Name:	CISC 203 Discrete Mathematics for Computing Science Student Number:\quadTest 2 Fall 2010 Professor Mary McCollam

This test is 50 minutes long and there are 40 marks. Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find A $\vee B$ (Recall that \vee denotes the Boolean join operation)

Answer:

(b) Find $\mathrm{B}^{[2]}$ (Recall that $\mathrm{B}^{[2]}=\mathrm{B} \odot \mathrm{B}$, where \odot denotes the Boolean product operation)

Answer:

Question 2: [10 marks]

(a) Use the Euclidean algorithm to find $\operatorname{gcd}(3003,357)$.
Answer:
(b) Convert the integer 295 from decimal notation to binary notation.

Answer:

Question 3: [10 marks] For each of the following, show the steps leading to the solution.
(a) Find an inverse of 7 modulo 31.

Answer:

(b) Solve the congruence $7 x \equiv 13(\bmod 31)$. Give the answer modulo 31.

Answer:

Question 4: [10 marks] Use proof by contradiction to show that the square root of 2 is irrational.

Recall that a real number x is rational if there exist integers p and q with $q \neq 0$ such that $x=p / q$. A real number that is not rational is called irrational.

HINT: Use the following facts in your proof.

- If a number is rational, it can be expressed as a fraction p / q in lowest terms, where p and q are integers, at least one of which is odd (otherwise, it wouldn't be in lowest terms, since 2 would divide both p and q).
- The square of an odd number is odd.

Answer:

