	CISC 203 Discrete Mathematics for Name:__Solutions___ Student Numbering Science
	Test 1 Fall 2010 Professor Mary McCollam

This test is 50 minutes long and there are 40 marks.
Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.
Write any assumptions you are making when answering a question.

Question 1:	/ 10
Question 2:	$/ 10$
Question 3:	/ 10
Question 4:	$/ 10$
Total:	$/ 40$

Question 1: [10 marks]

(a) Let $\mathcal{A}=\{x \mid-10 \leq x \leq 10\}, \mathcal{B}=\{x \mid-15 \leq x \leq 8\}$ and $C=\{x \mid 2 \leq x \leq 15\}$. Let the universe of discourse be $\mathcal{U}=Z$, the set of integers. Determine the following set.

Answer:

$(\mathcal{B}-C) \cap \mathcal{A}=\{x \mid-10 \leq x \leq 1\}=\{-10,-9,-8, \ldots, 1\}$
Note: either of the above set descriptions is correct
(b) Let $\mathcal{A}_{i}=\{\ldots,-2,-1,0,1,2, \ldots, i\}$. Determine each of the following sets.

Answer:

i) n

$$
\bigcup_{i=1} \mathcal{A}_{i}=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \ldots \cup \mathcal{A}_{n}=\{\ldots,-2,-1,0,1,2, \ldots, n\}
$$

ii) n

$$
\bigcap_{i=1} \mathcal{A}_{i}=\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \ldots \cap \mathcal{A}_{n}=\{\ldots,-2,-1,0,1\}
$$

Question 2: [10 marks]

(a) [4 marks] Determine whether the function $f(x)=2 x-1$ is a bijection (one-toone correspondence) from the set of positive integers to the set of positive integers Justify your answer.

Answer:

It is not a bijection because it is not onto. None of the even integers is an image under f.
There is no value x from the set of positive integers such that $f(x)=2 x-1$ results in an even integer.
(b) [3 marks] What is the inverse of $f(x)=6-3 x^{1 / 2}$? You do not have to show that your result is correct.

Answer:

$$
f^{-1}(x)=((6-x) / 3)^{2}
$$

(c) [3 marks] Let $f(x)=x^{2}+x+8$ and $g(x)=2 x+7$ be functions from the set of real numbers to the set of real numbers. What is $g \circ f$?

Answer:

$$
g \circ f(x)=g\left(f(x)=g\left(x^{2}+x+8\right)=2\left(x^{2}+x+8\right)+7=2 x^{2}+2 x+23\right.
$$

Question 3: [10 marks]

(a) Using the definition of big-Omega notation, show that $2 x^{3}+4 x^{2}+2$ is $\Omega\left(x^{3}\right)$.

Answer:

For all $x>1,4 x^{2}>0 x^{3}$ and $2>0 x^{3}$
Therefore,
For all $x>1,2 x^{3}+4 x^{2}+2 \geq 2 x^{3}+0 x^{3}+0 x^{3}=2 x^{3}$

Therefore, $2 x^{3}+4 x^{2}+2$ is $\Omega\left(x^{3}\right)$, since with witnesses $k=1$ and $\mathrm{C}=2$,
for all $x>k, 2 x^{3}+4 x^{2}+2 \geq \mathrm{C} x^{3}$
(b) Analyze the time complexity of the following Python fragment, with x representing the problem size, and give a Big-Oh estimate of its running time. For the function g in your estimate $f(x)$ is $O(g)$, use a simple function g of smallest order. Justify your result.

```
sum = 0
for i in range( 1,x // 2 ):
    if i % 3 == 0:
        j=2 * x
    while j> 1:
            j = j/ }
            sum += j
    else :
        for k in range( 1, 4 * x ):
        sum += k
```

Answer: Measure of input, is x; choose addition as key operation Number of iterations of outer for loop: $\lfloor x / 2\rfloor-1$

Number of iterations of while loop inside if clause: $\sim \log _{5} 2 x$
This while loop will be executed $\sim 1 / 3$ of the times through outer loop
Number of additions inside if clause is thus $\sim(1 / 3)\left(\log _{5} 2 x\right)(\lfloor x / 2\rfloor-1)$ is $O(x \log x)$
Number of iterations of inner for loop inside else clause: $4 x-1$
This while loop will be executed $\sim 2 / 3$ of the times through outer loop
Number of additions inside else clause is thus $\sim(2 / 3)(4 x-1)(\lfloor x / 2\rfloor-1)$ is $O\left(x^{2}\right)$
Worst case is $O\left(x^{2}\right)$. Thus $T(x)$ is $O\left(x^{2}\right)$

Question 4: [10 marks]

(a) $3 \equiv 9(\bmod 6)$ and $8 \equiv 14(\bmod 6)$. Therefore, which of the following are true? Note that you can determine most of these without any calculations.

Answer:

i) $3+36 \equiv 9+36(\bmod 6)$ TRUE
ii) $3+14 \equiv 8+14(\bmod 6) \quad$ FALSE
iii) $8 / 2 \equiv 14 / 2(\bmod 6) \quad$ FALSE
iv) $(3)(8) \equiv(9)(14)(\bmod 6) \quad$ TRUE
v) $(3)(14) \equiv(9)(8)(\bmod 6) \quad$ TRUE
(b) List five integers that are congruent to 3 modulo 19.

Answer:

Any of

$$
-16,-35,-54,-73,-92, \ldots \quad \text { or } 22,41,60,79,98, \ldots
$$

