Name:	Solutions	CISC 203 Discrete Mathematics for Computing Science
Student Number:		Test 5, Fall 2009
		Professor Mary McCollam

Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

(a) [6 marks] Show that the relation

 $D = \{ (x,y) \mid x - y \text{ is an integer } \}$

Is an equivalence relation on the set of real numbers.

Answer:

The relation is reflexive, since x - x is an integer; thus, $(x, x) \in D$ for all x.

The relation is symmetric, since if $(x, y) \in D$, then x - y is an integer, say z. Therefore, y - x is an integer -z. Thus $(y, x) \in D$.

The relation is transitive for the following reason. Suppose (w, x) \in D and (x, y)

 \in D. Then $w - x = z_1$ and $x - y = z_2$ for integers z_1 and z_2 .

Therefore, $(w - x) + (x - y) = (w - z) = z_1 + z_2$. Since $z_1 + z_2$ is an integer, then $(w, y) \in D$.

Since $z_1 + z_2$ is an integer, then $(w, y) \in D$.

(b) [4 marks] Describe the equivalence class of each of 0 and 0.5 for the relation $\it D$.

Answer:

The equivalence class for 0 is the set of integers \mathcal{Z} (since k is related to 0 if and only if k-0 is an integer).

The equivalence class for .5 is the set k +.5 for all integers k (since any arbitrary number x is related to 0.5 if and only if x – 0.5 is an integer, and hence x must be of the form k + 0.5 for all integers k.

Question 2: [10 marks]

a) [4 marks] Is (\mathcal{Z}, \geq) a poset, where \mathcal{Z} is the set of integers? Why or why not?

Answer:

We must show that the relation ≥ on the set of integers is reflexive, antisymmetric, and transitive.

Because $a \ge a$ for every integer $a, \ge is$ reflexive.

If $a \ge b$ and $b \ge a$, then a = b. Hence $\ge is$ antisymmetric.

Finally, \geq is transitive because $a \geq b$ and $b \geq c$ imply that $a \geq c$.

It follows that \geq is a partial ordering on the set of integers and (\mathcal{Z} , \geq) is a poset.

b) [6 marks] In the poset represented by the Hasse diagram below, identify the:

© The McGraw-Hill Companies, Inc. all rights reserved.

Answer:

- i) maximal and minimal elementsmaximal: G minimal: A, C, and E
- ii) greatest and least elements, if they exist greatest: G There is no least element.
- iii) upper bounds of { b, c }B, D, F, and G
- iv) least upper bound of { b, c } if it exists
- v) lower bounds of { d, g, f }
 A, B, C
- vi) greatest lower bound of { d, g, f } if it exists

В

Question 3: [10 marks]

a) Draw the two undirected graphs represented by the following adjacency matrices.

Answer:

b) Determine whether these two graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Answer:

The two graphs are not isomorphic.

There is one vertex of degree 4 in the second graph, but no vertex of degree 4 in the first graph.

Question 4: [10 marks]

a) Which complete bipartite graphs $K_{m,n}$, where m and n are positive integers, are trees?

Answer:

 $K_{1,n}$ is a tree.

Also, $K_{m,1}$ is a tree. No other complete bipartite graphs are trees.

So, $K_{m,n}$ is a tree if and only if m = 1 or n = 1.

b) Show the result of inserting, 8, 5, 7, 3, 4, 9, 2 sequentially (one at a time), in an initially empty binary search tree.

Answer:

