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Abstract The neighbourhood of a language L consists of all strings that are within
a given distance from a string of L. For example, additive distances or the prefix-
distance are regularity preserving in the sense that the neighbourhood of a regular
language is always regular. For error detection and error correction applications an
important question is to determine the size of the minimal deterministic finite au-
tomaton (DFA) needed to recognize the neighbourhood of a language recognized
by an n state DFA. This paper surveys recent work on the state complexity of neigh-
bourhoods of regularity preserving distances.

1 Introduction

Distance is a fundamental concept in mathematics which gives a numerical value
to express the “closeness” of two objects. How we define “closeness” depends on
what the objects we want to compare are and why we want to compare them. Here
the objects we are interested in are strings, or sequences of symbols. Strings are
particularly important in computer science, where many different kinds of objects
are often represented as sequences of symbols.

A distance between strings can be extended into a distance between sets of
strings, or languages. There are various ways to extend distances from strings to
languages which are motivated by a number of applications, such as specification re-
pair [1], computational biology [23], and error detection in communication channels
[15, 18]. The Encyclopedia of Distances by Deza and Deza [7] contains an extensive
list of distances that are used across a large number of different fields, including ge-
ometry, biology, coding theory, image processing, and physics, among others. For
each of these definitions, we can ask questions about the behaviour of these dis-
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tances and their properties. The computational question typically considered is how
hard it is to compute the distance between given languages [11, 16, 13, 27].

Suppose we are given a distance d between strings. A mathematically elegant
extension of d to languages L1 and L2 is the Hausdorff distance [6, 7], which gives
a good overall measure of the similarity of L1 and L2. On the other hand, for er-
ror detection and error correction applications when the distance function is used to
measure the number of errors in strings, the natural way to define the distance be-
tween languages L1 and L2 is to take simply the distance between two closest strings
in L1 and L2, respectively. If we assume that errors have unit weight, then L1 and L2
having distance r means that we can distinguish strings of L1 and L2, respectively,
on a channel that introduces at most r− 1 errors [12, 17]. A related notion is the
inner distance (or self-distance) of a language: if the distance of any two distinct
strings of a language L is at least r, the language L corrects r−1 errors [13, 15, 18]

The neighbourhood of radius r of a language L consists of all strings that are
within distance at most r from a string of L. We say that a distance d is regularity
preserving if the neighbourhood of a regular language with respect to d is always
regular. This gives rise to the question how large is the deterministic finite automaton
(DFA) needed to recognize the neigbourhood of a regular language. Roughly speak-
ing, determining the optimal size of the DFA for the neighbourhood gives the state
complexity of error detection. Note that since complementation does not change the
size of a DFA, the size of the minimal DFA for the neighbourhood of L of radius r
is equal to the state complexity of the set of strings that have distance at least r+1
from any string in L.1 Over the last 20 years there has been much work on the state
complexity of various regularity preserving operations and the reader can find more
references in the survey [10].

It is known that the neighbourhood of a regular language with respect to an ad-
ditive distance or additive quasi-distance [5] or with respect to the prefix distance
and its variants [6] is always regular. The state complexity of neighbourhoods with
respect to the Hamming distance was first considered by Povarov [28]. A tight lower
bound for general additive distances was given by the current authors, however, a
limitation is that the alphabet size depends on the size of the original DFA.

This paper surveys algorithmic properties and descriptional complexity of com-
monly used distance measures between sets of strings and, in particular, recent work
on the state complexity of regularity preserving distances and related questions,
such as approximate pattern matching. The contents of the paper is as follows. In
the next section we recall some basic definitions on finite automata and section 3
discusses distances between languages and regularity preserving distances. Descrip-
tional complexity of neighbourhoods of regular languages is discussed in section 4
and the last section highlights some open problems and further research topics on
the descriptional complexity of error channels.

1 Strictly speaking, for incomplete DFAs the state complexity of L and the complement of L,
respectively, may differ by one.
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2 Definitions

We assume that the reader is familiar with the basics of finite automata and regular
languages and below we just fix some notations. All unexplained notions can be
found e.g. in the texts by Shallit [33] or Yu [34].

In the following Σ stands always for a finite alphabet and Σ ∗ is the set of strings
over Σ . The length of a string w∈ Σ ∗ is |w| and ε is the empty string. For 1≤ i≤ |w|,
wi stands for the ith symbol of w. The reversal of a string w is wR =w|w|w|w|−1 · · ·w1.
If w = xyz we say that x is a prefix, z is a suffix and y is a substring of w. Here any
of the strings x, y, z may be ε .

A nondeterministic finite automaton (NFA) is a tuple A = (Σ ,Q,δ ,Q0,F) where
Σ is the input alphabet, Q is the finite set of states, δ : Q×Σ→ 2Q is the multivalued
transition function, Q0 ⊆ Q is the set of initial states and F ⊆ Q is the set of final
states. In the usual way δ is extended as a function Q×Σ ∗→ 2Q and the language
accepted by A is L(A) = {w ∈ Σ ∗ | δ (Q0,w)∩F 6= /0}. The automaton A is a deter-
ministic finite automaton (DFA) if |Q0|= 1 and δ is a single valued partial function.
If δ is a total function, the DFA A is complete. Note that our definition allows DFAs
to be incomplete, i.e., some transitions may be undefined. In cases where the transi-
tions function is required to be always defined we use the term “complete DFA”. It
is well known that the deterministic and nondeterministic finite automata recognize
the class of regular languages.

The (right) Kleene congruence of a language L⊆ Σ ∗ is the relation≡L⊆ Σ ∗×Σ ∗

defined by setting x≡L y iff [(∀z ∈ Σ ∗) xz ∈ L⇔ yz ∈ L]. The language L is regular
if and only if the index of ≡L is finite and, in this case, the index of ≡L is equal to
the size of the minimal complete DFA for L [33]. For a given regular language L, the
number of states of the minimal incomplete and minimal complete DFA recognizing
L differ by at most one.

By the state complexity of a regular language L, sc(L), we mean the number of
states of the minimal incomplete DFA recognizing L. The nondeterministic state
complexity of L, nsc(L), is the number of states of a minimal NFA recognizing L.
Note that a state minimal NFA for a regular language need not be unique.

3 Distance measures on strings and sets of strings

A distance on strings over Σ is a function d : Σ ∗×Σ ∗ → Q which for all strings
x,y,z ∈ Σ ∗ satisfies the following

1. d(x,y) = 0 if and only if x = y,
2. d(x,y) = d(y,x) (symmetry),
3. d(x,z)≤ d(x,y)+d(y,z) (triangle-inequality).

From the above conditions it follows easily that d(x,y) must be non-negative for all
x,y ∈ Σ ∗.
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A quasi-distance is a function for which the first condition is weakened from
“iff” to “if”, that is, a quasi-distance of two distinct strings may be zero. If d is a
quasi-distance on Σ , we can define an equivalence relation∼d on Σ by setting x∼d y
if and only if d(x,y) = 0. Then the mapping d′([x]∼d , [y]∼d ) = d(x,y) is a distance
over Σ ∗/∼d [5].

A quasi-distance d is integral if for all strings x and y, d(x,y) ∈ N. Note that a
distance is a special case of a quasi-distance and all properties that hold for quasi-
distances apply also to distances.

We now recall the definition of some commonly used distance measures on
strings. The Hamming distance of two equal length strings x and y counts the num-
ber of positions in which x differs from y. Formally, the Hamming distance between
strings x,y ∈ Σ ∗ is defined as

dH(x,y) =

{
|{ 1≤ i≤ |w| | xi 6= yi }| if |x|= |y|,
undefined otherwise.

The distance is defined only when x is the same length as y.
For equal length strings Hamming distance counts the number of substitution op-

erations needed to transform x into y. A natural extension for all pairs of strings is
the Levenshtein distance [21], also called the edit distance, which counts the num-
ber of atomic substitution, insertion and deletion operations required to transform x
into y. Formally the Levenshtein distance can be defined in terms of error systems
considered by Kari and Konstantinidis [12] as a formalization of error in terms of
formal languages, see also [14]. An error system is a formal language over the al-
phabet of edit operations. For an alphabet Σ , let EΣ be the alphabet of edit operations
over Σ defined by

EΣ = { (a/b) | a,b ∈ Σ ∪{ε},ab 6= ε }.

An error is an edit operation (a/b) where a 6= b. An edit string is a string over EΣ .
The weight |e|6= of an edit string e is the number of errors in e. For an edit string e =
(a1/b1)(a2/b2) · · ·(an/bn), we call x = a1a2 · · ·an the input part and y = b1b2 · · ·bn
the output part of e (ai,bi ∈ Σ ∪{ε}), i = 1, . . . ,n).

Now the edit distance between strings x and y, de(x,y), is defined as the minimum
weight edit string e having x (respectively, y) as the input (respectively, the output)
part. The above definition has assigned weight one to all errors. It is possible to
consider also definitions where the weights need not be equal [11, 12]. General edit
distances are examples of additive quasi-distances considered in subsection 3.2.

Example 1. An edit string to transform the string hiphop into lollipop is

e1 =
ε

l
h
o

i
l

p
l

h
i

ε

p
o
o

p
p
.

The length of this edit string is 8 and its weight is 6.
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The edit string e1 is not a minimum weight edit string between the given strings.
The edit distance of the string hiphop and lollipop is 5, via the edit string

h
l

ε

o
ε

l
ε

l
i
i

p
p

h
ε

o
o

p
p
.

Instead of counting the number of edit operations, the similarity of strings can be
defined by way of their longest common prefix, suffix, or substring, respectively [6].
A parameterized prefix distance between regular languages has been considered
by Kutrib et al. [19] for estimating the fault tolerance of information transmission
applications. For example, the prefix distance of strings x and y is the sum of the
length of the suffix of x and the suffix of y that occurs after their longest common
prefix. Formally it is defined by

dp(x,y) = |x|+ |y|−2 ·max
z∈Σ∗
{|z| | x,y ∈ z ·Σ ∗}.

The definitions of the suffix distance and substring distance are analogous.2

Example 2. The strings yorkdale and yorkville have a prefix distance of 9 via their
longest common prefix york. The strings woodbine and guildwood have a substring
distance of 9 through their longest common substring wood. The strings parkdale
and riverdale have a suffix distance of 9 through the longest common suffix dale.

3.1 Distance between languages

If d is a distance on strings over Σ , the natural way to define the distance between a
string w ∈ Σ ∗ and a language L⊆ Σ ∗ is

d(w,L) = inf{d(w,w′) | w′ ∈ L}.

We want to further extend the definition to measure the distance between two lan-
guages, or sets of strings. The relative distance [6] of the language L1 to the language
L2 is defined as

d(L1|L2) = sup{d(w1,L2) | w1 ∈ L1}.

The bounded repair problem [1] consists of deciding whether or not the relative
edit distance of the restriction language L1 to the target language L2 is finite. The
bounded repair problem (in the general non-streaming case) is PSPACE-complete
when the restriction and target language are specified by NFAs and it is coNP-
complete when the restriction language is specified by an NFA and the target lan-
guage by a DFA [1]. The coNP-hardness result holds also when the restriction lan-
guage is specified by a DFA. A variant of the bounded repair problem asks, roughly

2 The latter is called in [6] subword distance but this term has been used also for a distance defined
in terms of the longest noncontinuous subword [22].
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speaking, what is the number of edits per symbol of a string w in the restriction lan-
guage that is needed to transform w to a string of the target language [2]. Chatterjee
et al. [4] have studied systematically the complexity of the closely related threshold
edit distance problem for pushdown automata and finite automata.

Note that the relative distance is not, in general, symmetric. In order to satisfy
symmetry, Choffrut and Pighizzini [6] use the Hausdorff distance to define the dis-
tance between L1 and L2 by taking the maximum value

dHdorff(L1,L2) = max{ d(L1|L2), d(L2|L1) }.

The relative edit distance between regular languages was shown to be computable
by reducing it to the limitedness problem for distance automata [6], and Leung and
Podolskiy [20] have given an exponential time algorithm as well as a PSPACE-
hardness lower bound for the limitedness problem. As mentioned above, a PSPACE
algorithm for the relative distance between regular languages is known from the
more recent work on the bounded repair problem [1].

The Hausdorff distance having a small value means, intuitively, that every string
of L1 is close to some strings of L2 and vice versa, that is, the binary relation L1×L2
is “almost reflexive” with respect to the distance under consideration [6].

In the above sense the Hausdorff distance gives a good measure of similarity
between languages. However, in error detection applications we want to ensure that
every string of L1 is at some minimum distance from every string of L2 and vice
versa. Thus, in the following we extend a distance from strings to languages simply
by taking the smallest distance of two strings in the respective languages:

d(L1,L2) = inf{ d(w1,w2) | w1 ∈ L1,w2 ∈ L2 }.

Unless otherwise meantioned, in the following when speaking about the edit dis-
tance (or some other distance measure) for languages, we mean the above definition.
The inner distance of a language L [16] is

d(L) = inf{ d(w,z) | w,z ∈ L, w 6= z }.

The maximal error-detecting capability of a language L, in the sense defined by
Konstantinidis and Silva [18], is one less than the inner distance of L.

The edit distance between two regular languages can be computed in polynomial
time and the corresponding question for context-free languages is unsolvable [23].
Also the edit distance between a regular language and a context-free language can
be computed in polynomial time [11].

3.2 Regularity preserving distances

We can consider the topological notion of neighbourhoods, or balls, of radius r with
respect to a given distance d on strings. Informally, a neighbourhood of a language
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L is the set of strings which are at most a distance r away from some string in L
according to the distance measure under consideration.

Formally, the neighbourhood of radius r≥ 0 of a language L under quasi-distance
d is defined as

E(L,d,r) = { x ∈ Σ
∗ | (∃y ∈ L) d(x,y)≤ r }.

Suppose that the distance d measures the number of errors introduced in an infor-
mation transmission channel [14, 12, 18]. Then E(L,d,r) consists of all strings that
a channel that introduces at most r errors can output when the input is a string of
L. In other words, the complement of E(L,d,r) is the unique maximal language L′

such that d(L,L′)> r.
Using the notion of neighbourhood we define the following notions on quasi-

distances:

Definition 1. Let d be a quasi-distance on Σ ∗. We say that d is finite if, for all w∈Σ ∗

and r ≥ 0 the neighbourhood E({w},d,r) is finite.
We say that d is regularity preserving if for all regular languages L and r≥ 0, the

neighbourhood E(L,d,r) is regular.

For example, the edit, prefix, suffix and substring-distances are clearly all finite.
On the other hand, it is known that finiteness of a distance d does not guarantee
that d is regularity preserving [5]. Calude et al. [5] introduced a notion of additivity
that is sufficient to guarantee that a quasi-distance preserves regularity. We say that a
quasi-distance is additive if it respects composition of strings in the following sense.

Definition 2. A quasi-distance d on Σ ∗ is additive if for all w1,w2 ∈ Σ ∗ and r ≥ 0,

E({w1w2},d,r) =
⋃

r1+r2=r
E({w1},d,r1) ·E({w2},d,r2), (1)

Informally the additivity of d means that any neighbourhood of radius r of a con-
catenation of two strings w1w2 consists of exactly all the language concatenations
of neighbourhoods of w1 and w2 whose radii sum up to r. An additive distance is
always finite but additive quasi-distances need not be finite [5].

It is easy to verify that the edit distance de is additive. For the edit distance the
inclusion from left to right in (1) holds directly by definition and verifying the con-
verse inclusion needs a short proof [5]. Also, the Hamming distance can be viewed
as an additive distance if we define that the cost of deletions and insertions is infinite,
that is, the distance between symbols of Σ and ε is defined to be infinite.

The additivity property is sufficient to guarantee that any neighbourhood of a
regular language is regular.

Theorem 1 ([5]). An additive quasi-distance preserves regularity.

For a given DFA A and radius r ≥ 0, the original proof of Theorem 1 in [5]
first verifies that the neighbourhoods of individual alphabet symbols are regular and
then using this property and additivity of the quasi-distance d constructs an NFA for
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the neighbourhood E(L(A),d,r). The construction is far from optimal from the state
complexity point of view (since it results only in an NFA that, in general, needs to be
determinized) and in the next section we will discuss constructions with better state
complexity. Schulz and Mihov [32] have given a time efficient DFA construction
for the neighbourhood of a single string w: if the radius is viewed as a constant, the
DFA can be constructed in time linear in the length of w.

On the other hand, additivity is not necessary for a distance to preserve recog-
nizability. It is clear that the prefix-, suffix- or substring distances are not additive.
However, given a DFA A it is easy to construct an NFA B that recognizes a neigh-
bourhood of L(A) with respect to the prefix-distance by, roughly speaking, guessing
the longest common prefix wp of the input and a string in L(A), and then counting
the length of the remaining suffix of the input. Naturally the number of states of B
has to depend on the radius, and depending on the state the simulated computation
of A ends in, the NFA B can “know” the length of the shortest suffix that completes
wp to a string of L(A). An analogous construction works for the suffix- and the
substring distance.

Theorem 2 ([6, 26]). The prefix-, suffix- and substring distances preserve regularity.

4 State complexity of neighbourhoods

A (combinatorial) channel is, in general, a binary relation on strings describing
all input-output situations permitted by the channel. For more information on er-
ror channels and error detection we refer the reader e.g. to [8, 12, 15, 18]. If all
substitution, insertion and deletion errors have a unit cost, the number of errors in-
troduced by the channel is upper bounded by the edit distance of an input–output
pair, and when using errors with general weights (including possibly zero weight)
we can bound the number of errors by an additive quasi-distance.

Now assume that our channel C introduces at most r errors and consider a reg-
ular language L that is recognized by a DFA with n states. The the complement of
the neighbourhood E(L,de,2r+1) is the unique maximal language L′ such that we
can distinguish outputs produced by C on inputs from L and L′, respectively. Com-
plementation changes the size of a minimal incomplete DFA by at most one. This
means that determining the state complexity of the neighhourhood E(L,de,2r+ 1)
as a function of n can be viewed as the state complexity of error detection on a
channel with at most r errors.

Povarov [28] was the first to systematically investigate the state complexity of
Hamming-neighbourhoods. Note that a Hamming-neighbourhood of radius r can
be viewed as a radius r neighbourhood where the underlying edit distance assigns
value r + 1 to all insertion and deletion operations, and in this way the Hamming
distance can be interpreted as a special case of an additive distance.

We begin by recalling the NFA construction for Hamming neighbourhoods due
to Povarov [28] since it is used for the first upper bound for deterministic state
complexity, as well as in later constructions from [25]. An alternative proof for the
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upper bound of Theorem 3 based on finite transducers can be found in [29]. Recall
that dH denotes the Hamming distance.

Theorem 3 ([28, 29]). If L⊆ Σ ∗ has an NFA with n states and r ∈ N, then

nsc(E(L,dH ,r))≤ n · (r+1).

For every r ∈ N and n > r there exists an n-state NFA A over a two letter alphabet
such that

nsc(E(L(A),dH ,r) = n · (r+1).

Proof sketch for the upper bound. Suppose L is recognized by an NFA A =
(Σ ,Q,δ ,q0,FA). The neighbourhood E(L(A),dH ,r) is recognized by an NFA

B = (Σ ,Q×{0,1, . . . ,r},γ,(q0,0),FA×{0,1, . . . ,r}),

where the transitions of γ are defined by setting for q ∈ Q, 0≤ i≤ r and b ∈ Σ :

γ((q, i),b) =

{
{(p, i) | p ∈ δ (q,b)}∪{(p, i+1) | (∃c ∈ Σ) p ∈ δ (q,c)} if i < r,
{(p, i) | p ∈ δ (q,b)} if i = r.

The first component of the state of B simulates a computation of A on some input
(possibly containing errors), and the second component keeps track of the cumula-
tive error. Note that the definition of γ allows the possibility of increasing the value
of the second component also on a transition with the correct input symbol (the
case when c = b). These transitions, although redundant, clearly do not change the
language of B. ut

Theorem 3 is stated in [28] using the Hamming distance and the same upper
bound straightforwardly translates for any additive integral quasi-distance. In the
NFA construction the set of states remains Q×{0,1, . . . ,r} and, when the input
symbol is b, an error transition on c ∈ Σ ∪{ε} takes state (q, i), (q ∈Q, 0≤ i≤ r) to
all possible states (p, i+d(b,c)), where i+d(b,c)≤ r and p is reached from state q
on input c in the original NFA. Additionally the construction adds ε-transitions that
simulate an insertion operation.

Corollary 1. If L is recognized by an NFA with n states, d is an additive integral
quasi-distance and r ∈ N0, then

nsc(E(L,d,r))≤ n · (r+1).

The derivation of an upper bound for the deterministic state complexity of Ham-
ming neighbourhoods uses the NFA construction of the proof of Theorem 3 and the
upper bound for the number of reachable states for the corresponding DFA makes
use of the redundant transitions (p, i+1) ∈ γ((q, i),b) where p ∈ δ (q,b) in the def-
inition of the NFA transition relation. Since [28] uses complete DFAs, below we
translate the upper bound construction also for incomplete DFAs. The lower bound
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of Theorem 4 for neighbourhoods of radius one uses a construction where the mini-
mal DFA for the Hamming neighbourhood does not have a dead state which means
that the same lower bound holds when state complexity is based on incomplete
DFAs.

Theorem 4 ([28]).

(i) If A is a complete DFA with n states and r ∈ N0, then E(L(A),dH ,r)) has a
complete DFA with at most 1

2 ·n ·2
nr +1 states.

(ii) If A is an incomplete DFA with n states and r ∈ N0, then E(L(A),dH ,r)) has
an incomplete DFA with at most 1

2 · (n+2) ·2nr states.
(iii) For all n ≥ 4, there exists a complete DFA A with n states defined over a

binary alphabet such that

sc(E(L(A),dH ,1) =
3
8

n ·2n−2n−4 +n.

Proof. The proofs of (i) and (iii) can be found in [28]. Here we just translate the
former proof for incomplete DFAs to give the estimation (ii).

Suppose L is recognized by an incomplete DFA A = (Σ ,Q,δ ,q0,FA) where
|Q| = n. Let B = (Σ ,P,γ, p0,FB) be the NFA constructed for the neighbourhood
E(L(A),dH ,r) as in the proof of Theorem 3. In particular, the set of states P is
Q×{0,1, . . . ,r}.

Let B′ be the DFA obtained from B using the standard subset construction. Since
A is deterministic, from the construction of B it follows that any subset of P that is
reachable as a state of B′ can have at most one element of Q×{0} and, furthermore,
the reachable subsets X ⊆ P have the following property. If X 6= {(q0,0)} and X
contains an element (q,0), q ∈ Q, then from the definition of the transitions of the
NFA B it follows that also (q,1) ∈ X .

This means that the number of non-empty subsets of P that are reachable as states
of B′ is upper bounded by

1+(n ·2n−1 +2n) ·2n(r−1)−1 =
1
2
· (n+2) ·2nr.

ut

The lower bound for radius one neighbourhoods is roughly within a factor of 3
4

of the upper bound of Theorem 4. Significantly, the lower bound is over a binary
alphabet – up to date this is the only good lower bound for the deterministic state
complexity of additive neighbourhoods where the alphabet size does not depend on
the size of the DFA and, furthermore, the underlying distance is just the Hamming
distance.

Shamkin [31] has constructed finite languages Ln, n≥ 4, over a ternary alphabet
such that Ln has an incomplete DFA of size n and for all r ≤ n

2 − 1 the state com-
plexity of the radius r Hamming neighbourhood of Ln is at least 2b

n
2−rc. The lower

bound for Hamming neighbourhoods of radius r ≥ 1 is proportional to 2−r, that is,
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with a fixed number of states the lower bound decreases with increasing radius. This
seems to be quite far from the upper bound.

The upper bounds of Theorem 4 could be improved by adding further redun-
dant transitions to the original NFA construction (from Theorem 3) and then using
a more detailed analysis of the number reachable states of the corresponding DFA.
However, in the next subsection we get a better upper bound for the deterministic
state complexity of neighbourhoods using a different approach. Instead of construct-
ing an NFA and then determinizing it, we construct a DFA for the neighbourhood
directly based on the finite automaton recognizing the original language.

4.1 Neighbourhoods of general additive distances

Here we consider the state complexity of neighbourhoods with respect to a general
additive distance, and in the next subsection the prefix-distance and other related dis-
tance functions. If d is a regularity preserving distance, in the informal discussion
we use the term state complexity of d to mean the state complexity of neighbour-
hoods with respect to d (given as a function of the state complexity of the original
regular language).

In the rest of this section, without separate mention we assume that all distances
and quasi-distances are integral, i.e., the range of values consists of the non-negative
integers. When considering the state complexity of neighbourhoods, this is not more
restrictive than using rational values. Note that an additive distance d is completely
determined by the distances between elements of Σ ∪{ε}. Thus, if d has rational
values we can find a constant k such that there is an integral distance d′ that satisfies,
for all strings x,y ∈ Σ ∗, d′(x,y) = k · d(x,y). Consequently for any language L and
radius r ≥ 0, E(L,d,r) = E(L,d′,k · r).

Theorem 5 ([24, 30]). Let d be an additive quasi-distance. If L has an NFA with n
states and r ≥ 0,

sc(E(L(A),d,r))≤ (r+2)n−1.

The statement of Theorem 5 in [24, 30] does not have the term “−1” because
there DFAs are required to be complete. The proof (for distances and quasi-distances
in [30] and [24], respectively) uses a construction based on additive weighted finite
automata. Below we outline a direct DFA construction for the neighbourhood of an
additive distance.

Proof sketch for Theorem 5. For simplicity we assume that d is a distance. This
implies that for any w ∈ Σ ∗ and r′ ≥ 0, E({w},d,r′) is finite [5].

Let A = (Σ ,Q,δ ,q0,FA) and denote Q = {q0,q1, . . . ,qn−1}. We construct for the
neighbourhood E(L(A),d,r) a DFA B = (Σ ,P,γ, p0,FB) where the set of states is

P = {0,1, . . . ,r+1}n−{(r+1, . . . ,r+1)},
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FB = {(x0,x1, . . . ,xn−1) ∈ P | (∃0≤ j ≤ n−1) x j ≤ r and q j ∈ FA},

and p0 = (0, i1, i2, . . . , in−1), where i j, 1≤ j ≤ n−1, is the minimum of the set

Sdist−ε = ({d(ε,w) | q j ∈ δ (q0,w)}∪{r+1}).

Finally, the transitions of γ are defined as follows. For b ∈ Σ and (x0,x1, . . . ,xn−1) ∈
P, we define

γ((x0,x1, . . . ,xn−1),b) = (z0,z1, . . . ,zn−1),

where z j, 0≤ j ≤ n−1, is the minimum of the set

Sdist− j = {xi +d(b,w) | q j ∈ δ (qi,w)}∪{r+1}.

Since d is a distance, the neighbourhood E({b},d,r+1) is finite and the set Sdist− j
can be effectively constructed.

Intuitively, the DFA B operates as follows. Assuming that B has processed an
input u ∈ Σ ∗ and the current state is (x0,x1, . . . ,xn−1), the component x j, 0 ≤ j ≤
n−1, is the smallest distance between u and a string w∈ Σ ∗ that in the original NFA
A takes the state q0 to q j. If x j = r+1, then there is no string w with d(u,w)≤ r that
takes q0 to q j. The state (r+1, . . . ,r+1) would correspond to the dead state of the
computation and is omitted from the set of states.

The initial state p0 is chosen to satisfy the above property. Using the additivity of
d it can be verified inductively that if the state (x0,x1, . . . ,xn−1) satisfies the above
described property, so does γ((x0,x1, . . . ,xn−1),b), b ∈ Σ . (The formal argument for
correctness is analogous to the one used in [24, 30] for constructing a weighted finite
automaton to recognize the neighbourhood.)

The choice of the set of final states guarantees that B accepts a string u ∈ Σ ∗ iff
u ∈ E(L(A),d,r). ut

When r and n are at least two, the upper bound of Theorem 5 is better than the
upper bound of Theorem 4. The natural question is then whether the upper bound
can be reached. Below we give a positive answer to this question. However, a lim-
itation is that the size of the alphabet depends on the size of the DFA and the used
(quasi-)distance needs to be defined based on the chosen radius.

Proposition 1 ([25]).

(i) For all n,r≥ 1, there exists an additive distance dr and an NFA An with n states
over an alphabet of size 2n−1 such that sc(E(L(An),d,r) = (r+2)n−1.

(ii) For all n,r≥ 1, there exists an additive quasi-distance d′r and a DFA A′n with n
states over an alphabet of size 3n−2 such that sc(E(L(A′n),d

′,r) = (r+2)n−1.

Proof. The constructions for (i) and (ii) are variants of each other and (ii) is pre-
sented in detail in [25]. Here we outline the construction for (i).

Choose Σn = {a1, . . . ,an−1,b1, . . . ,bn}. For r ∈N, we define a distance dr : Σ ∗n ×
Σ ∗n → N0 by the conditions:

• dr(ai,a j) = r+1 for i 6= j,
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• dr(bi,b j) = 1 for i 6= j,
• dr(ai,b j) = r+1 for all 1≤ i, j ≤ n,
• dr(σ ,ε) = r+1 for all σ ∈ Σ .

The above conditions specify a unique additive distance on Σn. Note that when we
set the deletion cost to be r+ 1, due to symmetry of dr also the insertion cost will
be r+1.

We define the following family of n-state NFAs An = (Qn,Σn,δ ,1,{n}) where
Qn = {1, . . . ,n} and the transition function δ is defined by setting

• δ (i,ai) = {i, i+1} for 1≤ i≤ n−1,
• δ (i,a j) = i for 1≤ i≤ n−2 and i+1≤ j ≤ n−1,
• δ (i,b j) = i for 1≤ i≤ n−1 and j = i−1 or i+1≤ j ≤ n.

All transitions not listed above are undefined. The NFA An is depicted in Figure 1.

1start 2 · · · n−1 n
a1 a2 an−2 an−1

a1,a2, . . . ,an−1
b2,b3, . . . ,bn

a2,a3, . . . ,an−1
b1,b3, . . . ,bn

an−1,bn−2,bn bn−1

Fig. 1 The NFA An.

As in Corollary 1 we construct an NFA Bn,r = (Q′n,Σn,δ
′,q′0,F

′), for the neigh-
bourhood E(L(An),dr,r), where Q′n = Qn×{0,1, . . . ,r}, q′0 = (q0,0), F ′ = {n}×
{0,1, . . . ,r} and the transition function δ ′ is defined by

• δ ′((q, j),aq) = {(q, j),(q+1, j)} for 1≤ q≤ n−1,
• δ ′((q, j),aq′) = {(q, j)} for all 1≤ q≤ n−1 and q≤ q′ ≤ n−1,
• δ ′((q, j),bi) = {(q, j+1)} for 1≤ q≤ n and i = 1, . . . ,q−2,q,
• δ ′((q, j),bi) = {(q, j)} for 1≤ q≤ n and i = q−1,q+1, . . . ,n.

All transitions not listed above are undefined. The NFA Bn,r is depicted in Figure 2.
Note that the distance dr associates cost one to substituting bi with b j, i 6= j, and

cost r+1 to all other substitutions, insertions and deletions. The “error transitions”
are depicted as non-horizontal transitions in Figure 2 and, due to the above observa-
tion, the only error transitions take a state (i,k) to (i,k+1) on symbol bz, 1≤ i≤ n,
0≤ k ≤ r−1, where in the NFA An, δ (i,bz) is undefined.

For 0≤ ki ≤ r+1, 1≤ i≤ n, we define a string

w(k1, . . . ,kn) = a1bk1
1 a2bk2

2 · · ·an−1bkn−1
n−1 bkn

n .

Claim 1. If ki ≤ r, then there exists a computation Ci of the NFA Bn,r which reaches
the state (i,ki) at the end of the input w(k1, . . . ,kn), 1≤ i≤ n. There is no computa-
tion of Bn,r on w(k1, . . . ,kn) that reaches a state (i,k′i) with k′i < ki. Furthermore, if
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(1,0)start (2,0) · · · (n−1,0) (n,0)

...
...

...
...

(1,r) (2,r) · · · (n−1,r) (n,r)

a1 a2 an−2 an−1

a1,a2, . . . ,an−1
b2,b3, . . . ,bn

a2,a3, . . . ,an−1
b1,b3, . . . ,bn

an−1, ,bn−2,bn

bn−1

b1 b2 b1, . . . ,bn−3,bn−1
b1, . . . ,bn−2,bn

b1 b2
b1, . . . ,bn−3,bn−1 b1, . . . ,bn−2,bn

a1 a2 an−2 an−1

a1,a2, . . . ,an−1
b2,b3, . . . ,bn

a2,a3, . . . ,an−1
b1,b3, . . . ,bn an−1,bn−2,bn

bn−1

Fig. 2 The NFA Bn,r for the neighbourhood E(L(An),dr,r)

ki = r+1, no computation of Bn,r reaches at the end of w(k1, . . . ,kn) a state where
the first component is i.

The first part of the claim is easy to verify by direct inspection: Ci reaches state
(i,0) by reading the prefix a1bk1

1 · · ·ai−1bki−1
i−1 . In state (i,0) the computation Ci reads

ai with the selfloop and the vertical error transitions on bki
i take the computation

to state (i,ki) where the remaining suffix can be processed using selfloops. For the
second part of the claim we note that all horizontal transitions in Bn,r are labeled by
a j’s, and all horizontal transitions increment the first component of the state. Thus,
the only way to reach a state (i,k′i), would be to read each of the symbols a1, . . . ,
ai−1 using a transition that increments the first component and then read ai with a
selfloop. Now the following ki symbols bi must be processed using error transitions
which means that k′i cannot be smaller than ki.

Using Claim 1 we can now verify any two distinct strings w(k1, . . . ,kn) and
w(k′1, . . . ,k

′
n), 0 ≤ ki,k′i ≤ r + 1, are inequivalent with respect to the Kleene con-

gruence of E(L(An),dn,r). Choose 1 ≤ j ≤ n such that k j < k′j and define z =

b
r−k j
j a j+1 · · ·an−1.

By Claim 1, w(k1, . . . ,kn) · z ∈ L(Bn,r) because after reading w(k1, . . . ,kn) the
NFA Bn,r can reach the state ( j,k j) and continuing the computation on z can make
r− k j further error transtions. Similarly using Claim 1 we see that no computation
of Bn,r on w(k′1, . . . ,k

′
n) · z cannot reach an accepting state where the first component
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is n, because to do so it would need to reach on the prefix w(k′1, . . . ,k
′
n) a state ( j, `)

where `≤ k j. Since k j < k′j this is impossible by Claim 1.
Since L(Bn,r) = E(L(An),dn,r) it follows that the minimal complete DFA for

E(L(An),dn,r) has at least (r+2)n states. The congruence class of w(r+1, . . . ,r+1)
corresponds to the dead state of the DFA and can be omitted.

The proof for the part (ii) in [25] introduces additional alphabet symbols c1, . . . ,cn−1
and in each nondeterministic transition of An on ai, in the DFA A′n the selfloop is
labeled instead by ci, 1 ≤ i ≤ n− 1. The quasi-distance d′r assigns distance zero to
ai and ci, 1≤ i≤ n−1. With these definitions a lower bound argument for the size
of a DFA for E(L(A′n),d

′
r,r) similar to the one used above for (i) goes through. ut

To conclude this section we mention that the construction of Proposition 1 can be
modified to yield a tight lower bound for the state complexity of approximate pat-
tern matching. The descriptional complexity of pattern matching with mismatches
was first considered by El-Mabrouk [9]. Given a pattern P of length m and a text
T , the problem is to determine whether or not T contains substrings of length m
having characters differing from P in at most r positions, that is, substrings having
Hamming distance at most r from P. For a pattern P = am consisting of occurrences
of only one character, the state complexity was shown to be

(m+1
r+1

)
[9].

Extending the problem for a general additive quasi-distance d and a set of pat-
terns given as a regular language L⊆ Σ ∗, we want to determine the state complexity
of the set Σ ∗ ·E(L,d,r) ·Σ ∗, that is, the set of strings that contain a substring within
distance at most r from a string of L. The following lower bound is based on a
modification of the construction used in Proposition 1.

Proposition 2 ([25]). For n,r ∈ N, there exist an additive distance d and an NFA A
with n states defined over an alphabet of size 2n−1 such that the minimal DFA for
Σ ∗E(L(A),d,r)Σ ∗ must have at least (r+2)n−2 +1 states.

The authors [25] give an upper bound matching the bound of Proposition 2 which
means that the state complexity of approximate pattern matching with r errors is
exactly (r + 2)n−2 + 1. Brzozowski et al. [3] have shown that, for an n-state DFA
language L, the worst case state complexity of the two-sided ideal Σ ∗LΣ ∗ is 2n−2+1
which corresponds to having error radius zero in approximate pattern matching.
The lower bound for the error free case is obtained with a three letter alphabet [3]
whereas Proposition 2 needs a variable size alphabet.

4.2 State complexity of prefix distance

Additivity is not a necessary condition for a distance to be regularity preserving. For
example, by Theorem 2 the prefix, suffix, and substring distances preserve regularity
while these distances clearly are not additive.

The neighbourhood E(L,dp,r) (where dp is the prefix distance and r ≥ 0) con-
sists of strings w that share a “long” prefix with a string u ∈ L, more precisely, it is
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required that the combined length of the parts of w and u outside their longest com-
mon prefix is at most the constant r. In view of this, it seems reasonable to expect
that the state complexity prefix distance neighbourhoods does not incur a similar
exponential size blow-up as, for example, the edit distance.

Theorem 6 ([26]). For n > r ≥ 0 and a DFA A with n states, the neighbourhood
E(L(A),dp,r) can be recognized by a DFA with n · (r+1)− r(r+1)

2 states.
For n > r ≥ 0 there exists a regular language L over an alphabet of size n+ 1

with sc(L) = n such that

sc(E(L,dp,r)) = n · (r+1)− r(r+1)
2

.

Proof sketch. We outline the general idea only for the upper bound [26]. Suppose
A = (Σ ,Q,δ ,q0,FA). We can construct for the neighbourhood E(L(A),dp,r) a DFA
B with state set

P = (Q−FA)×{1, . . . ,r+1}∪FA∪{p1, . . . , pr}.

Intuitively, B operates as follows. The computation of B simulates the computation
of A and, in states (q, j) ∈ (Q−FA)×{1, . . . ,r+1} the second component j keeps
track of the minimum of the following two values: (i) the number of steps A needs
q to reach a final state, and, (ii) the minimum path length in A from q to a final
state that first goes one or more steps back in the current computation and then any
number of steps forward (on an arbitrary input). Elements of FA have always counter
value zero and, hence, are not associated with the second component representing a
counter. The details of the definition of the transitions of B that correctly update the
counter value in the second component of the states can be found in [26].

If the simulated computation of A encounters an undefined transition, B performs
at most r further transitions using a sequence of “error-transitions” using the states
p1, . . . , pr. The number of allowable error transitions depends on the value of the
counter when the undefined transition of A was encountered.

All states of B except the states (q,r+ 1), q ∈ Q−F , with counter value r+ 1,
are final. Note that the states of the form (q,r+1), q ∈ Q−F , are needed because
when simulating the transitions of A in the first component the counter value may
also decrease if the “forward” distance in A to a final state becomes smaller.

The state set P of B has in total (n−|FA|) · (r+1)+ r+ |FA| elements. The size
of P is maximized by choosing |FA| = 1 and, furthermore, it can be verified that at
least r(r+1)

2 elements of P must, independently of the alphabet size, be unreachable
as states of B. ut

The lower bound construction for Theorem 6 uses an alphabet of size n+1 where
n is the number of states of the original DFA. It is known that the general upper
bound cannot be reached using an alphabet of size n−2.
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Proposition 3 ([26]). Let A be a DFA with n states. If the state complexity of
E(L(A),dp,r) equals n · (r+1)− r(r+1)

2 , then the alphabet of A needs at least n−1
letters.

The paper [26] gives tight bounds also for the nondeterministic state complexity
of neighbourhoods defined by the prefix, suffix, and substring distances. The bounds
for the nondeterministic state complexity of the prefix distance and suffix distance,
respectively, coincide due to the observation that ds(x,y) = dp(xR,yR) for all strings
x,y, and the fact that the transitions of an NFA can be reversed without changing the
size of the NFA which means that, for any regular language L, nsc(L) = nsc(LR).

On the other hand, the deterministic state complexity of LR is usually signifi-
cantly different from the state complexity of L [10, 34]. It seems likely that con-
structing a DFA for the neighbourhood of an n-state DFA with respect to the suffix
distance causes a much larger worst-case size blow-up than the bound for prefix dis-
tance in Theorem 6. The precise deterministic state complexity of the suffix distance
remains open.

5 Conclusion and open problems

The precise worst-case state complexity of the radius r neighbourhood of an n state
DFA language with respect to an additive quasi-distance is (r+ 2)n− 1. However,
the lower bound construction of Proposition 1 has the following limitations:

• The construction uses an alphabet that depends linearly on the number of states
of the original DFA.

• The underlying distance is defined based on the radius of the neighbourhood.
• We don’t have a tight bound for state complexity defined in terms of complete

DFAs. A complete DFA with (r+2)n states can recognize a radius r neighbour-
hood of an n state DFA. It is not known how to construct a complete n state DFA
matching this upper bound.

The main open problem consists of proving lower bounds for additive dis-
tances (or quasi-distances) using languages over a binary, or constant size, alpha-
bet. The known good lower bound construction based on binary alphabets, due to
Povarov [28], deals only with the restricted case of radius one Hamming neighbour-
hoods (Theorem 4). The other important improvement to the lower bound result of
Proposition 1 would be to find a construction where the same distance (or quasi-
distance) definition works for neighbourhoods of arbitrary radius.

Descriptional complexity questions are relevant also for the more general er-
ror channels considered by Kari and Konstantinidis [12] and Konstantinidis and
Silva [18]. As briefly discussed in section 3, the edit distance of two strings being
at most a constant r can be defined in terms of an error system that allows at most
r substitution, insertion and deletion erros. With respect to this channel, the set of
possible outputs for an input belonging to a regular language L consists of the edit
distance neighbourhood of L having radius r.
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General error channels (or error systems) realized by rational channels [8, 12, 18]
can formalize many further types of errors, such as transposition errors, or so called
scattered or burst errors that are relevant for data communication applications. The
set of possible outputs C (L) produced by a rational error channel C corresponding
to inputs belonging to a regular language L is always regular. However, the set C (L)
need not be a neighbourhood of L defined by a distance metric and future work
can consist to determine the state complexity of C (L) as a function of the state
complexity of L and the size of a finite transducer realizing the error channel C .
The descriptional complexity of error systems has been considered from a different
point of view by Kari and Konstantinidis [12] who establish upper and lower bounds
for the sizes of DFAs that recognize a given error system,
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