Name:	CISC 203 Discrete Mathematics for Computing Science
Student Number:	Test 1 Fall 2010
	Professor Mary McCollam

This test is 50 minutes long and there are 40 marks.

Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Write any assumptions you are making when answering a question.

Question 1:	/ 10
Question 2:	/ 10
Question 3:	/ 10
Question 4:	/ 10
Total:	/ 40

Question 1: [10 marks]

(a) Let $\mathcal{A} = \{x \mid -10 \le x \le 10\}$, $\mathcal{B} = \{x \mid -15 \le x \le 8\}$ and $C = \{x \mid 2 \le x \le 15\}$. Let the universe of discourse be $\mathcal{U} = \mathcal{Z}$, the set of integers. Determine the following set.

Answer:

 $(\mathcal{B}-C) \cap \mathcal{A} =$

(b) Let $A_i = \{ ..., -2, -1, 0, 1, 2, ..., i \}$. Determine each of the following sets.

Answer:
i)
$$n \\ \bigcup_{i=1}^{n} \mathcal{A}_{i} = \mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup ... \cup \mathcal{A}_{n} =$$

ii) $n \\ \bigcap_{i=1}^{n} \mathcal{A}_{i} = \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap ... \cap \mathcal{A}_{n} =$

Question 2: [10 marks]

Answer:

(a) [4 marks] Determine whether the function f(x) = 2x - 1 is a bijection (one-toone correspondence) from the set of positive integers to the set of positive integers Justify your answer.

() [3 marks] What is the inverse of $f(x) = 6 - 3x^{1/2}$? You do not have to show
th	at your result is correct.

Answer:

(c) [3 marks] Let $f(x) = x^2 + x + 8$ and g(x) = 2x + 7 be functions from the set of real numbers to the set of real numbers. What is $g \circ f$?

Answer:

Question 3: [10 marks]

(a) Using the definition of *big-Omega notation*, show that $2x^3 + 4x^2 + 2$ is Ω (x³).

Answer:

(b) Analyze the time complexity of the following Python fragment, with x representing the problem size, and give a *Big-Oh estimate* of its running time. For the function *g* in your estimate f(x) is O(g), use a simple function *g* of smallest order. Justify your result.

```
sum = 0
for i in range( 1, x // 2 ):
    if i % 3 == 0:
        j = 2 * x
        while j > 1:
            j = j / 5
            sum += j
    else :
        for k in range( 1, 4 * x ):
            sum += k
```

Answer:

Question 4: [10 marks]

(a) $3 \equiv 9 \pmod{6}$ and $8 \equiv 14 \pmod{6}$. Therefore, which of the following are true? Note that you can determine most of these without any calculations.

Answer:

- i) $3 + 36 \equiv 9 + 36 \pmod{6}$
- ii) $3 + 14 \equiv 8 + 14 \pmod{6}$
- iii) $8/2 = 14/2 \pmod{6}$
- iv) $(3)(8) \equiv (9)(14) \pmod{6}$
- v) $(3)(14) = (9)(8) \pmod{6}$
- (b) List five integers that are congruent to 3 modulo 19.

Answer: