Name: \ldots	CISC 203 Discrete Mathematics for Computing Science Student Number: __ Test 3, Fall 2010 Professor Mary McCollam

This test is 50 minutes long and there are 40 marks. Please write in pen and only in the box marked "Answer". This is a closed-book exam. No computers or calculators are allowed.

NOTES:

Justify your answers to all of the counting problems (give explanation or show work).
All solutions with factorials only need to be reduced to factorial form, e.g., $\frac{12!5!}{2!4!}$

$$
2!4!
$$

Question 1: [10 marks]

a) Show that if seven integers are selected from the first 10 positive integers, there must be at least two pairs of these integers with the sum 11.

Hint: Use the Pigeonhole Principle

Answer:

b) The name of a variable in the C programming language is a string that can contain uppercase letters, lowercase letters, digits, or underscores. Further, the first character in the string must be a letter, either uppercase or lowercase, or an underscore. If the name of a variable is determined by its first eight characters, how many different variables can be named in C ? Note that the name of a variable may contain fewer than eight characters.

Answer:

Question 2: [10 marks] Use mathematical induction to prove that for every positive integer $n \geq 3, n^{2} \geq 3 n$.

Answer:

Question 3: [10 marks]

a) How many 18-digit bit strings contain exactly 60 s and 121 if every 0 must be immediately followed by a 1 ? One such bit string is: 010101010101111111.

Answer:

b) How many different strings can be made from the letters in MOOSONEE, using all the letters?

Answer:

Question 4: [10 marks]

Let S be the subset of the set of ordered pairs of integers defined recursively by Basis Step: $(0,0) \in S$
Recursive Step: If $(a, b) \in S$, then $(a+2, b+3) \in S$ and $(a+3, b+2) \in S$
a) [3 marks] List the elements of S produced by the first three applications of the recursive definition.

Answer:
b) [7 marks] Use structural induction to show that $5 \mid a+b$ when $(a, b) \in S$.

Answer:

