead, the ‘security gap’ (a fixed quantity set at simulation
time), and distance to the car ahead. This is intuitive, however one possible
criticism is that the ‘anticipated’ velocity of the car ahead is a function of
that car’s distance to the car ahead of it. Since drivers cannot always see
two cars ahead, this behaviour may lead to unrealistic car decisions in some
situations. An interesting study by Makowiec and Miklaszewski[22] also modifies
the microscopic interaction of cars in the NaSch model, but with a ‘looking
behind’ rule. They claim that on Polish motorways, there are several different
maximum vehicle speeds (due to tractors, bikes, horse carts, and modern cars
on the same road). Usually there is no place to pass, so the normal maximum
speed of a vehicle travelling at that speed actually increases when the distance
to the car behind it is small. Mallikarjuna and Rao [23] and Lan and Chang [24]
both experiment with the general idea of modifying the size of cells in order to
simulate heterogenous traffic, including motorcycles and trucks instead of just
cars. Bham and Benekohal [25] developed a very detailed model which they
claim is validated at the microscopic and macroscopic levels using two sets of
empirical data. Chakroborty and Maurya [26] compared this and other models
against several macroscopic benchmarking criteria, and gave their own model
as well which passed all of their benchmarks.
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Our model is perhaps simpler to implement than most of these models, since
we use only the speed of the current car, the speed of the car ahead, and the
distance between them in order to determine the velocity on the next time step.
Our modification to the BJH model, though perhaps minor, produces interesting
output and we provide at least some indication of the fuel economy or pollution
generation statistics, a characteristic that is lacking in most of the literature.

3. A Modified Version of the BJH Model

Here we investigate a modification of the well-known Benjamin-Johnson-
Hui (BJH) CA model [7] for single-lane highway traffic. This model is able to
correctly capture several of the macroscopic characteristics of real traffic using
very simple and computationally fast cellular automata, and as a result, has been
studied extensively and incorporated into several complex traffic simulators.
The primary reason we choose this slightly older model rather than one of the
recent more complex models is that it has extremely simple transition rules
which are easy to understand, so our extension will be clearer.

The BJH model is based on the NaSch model, which we will now describe
in detail. The NaSch model is defined on a one-dimensional cellular space of N
cells, usually with the toroidal (periodic) boundary condition. On a particular
time step each cell either contains a car or is empty, and each car has an integer
velocity v between 0 and vmax inclusive. Given some global configuration of cars
at various velocities, the NaSch model dictates that cars are advanced along the
road on the next time step according to the following rules, which are performed
in order and in parallel for all cars. The quantity d is the distance in cells to
the next car ahead.

1. Acceleration: if v < vmax and d > v+1, then velocity increases (v ← v+1).
2. Slowing down (collision avoidance): if d <= v, then velocity decreases

appropriately (v ← d− 1).
3. Randomization: if v > 0, with probability pfault, velocity decreases by

one (v ← v − 1).
4. Motion: the car advances v cells.

These velocity rules implicitly do not allow collisions or overtaking.
The BJH model is a fairly straightforward extension of the NaSch model -

the authors attempt to more accurately simulate the behaviour of drivers which
have come to a complete stop in traffic jams on the highway. Cars which have
velocity 0 either accelerate at their first available opportunity (as soon as there
is an empty space ahead of them) with probability 1 − pslow, or on the time
step immediately after that with probability pslow. Otherwise, they follow the
NaSch model. This scheme is intended to reflect the fact that drivers take longer
to accelerate from a complete stop, perhaps because they do not immediately
notice the car ahead of them moving, or because of the slow pick-up of their car’s
engine. So the BJH model is essentially the NaSch model with the addition of a
’slow-to-start’ rule. An example of cars following the BJH model on a small road
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Figure 1: A small example of cars following the BJH model. The dots refer to empty cells,
and the numbers represent the velocities of cars. Here the density ρ = 0.2, pfault = 0.1, and
pslow = 0.5. Cars drive from left to right.

is given in Figure 1, and a more complete picture on a larger road for a longer
period of time is given in Figure 2. In these examples, the initial configuration
is a random placement of ρN cars (0 < ρ < 1) with velocity 1, where N is the
size of the road in cells.

We noticed that cars following these models behave in an unrealistic fashion
when approaching a jam; if a car B ahead has velocity 0, then a car A may
drive up to B at velocity vmax only to brake down to 0 velocity in one time step
in the cell right behind B. This microscopically inaccurate behaviour may not
be a big issue since these models are only meant to be macroscopically realistic
in some ways, but we believe it could be interesting to explore the addition of a
’slow-to-stop’ rule. That is, we want to modify the BJH model so that cars look
farther ahead than v cells and slow down earlier in certain situations. People
typically pay attention to the velocity of the car directly ahead of them, so we
use this information to aid in the decision of how much and when to slow down.
A car’s change in velocity is then a function of its current velocity, the velocity
of the car ahead of it, and the distance between them.

In our model, the cars’ velocities are adjusted at each time step according to
the following rules. Recall that d is the distance to the next car, v is the velocity
of the current car, vnext is the velocity of the next car, pslow is the probability
that the slow-to-start rule is applied, and pfault is the probability that the car
slows down randomly. We fix vmax = 5.

1. Slow-to-Start: As in the BJH rule, if v = 0 and d > 1 then with probability
1 − pslow the car accelerates normally (this step is ignored), and with
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Figure 2: A ’zoomed-out’ view of a larger simulation of the BJH model. Black dots refer to
cars, while white space is empty road. Here the density ρ = 0.15, vmax = 5, pfault = 0.1, and
pslow = 0.5. The road is 1000 cells wide and the last 1000 evolutions out of 2000 are shown
(to reach a steady state). Cars drive from left to right, and time 0 is at the top.

probability pslow the car stays at velocity 0 on this time step (does not
move) and accelerates to v = 1 on the next time step.

2. Deceleration (when the next car is near): if d <= v and either v < vnext

or v <= 2, then the next car is either very close or going at a faster speed,
and we prevent a collision by setting v ← d − 1, but do not slow down
more than is necessary. Otherwise, if d <= v, v >= vnext, and v > 2 we
set v ← min(d − 1, v − 2) in order to possibly decelerate slightly more,
since the car ahead is slower or the same speed and the velocity of the
current car is substantial.

3. Deceleration (when the next car is far): if v < d <= 2v, then if v >=
vnext + 4, decelerate by 2 (v ← v − 2). Otherwise, if vnext + 2 <= v <=
vnext + 3 then decelerate by 1 (v ← v − 1).

4. Acceleration: if the speed has not been modified yet by one of rules 1-3
and v < vmax and d > v + 1, then v ← v + 1.

5. Randomization: if v > 0, with probability pfault, velocity decreases by
one (v ← v − 1).

6. Motion: the car advances v cells.

These rules prevent collisions and overtaking. We now attempt to justify the
second and third of these rules, which differ from the BJH model.

Consider the following scenario: a car with velocity 5 has a car 5 spaces
ahead of it with velocity 0. The BJH model would change the car’s velocity to
4, and assuming the car ahead still has not moved, the car would be forced to
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decelerate to 0 on the next time step. Our model’s second rule decelerates the
car to 3 in this case so that it is two spaces away, then on the next time step to
1 so that it is one space away, then finally to 0. We believe this is much more
realistic behaviour, since cars which see a stopped car ahead of them would
certainly attempt to slow down gradually. In less extreme situations, our model
behaves the same way as the BJH model in terms of collision avoidance. Note
that we are assuming for both models that the car ahead does not move and
the randomization rule has not been applied.

Now consider another situation: a car with velocity 5 has a car 6 spaces
ahead of it with velocity 0. The BJH model would not change the velocity
of the car, resulting in a very sharp deceleration on the next time step as it
decelerates from 5 to 0. Our model’s third rule decelerates the car to 3 so that
it is 3 spaces away on the next time step, then the second rule decelerates the
car to 1 so that it is two spaces away, then the car continues at 1 to the last
space, then stops. Again, we believe that this type of gradual deceleration is
typical of real drivers, and again we have assumed in this scenario that the car
ahead does not move and that the randomization rule has not been applied.

Although both examples involved cars ahead which were stopped, the de-
celeration rules apply whenever a car is going significantly faster than the car
ahead of it. While the car ahead with velocity 0 is the most illustrative case,
the above examples could also be considered for different ’car ahead’ speeds of
1 or 2.

An example of cars following our ’slow-to-stop’ model is given in Figure 3.
In this example, the simulation parameters are exactly the same as in Figure 2.

One would think that on a real highway with a fairly low car density, where a
small jam is visible from a distance, drivers would slow down enough beforehand
to allow the stopped cars to continue. The ’slow-to-stop’ rule causes drivers to
go slower when approaching jams, and as we conjectured this added foresight
seems to help to slow down cars enough before the jam so as to let it dissipate
on its own over time. There are fewer long jams with many cars at a complete
stop, and instead there appear to be many slowdowns to avoid these situations,
which we think is fairly accurate behaviour at medium traffic densities.

In Figure 4 we give the so-called ‘fundamental diagram’ for our model.
We were interested to discover the impact on fuel economy that the ’slow-to-

stop’ rule would have on the BJH model, so the average number of acceleration
cycles and loops driven per car were recorded. The number of accelerations
per car was recorded by simply incrementing a counter at each time step by an
amount equal to the number of cars whose velocity increased by 1 on that time
step. The number of loops driven per car was counted by incrementing a counter
each time a car reached the end of the road and started back at the beginning
of it. These two quantities provide at least a rough idea of fuel economy. For
the simulation parameters used in Figures 2 and 3 averaged over 10 iterations,
it was found that the average number of acceleration cycles per car for the BJH
model and the slow-to-stop model was 134.3 and 216.7 respectively, and average
number of loops driven per car was 3.7 and 3.4 respectively. It is very interesting
that although the ’slow-to-stop’ cars had several more acceleration cycles (about
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Figure 3: A ’zoomed-out’ view of a larger simulation of our ’slow-to-stop’ model. Black dots
refer to cars, while white space is empty road. The simulation parameters used to produce
this output are the same as those used for Figure 2. Cars drive from left to right, and time 0
is at the top.

Figure 4: The ‘fundamental diagram’ for our model. Each point represents the result from the
latter 1000 iterations out of 2000 iterations (to reach steady state) on a road of length 1000
starting from a random configuration. Car density was set from 0 to 0.8, in intervals of 0.02,
and ten simulations were performed for each density. pfault was set to 0.1, and pslow = 0.5.
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Figure 5: A fuel economy diagram comparing our model with the BJH model. Each point
represents the result from the latter 1000 iterations out of 2000 iterations (to reach steady
state) on a road of length 1000 starting from a random configuration. The same simulation
parameters as in Figure 4 were used, but average car speed and average number of acceleration
cycles per car were recorded instead.

61% more), cars travelled a very similar distance in the same amount of time.
Since ’slow-to-stop’ cars tend to slow down more often, the two models probably
had similar distance results because in the BJH model cars spend more time in
complete jams, whereas in our model cars tend to slow down rather than stop
completely.

This type of fuel economy indicator (comparing average number of acceler-
ation cycles per car among simulations with a similar average car velocity) can
be seen more clearly in Figure 5. We can see that for very low or very high
average car velocities (resp. very high or very low ρ values), the two models
have fairly similar fuel consumption characteristics, but in the middle range our
slow-to-stop model causes cars to accelerate much more often. We think this
is probably more realistic, since in the BJH model cars are mostly either at a
complete stop, or are going at maximum speed (as in Figure 2).

4. Simulation using Alternate Car Arrival Rules

Up to this point our simulations have been carried out using a ’circular’
road - that is, there are a fixed number of cells at any given time which are in
the nonempty state in a one-dimensional cellular automaton of fixed size and
periodic boundary conditions. One possible drawback of this approach is that
periodic trends such as the unending backward propagation of a traffic jam (see
Figure 2) may not occur in reality since roads are typically not circular. If we
want to simulate a stretch of single-lane road more accurately, we should allow
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cars to enter the road (with arrival times following some random distribution)
and leave it once they have travelled through it. In this section, we address some
alternative methods for simulating the movement of cars on a stretch of single-
lane road with a particular traffic density, and repeat some of our experiments
from the previous section.

We want cars to enter the road at a rate equal to the traffic density, and we
want these arrivals to be random. One possibly intuitive way to achieve this type
of behaviour in continuous time is by having the cars arrive at the start of the
stretch of road as a Poisson process with rate λ, where λ is calibrated to achieve
a desired average traffic density. Since a Poisson process has Exponential(λ)
interarrival times, it is easy to randomly generate the arrival time of the next
car. However, we need the arrivals to happen at discrete time steps. We propose
the following scheme to achieve this goal.

We precompute enough pseudorandom samples of an Exponential(λ) random
variable in order to obtain arrival times for the entire simulation, then round
each to the nearest time step. Note that these pseudorandom samples are readily
computed as F−1(U), where U is a Uniform(0,1) random variable and F is the
distribution function of an Exponential(λ) random variable. A queue can be
used to ’store’ cars which arrive on the same time step until there is space for
them to enter the road. The question of how to transfer cars from the arrival
queue to the road (i.e. where to place them, and what initial velocity to give
them) is an important one. We explore two different schemes for doing this
transfer.

The most simple scheme we conceived is the following. If at time t the queue
is nonempty and there is not a car in the first cell of the road, then at time t+1
the car at the head of the queue will enter the first cell, and shall have velocity
v, where v is the minimum of vmax and the number of empty cells between the
first cell and the next nonempty cell. In Figure 6, we can see the results of a
short simulation using this method. It is clear that the simulation quickly falls
into a pattern where the first car is added with velocity 0. The queue never
has a chance to empty for reasonable rate λ, and we do not see any interesting
behaviour on the road because there are not enough cars on it. If we increase λ
we simply have the same problem, and if we decrease it then the road does not
have a large enough density to be interesting.

In an attempt to avoid the problem of having the queue fill up while cars
enter the road with zero velocity, we can try to relax the restriction that only
one car may enter the road per time step. At time step t, if the nearest car
is d spaces away from the start of the stretch of road, we shall add a new car
to the road at time step t + 1 at a position which is the minimum of d − 1
and vmax (either the space right behind the car, or the space vmax cells away
from the start). The reason for the latter restriction is to prevent cars from
entering the road at a position they could not possibly have reached in one time
step. The car is given an initial velocity equal to the minimum of vmax and the
number of empty cells between it and the next car. This process of adding cars
is repeated as many times as possible, as long as the queue is still nonempty, at
each time step. In Figure 7, we can see the results of a short simulation using
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Figure 6: A small example of cars following the ’slow-to-stop’ model, with Poisson arrivals
instead of a circular road. The dots refer to empty cells, and the numbers represent the
velocities of cars. Here the realized density ρ = 0.10, pfault = 0.1, and pslow = 0.5. The rate
of the Poisson process λ = 0.8. Cars drive from left to right, and time steps go from top to
bottom.

this method, and again we have the same problem of the simulation falling into
a pattern started by adding a car to the first cell with velocity 0. Essentially,
whenever we have several cars arriving on the same time step, a jam occurs, and
only has a very short distance to propagate backwards before the beginning of
the road is reached and the queue begins to fill up. The queue never has a chance
to empty for reasonable rate λ, and we do not see any interesting behaviour on
the road because there are not enough cars on it. There is the same issue with
increasing or decreasing λ - it is not possible to see any interesting or realistic
behaviour because we cannot achieve high traffic densities.

It seems that since there are problems with converting the continuous time
Poisson process into a discrete arrival model, it makes sense to try a discrete
process. In particular, we will investigate using a Bernoulli process to determine
whether or not to add a car to the road in position 0, the leftmost cell in the
array, at each time step (whenever position 0 is empty). Essentially a Bernoulli
process is a sequence of coin flips, possibly with a biased coin. At each time
step, the outcome of a flip determines whether or not a car is added to the
road. We let this probability that a car is added be padd. The initial velocity of
the car is determined by a vector of probabilities, one for each possible starting
velocity:

{pveli}
vmax
i=0

where
vmax∑
i=0

pveli = 1.

These probabilities define a partition of the interval [0,1], so the car’s velocity
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Figure 7: Another small example of cars following the ’slow-to-stop’ model, with Poisson
arrivals instead of a circular road. Multiple cars are allowed to enter the road on the same
time step. The dots refer to empty cells, and the numbers represent the velocities of cars.
Here the realized density ρ = 0.10, pfault = 0.1, and pslow = 0.5. The rate of the Poisson
process λ = 0.5. Cars drive from left to right, and time steps go from top to bottom.

is determined by sampling a Uniform(0,1) random variable and recording in
which section of the partition the sample lies. If the distance to the next car
is less than vmax, then the velocity is selected from among the velocities less
than vmax. In Figure 8 we show a zoomed out view of a typical simulation
using Bernoulli process arrivals. This simulation realized an ’interesting’ average
traffic density of 16.3%. It is clear that traffic jams occurred, although most
seem to form fairly close to the start of the road. A downside of this new
approach is that we cannot see how these particular jams grow or dissipate since
they quickly propagate back to the start of the road. However, here it seems
that the Bernoulli process arrival method for simulating traffic using CA has
some potential validity. Further investigation is certainly needed. For example,
we did not try very many configurations of the pvel vector, and it is not well
understood how this would affect the simulation, or which configurations would
most closely simulate real traffic.

In Figure 9, we give the fundamental diagram for our model using Bernoulli
process arrivals. Using this method we cannot achieve densities higher than
about 17%, but this should be sufficient for some applications.

In this section we experimented with some alternate methods for simulating
a single-lane highway using CA. Instead of simply populating the cellular array
with cars and applying periodic boundary conditions, we tried to add new cars
to the start of the road using random arrival times. At first it was hypothesized
that cars arriving as a Poisson Process may provide a more realistic simulation
than the standard method which essentially assumes a circular road, but after
some testing we found that the specifics of how cars are added to the road
(i.e. at what initial position and velocity, and how many at each time step) are
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Figure 8: A ’zoomed-out’ view of a larger simulation of our ’slow-to-stop’ model using Bernoulli
process arrivals. Black dots refer to cars, while white space is empty road. Here vmax = 5,
pfault = 0.1, pslow = 0.5, padd = 0.8, pvel2 = pvel3 = 0.25, and pvel4 = 0.5. The road
is 1000 cells wide and the last 1000 evolutions out of 1400 are shown so that the road has
time to populate with cars, since it starts out empty. The realized average car density for the
simulation shown is 16.3%. Cars drive from left to right, and time 0 is at the top.

Figure 9: The ‘fundamental diagram’ for our model using Bernoulli process arrivals. Each
point represents the result from the latter 1000 iterations out of 1400 iterations on a road of
length 1000. The probability of adding a car on a given time step, padd, was set from 0.2
to 1 in intervals of 0.02, and ten simulations were performed for each padd. pfault = 0.1,
pslow = 0.5, pvel2 = pvel3 = 0.25, and pvel4 = 0.5.
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difficult to determine so that roads with high traffic densities can be simulated.
Not only has this Poisson process arrival model shown itself to be difficult to
calibrate and discretize, but it may also require a significant amount of work to
actually program onto a Field Programmable Gate Array (FPGA) [27] device
for fast CA simulation. Structures such as the queue and the list of arrival
times were easy to implement in our high-level simulator, but are not so easily
fabricated in CA-specific parallel hardware. Our second approach involved using
a discrete (Bernoulli) process to determine whether or not to add a car with
random velocity to the road. This appeared to be a more useful model since
it was possible to obtain high enough traffic densities so that ’jamming waves’
occurred.

5. Conclusion and Future Work

We have presented a modification of the well-known BJH model for single
lane car traffic, designed to simulate the braking behaviour of cars more cor-
rectly. We have provided the fundamental diagram for our model as well as some
supplemental simulation results, and have recorded a statistic proportional to
fuel economy and the amount of pollution generated. We have also investigated
some different ways to simulate adding new cars to a stretch of road instead
of using CA with circular boundary conditions, and had some interesting re-
sults using Bernoulli process arrivals. The simulator1 we have constructed is
fairly simple to understand and modify, and could be a useful tool for future
researchers to incorporate into their work in this area. It performs an iteration
of cars moving on a road in O(L) time, where L is the length of the road - of
course, a parallel implementation could do this in constant time.

Comparison with empirical traffic data is needed in order to tell if our model
provides realistic figures for fuel economy and general driving and jamming
characteristics. We believe it may be interesting to compare traffic data from
North American traffic networks, since there currently appears to be a shortage
of this type of comparison in the literature.
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