Name:__SOLUTIONS	CISC 203
	Discrete Mathematics for
	Computing Science
	Test 1
Student Number:	Fall 2011
	Professor Mary McCollam

This test is 50 minutes long and there are 40 marks. Please write in pen and only in the box marked "Answer".

This is a closed-book exam. No computers or calculators are allowed.

Question 1: [10 marks]

(a) [3 marks] Let $A=\{0,2,4,6,8,10,12\}, B=\{1,2,3,4,5,6,7,8\}$, and $C=$ $\{6,7,8,9,10,11\}$. Determine each of the following sets:

Answer:

(i) $(B-A) \cap C=\{7\}$
(ii) $(C \cap \bar{A}) \cup B=\{1,2,3,4,5,6,7,8,9,11\}$
(b) [3 marks] Let $\mathrm{A}=\{x \mid 0<x<4\}$ and $\mathrm{B}=\{x \mid-3<x<0\}$. Let the universe of discourse be $\mathcal{U}=Z$, the set of integers. Find the Cartesian product $A \times B$.

Answer:

$$
\{(1,-2),(1,-1),(2,-2),(2,-1),(3,-2),(3,-1)\}
$$

(c) [4 marks] Determine whether each of the following sets is the power set of a set, where a and b are distinct elements. If the set is a power set, specify which set it is a power set of. If it is not a power set, explain why.

Answer:

(i) $\{\varnothing,\{a\}\}$

This is a power set of the set $\{a\}$
(ii) $\{\varnothing,\{a\},\{\varnothing, a\}\}$

This is not a power set, since it has 3 elements and the number of elements in a power set is 2^{n}, where n is the number of elements in the set.

Question 2: [10 marks]

(a) [4 marks] Determine whether $f: Z \times Z \rightarrow Z$ is a surjection (onto) if $f(m, n)=m+n+1$. Justify your answer. Recall that Z is the set of integers.

Answer:

This is onto, since $f(o, n-1)=n$ for every integer n
(b) [3 marks] Determine whether the function $f(x)=x^{5}+1$, where $f: Z \rightarrow Z$, is a bijection (one-to-one correspondence). Justify your answer.
Answer: No.
Justification:
It is not a surjection (onto), since many integers will not be in the range. For instance, $f(1)=2$ and $f(2)=33$ and the function is strictly increasing. So no integers between 2 and 33 will be in the range.
(c) [3 marks] What is the inverse of $f(x)=3 x^{3}-7$? You do not have to show that your result is correct.

Answer:

$$
f^{-1}(x)=((x+7) / 3)^{1 / 3}
$$

Question 3: [10 marks]

(a) Give a Big-Oh estimate for each of the following functions. For the function g of your estimate $\mathrm{f}(\mathrm{x})$ is $\mathrm{O}(\mathrm{g})$, use a simple function g of smallest order. Justify your result.

Answer:

(i) $\left(n^{3}+n^{2} \log n\right)(\log n+1)+(17 \log n+19)\left(n^{3}+2\right)$
$\mathrm{O}\left(\mathrm{n}^{3} \operatorname{logn}\right)$ Justification: The term n^{3} dominates the first sum, logn the second, logn the third and n^{3} the fourth. The product of the first two is therefore $\mathrm{O}\left(\mathrm{n}^{3} \log n\right)$ and the product of the second two is the same. Therefore, the function is $\mathrm{O}\left(\mathrm{n}^{3} \log n\right)$.
(ii) $\left(x^{4}+x^{2}+1\right) /\left(x^{4}+1\right)$
$\mathrm{O}(1)$ Justification: The term x^{4} dominates both sums, so the division results in 1 .
(b) Analyze the time complexity of the following Python fragment, with x representing the problem size, and give a Big-Oh estimate of its running time. For the function g in your estimate $f(x)$ is $\mathrm{O}(g)$, use a simple function g of smallest order. Justify your result.
$y=1$
$j=x$ * x
while $\mathrm{j}>1$:

$$
\begin{aligned}
& j=j / 2 \\
& y=y^{*} x
\end{aligned}
$$

Answer:

$O\left(\log x^{2}\right)$
Measure of input, is x ; choose multiplication as key operation
Number of iterations of while loop: $\sim \log _{2} x^{2}$
Number of multiplications inside while loop is thus $\sim \log _{2} x^{2}$

Question 4: [10 marks]

(a) Use the Euclidean algorithm to find $\operatorname{gcd}(2468,8642)$.

Answer:

$$
8642=2468 \times 3+1238
$$

$$
2468=1238 \times 1+1230
$$

$$
1238=1230 \times 1+8
$$

$$
1230=8 \times 153+6
$$

$$
8=6 \times 1+2
$$

$$
6=2 \times 3+0
$$

$\operatorname{gcd}(2468,8642)=2$
(b) $4 \equiv 10(\bmod 6)$ and $14 \equiv 20(\bmod 6)$. Therefore, which of the following are true? Note that you can determine most of these without any calculations.

$$
\begin{aligned}
& \text { Answer: } \\
& \text { i) } 4+10 \equiv 14+20(\bmod 6) \text { false } \\
& \text { ii) }(4)(7) \equiv(14)(7)(\bmod 6) \text { false } \\
& \text { iii) } 14 / 2 \equiv 20 / 2(\bmod 6) \text { false } \\
& \text { iv) }(4)(20) \equiv(10)(14)(\bmod 6) \text { true } \\
& \text { v) } 4+14 \equiv 10+20(\bmod 6) \text { true }
\end{aligned}
$$

