Name: \quadCISC 203 Discrete Mathematics for Computing Science	
Student Number: \quad	Test 5, Fall 2009 Professor Mary McCollam

Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

(a) [6 marks] Show that the relation
$D=\{(x, y) \mid x-y$ is an integer $\}$
Is an equivalence relation on the set of real numbers.

Answer:

(b) [4 marks] Describe the equivalence class of each of 0 and 0.5 for the relation D.

Answer:

Question 2: [10 marks]

a) [4 marks] Is (\mathcal{Z}, \geq) a poset, where \boldsymbol{Z} is the set of integers? Why or why not?

Answer:

b) [6 marks] In the poset represented by the Hasse diagram below, identify the:
© The McGraw-Hill Companies, Inc. all rights reserved.

Answer:
i) maximal and minimal elements
ii) greatest and least elements, if they exist
iii) upper bounds of $\{b, c\}$
iv) least upper bound of $\{b, c\}$ if it exists
v) lower bounds of $\{d, g, f\}$
vi) greatest lower bound of $\{d, g, f\}$ if it exists

Question 3: [10 marks]

a) Draw the two undirected graphs represented by the following adjacency matrices.

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Answer:

b) Determine whether these two graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Answer:

Question 4: [10 marks]

a) Which complete bipartite graphs $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$, where m and n are positive integers, are trees?

Answer:
b) Show the result of inserting, $8,5,7,3,4,9,2$ sequentially (one at a time), in an initially empty binary search tree.

Answer:

