	CISC 203		
Name:	Discrete Mathematics for		
	Computing Science		
	Toot 5 Fall 2000		
Student Number:	Test 5, Fall 2009		
	Professor Mary McCollam		

Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

- (a) [6 marks] Show that the relation
 - $D = \{ (x,y) \mid x y \text{ is an integer} \}$

Is an equivalence relation on the set of real numbers.

Answer:

(b) [4 marks] Describe the equivalence class of each of 0 and 0.5 for the relation D.

Answer:

Question 2: [10 marks]

a) [4 marks] Is (Z, \geq) a poset, where Z is the set of integers? Why or why not?

Answer:			

b) [6 marks] In the poset represented by the Hasse diagram below, identify the:

	5				
Answer:					
i)	maximal and minimal elements				
ii)	greatest and least elements, if they exist				
iii)	upper bounds of { b, c }				
iv)	least upper bound of { b, c } if it exists				
v)	lower bounds of { d, g, f }				
vi)	greatest lower bound of { d, g, f } if it exists				

Question 3: [10 marks]

a) Draw the two undirected graphs represented by the following adjacency matrices.

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

b) Determine whether these two graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Answer:

Answer:

Question 4: [10 marks]

a) Which complete bipartite graphs $K_{m,n}$, where m and n are positive integers, are trees?

Answer:

b) Show the result of inserting, 8, 5, 7, 3, 4, 9, 2 sequentially (one at a time), in an initially empty binary search tree.

Answer: