| Name:__Solutions___ Student Number: ___ \quadCISC 203
 Discrete Mathematics for
 Computing Science
 Test 5, Fall 2009
 Professor Mary McCollam |
| :--- | :--- | :--- |

Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

(a) [6 marks] Show that the relation
$D=\{(x, y) \mid x-y$ is an integer $\}$
Is an equivalence relation on the set of real numbers.

Answer:

The relation is reflexive, since $x-x$ is an integer; thus, $(x, x) \in D$ for all x.

The relation is symmetric, since if $(x, y) \in D$, then $x-y$ is an integer, say z.
Therefore, $y-x$ is an integer $-z$. Thus $(y, x) \in D$.

The relation is transitive for the following reason. Suppose $(w, x) \in D$ and (x, y) $\in D$. Then $w-x=z_{1}$ and $x-y=z_{2}$ for integers z_{1} and z_{2}.

Therefore, $(w-x)+(x-y)=(w-z)=z_{1}+z_{2}$.
Since $z_{1}+z_{2}$ is an integer, then $(w, y) \in D$.
(b) [4 marks] Describe the equivalence class of each of 0 and 0.5 for the relation D.

Answer:

The equivalence class for 0 is the set of integers Z (since k is related to 0 if and only if $k-0$ is an integer).

The equivalence class for .5 is the set $k+.5$ for all integers k (since any arbitrary number x is related to 0.5 if and only if $x-0.5$ is an integer, and hence x must be of the form $k+0.5$ for all integers k.

Question 2: [10 marks]

a) [4 marks] Is (Z, \geq) a poset, where Z is the set of integers? Why or why not?

Answer:

We must show that the relation \geq on the set of integers is reflexive, antisymmetric, and transitive.

Because $\mathrm{a} \geq$ a for every integer a, \geq is reflexive.
If $a \geq b$ and $b \geq a$, then $a=b$. Hence \geq is antisymmetric.
Finally, \geq is transitive because $\mathrm{a} \geq \mathrm{b}$ and $\mathrm{b} \geq \mathrm{c}$ imply that $\mathrm{a} \geq \mathrm{c}$.
It follows that \geq is a partial ordering on the set of integers and (Z, \geq) is a poset.
b) [6 marks] In the poset represented by the Hasse diagram below, identify the:
(C) The McGraw-Hill Companies, Inc. all rights reserved.

Answer:

i) maximal and minimal elements
maximal: G minimal: A, C, and E
ii) greatest and least elements, if they exist greatest: G There is no least element.
iii) upper bounds of $\{b, c\}$
B, D, F, and G
iv) least upper bound of $\{b, c\}$ if it exists B
v) lower bounds of $\{d, g, f\}$

A, B, C
vi) greatest lower bound of $\{d, g, f\}$ if it exists

B

Question 3: [10 marks]

a) Draw the two undirected graphs represented by the following adjacency matrices.
$\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0\end{array}\right]$

Answer:

b) Determine whether these two graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

Answer:

The two graphs are not isomorphic.

There is one vertex of degree 4 in the second graph, but no vertex of degree 4 in the first graph.

Question 4: [10 marks]

a) Which complete bipartite graphs $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$, where m and n are positive integers, are trees?

Answer:

$K_{1, n}$ is a tree.
Also, $\boldsymbol{K}_{\boldsymbol{m}, \mathbf{1}}$ is a tree. No other complete bipartite graphs are trees.
So, $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ is a tree if and only if $m=1$ or $n=1$.
b) Show the result of inserting, $8,5,7,3,4,9,2$ sequentially (one at a time), in an initially empty binary search tree.

Answer:

