| Name: $工 \quad$CISC 203
 Discrete Mathematics for
 Computing Science
 Student Number:
 Test 4, Fall 2010
 Professor Mary McCollam |
| :--- | :--- |

Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

a) An employee joined a company in 2009 with a starting salary of $\$ 50,000$. Every year this employee receives a raise of $\$ 1000$ plus 5% of the salary of the previous year. Find a recurrence relation for the salary of this employee n years after 2009.

Answer:

b) The following is the recurrence relation for a divide-and-conquer algorithm:

$$
f(n)=2 f(n / 2)+4
$$

Use 'Theorem 1', given below, to construct a Big-Oh estimate for $f(n)$.
Show the intermediate steps.
Theorem 1: Let f be an increasing function that satisfies the recurrence relation
$f(n)=a f(n / b)+c$, whenever n is divisible by b, where $a \geq 1, b$ is an integer greater than 1 , and c is a positive real number. Then $f(n)$ is:

$$
\begin{aligned}
& \mathrm{O}\left(n^{\log _{b} a}\right) \text { if } \mathrm{a}>1 \\
& \mathrm{O}(\log n) \text { if } a=1
\end{aligned}
$$

Answer:

Question 2: [10 marks]

a) [8 marks] Determine whether the relation R on the set of all real numbers is reflexive, symmetric, asymmetric, and/or antisymmetric, where $(x, y) \in R$ if and only if $x=2 y$. Justify each answer with a brief explanation.

Answer:

b) [2 marks] Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation the set of people consisting of pairs (a, b) where a and b are siblings (brothers or sisters). What is $R \circ S$?

Answer:

Question 3: [10 marks]

a) [4 marks] Determine whether the relation R represented by this directed graph is reflexive, symmetric, antisymmetric and/or transitive. Justify each answer with a brief explanation.

Answer:

b) [6 marks] Let R_{1} and R_{2} be relations on a set $A=\{1,2,3\}$.
$R_{1}=\{(1,2),(2,1),(2,2),(2,3),(3,1)\}$ and $R_{2}=\{(1,2),(2,2),(2,3),(3,1),(3,2),(3,3)\}$.

Answer:

i) Represent each of these relations with a matrix with the elements of A listed in increasing order.
ii) Find the matrix that represents $R_{1} \cap R_{2}$
iii) Find the matrix that represents $R_{2} \circ R_{1}$

Question 4: [10 marks] Let \boldsymbol{R} be the following relation on the set $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$:

$$
\{(x, x),(x, z),(y, y),(z, x),(z, y)\}
$$

Use the $\mathbf{0 - 1}$ matrix representation for relations to find the transitive closure of \boldsymbol{R}. Show the formula used to find the transitive closure of \boldsymbol{R} from its $0-1$ matrix representation and show the matrices in the intermediate steps in the algorithm, as well as the result matrix.

Answer:

