Name:___Solutions____ CISC 203	
Student Number: __	Ciscrete Mathematics for Computing Science Test 2 Fall 2010 Professor Mary McCollam

This test is 50 minutes long and there are 40 marks. Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find $A \vee B$ (Recall that \vee denotes the Boolean join operation)

Answer:

(b) Find $\mathrm{B}^{[2]}$ (Recall that $\mathrm{B}^{[2]}=\mathrm{B} \odot \mathrm{B}$, where \odot denotes the Boolean product operation)

Answer:

Question 2: [10 marks]

(a) Use the Euclidean algorithm to find $\operatorname{gcd}(3003,357)$.
Answer:

$$
\left.\begin{array}{rlrl}
3003 & =(357)(8)+147 & \text { OR } & \operatorname{gcd}(3003,357)
\end{array}\right)=\operatorname{gcd}(357,147)
$$

Therefore, $\operatorname{gcd}(3003,357)=21$
(b) Convert the integer 295 from decimal notation to binary notation.

Answer:

$$
\begin{array}{lr}
295 / 2=147 & \text { rm } 1 \\
147 / 2=73 & \text { rm } 1 \\
73 / 2=36 & \text { rm } 1 \\
36 / 2=18 & \text { rm 0 } \\
18 / 2=9 & \text { rm 0 } \\
9 / 2=4 & \text { rm } 1 \\
4 / 2=2 & \text { rm 0 } \\
2 / 2=1 & \text { rm 0 } \\
1 / 2=0 & \text { rm } 1
\end{array}
$$

Therefore $(295)_{10}=(100100111)_{2}$

Question 3: [10 marks] For each of the following, show the steps leading to the solution.
(a) Find an inverse of 7 modulo 31.

Answer: Work backwards through the Euclidean algorithm to find a linear combination of 7 and $31=\operatorname{gcd}(7,31)=1$

$$
\begin{array}{ll}
31=(7)(4)+3 & 3=(1)(31)-(4)(7) \\
7=(3)(2)+1 & 1=(1)(7)-(2)(3) \\
3=(1)(3)+0 &
\end{array}
$$

$$
\text { So, } 1=(1)(7)-(2)((1)(31)-(4)(7))
$$

$$
1=(9)(7)-(2)(31)
$$

Therefore 9 is an inverse of 7 modulo 31
Also, all integers congruent to 9 modulo 31 are inverses of 7 modulo 31:
$\ldots,-53,-22,9,40,71, \ldots$
(b) Solve the congruence $7 x \equiv 13(\bmod 31)$. Give the answer modulo 31.

Answer:

Multiply both sides of the congruence by an inverse of 7 modulo 31, e.g., 9
$7 x \equiv 13(\bmod 31)$
$(9)(7 x) \equiv(9)(13)(\bmod 31)$
$63 x \equiv 117(\bmod 31)$
$x \equiv 24(\bmod 31)$
Therefore, $x=24$ or any integer congruent to 24 modulo 31:
$\ldots,-7,24,55,86,117, \ldots$

Question 4: [10 marks] Use proof by contradiction to show that the square root of 2 is irrational.

Recall that a real number x is rational if there exist integers p and q with $q \neq 0$ such that $x=p / q$. A real number that is not rational is called irrational.

HINT: Use the following facts in your proof.

- If a number is rational, it can be expressed as a fraction p / q in lowest terms, where p and q are integers, at least one of which is odd (otherwise, it wouldn't be in lowest terms, since 2 would divide both p and q).
- The square of an odd number is odd.

Answer:

Assume that the square root of 2 is rational.
Then it could be expressed as a fraction p / q in lowest terms, where p and q are integers, with at least one of those being odd.

If $p / q=\sqrt{ } 2$ then $p^{2} / q^{2}=2$ and then $p^{2}=2 q^{2}$

Therefore p^{2} must be even
Since the square of an odd number is odd, then p must also be even
If p is even, then q must be odd, since p / q is in lowest terms, so either p or q must be odd

However, if p is even, then p^{2} is a multiple of 4
If p^{2} is a multiple of 4 and $p^{2}=2 q^{2}$, then $2 q^{2}$ is also a multiple of 4 , so q is even
Therefore, we have that q is odd and q is even, which is a contradiction.
Therefore, our initial assumption, that the square root of 2 is rational, is false
Therefore, the square root of 2 is irrational.

