| Student Name: $\quad$CISC 203 <br> Discrete Mathematics for <br> Computing Science <br> Student Number: __ Test 5 <br> Fall 2010 <br> Professor Mary McCollam |
| :--- | :--- |

Please write in pen and only in the box marked "Answer".
This is a closed-book exam. No computers or calculators are allowed.

## Question 1: [10 marks]

( a ) Show that the relation $R$ on the set of all bit strings such that $s t$ if and only if $s$ and $t$ contain the same number of 1 s is an equivalence relation.

## Answer:

(b) List the ordered pairs in the equivalence relation on the set $\{0,1,2,3,4\}$ formed by the partition $\{(0,1,2),(3,4)\}$.

## Answer:

## Question 2: [10 marks]

( a ) Assume $S$ is the set of all people in the world. Consider $(S, R)$, with $(a, b) \in R$, where $a$ and $b$ are people and either $\mathrm{a}=\mathrm{b}$ or a is a descendant of b .

Answer:
i) Is $(S, R)$ a poset? Why or why not?
ii) Is $(S, R)$ a totally ordered set? Why or why not?
( b ) In the poset represented by the following Hasse diagram, identify the:

## Answer:

i) maximal and minimal elements
ii) greatest element, if it exists

iii) least element, if it exists
iv) lower bounds of $\{b, f\}$
v) greatest lower bound of $\{b, f\}$, if it exists

## Question 3: [10 marks]

( a ) Determine whether the following graph is bipartite. Justify your answer.


## Answer:

( b ) Determine whether the following pair of graphs are isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.


Answer:

Question 4: [10 marks] Use Huffman coding to encode these symbols with given frequencies: A: 0.10, B: 0.25, C: 0.05, D: 0.15, E: 0.30, F: 0.07, G: 0.08.

## Answer:

